-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathT_rosenbrock.py
53 lines (45 loc) · 1.77 KB
/
T_rosenbrock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from basic_playground import *
import math as math
# global minimum is obtainable for xi=1, f(x)=0
# search space is limited to [-2.048, 2.048]
class RosenbrockSpace:
eps = 0.001
n_dimensions = 5
up_bound = 2.048
low_bound = -2.048
def __init__(self):
self.x = []
for i in range(RosenbrockSpace.n_dimensions):
self.x.append(random.uniform(RosenbrockSpace.low_bound, RosenbrockSpace.up_bound))
self.y = self.compute_value()
def compute_value(self):
self.y = 0
for i in range(RosenbrockSpace.n_dimensions-1):
self.y = self.y + 100*(self.x[i+1] - self.x[i]**2)**2 + (1 - self.x[i])**2
return self.y
def set_solution(self, sol):
self.x = sol
self.y = self.compute_value()
def modify_solution(self):
new_x = []
for i in range(RosenbrockSpace.n_dimensions):
p = random.uniform(0, 1)
if p < 0.15:
new_x.append(random.uniform(RosenbrockSpace.low_bound, RosenbrockSpace.up_bound))
else:
new_x.append(self.x[i] + random.uniform(-RosenbrockSpace.eps, RosenbrockSpace.eps))
if new_x[i] - RosenbrockSpace.low_bound < 0:
new_x[i] = RosenbrockSpace.low_bound * random.uniform(0.88, 0.98)
if new_x[i] - RosenbrockSpace.up_bound > 0:
new_x[i] = RosenbrockSpace.up_bound * random.uniform(0.88, 0.98)
self.set_solution(new_x)
def get_value(self):
return self.y
def get_solution(self):
return self.x
def measure_difference(self, other):
diff = 0
for i in range(RosenbrockSpace.n_dimensions):
diff = diff + (self.x[i] - other.x[i])**2
diff = math.sqrt(diff)
return diff