forked from kspub-github-book/pages-sample
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
47 lines (33 loc) · 1.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
import tensorflow as tf
from tensorflow import keras
def get_data():
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images,
test_labels) = mnist.load_data()
train_images = train_images / 255.0
test_images = test_images / 255.0
return(train_images, train_labels, test_images, test_labels)
def create_model():
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
(train_images, train_labels, test_images, test_labels) = get_data()
model = create_model()
model.fit(train_images, train_labels, epochs=5)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('\n')
print('Test accuracy: {}\n'.format(test_acc))
test_input = np.zeros(28 * 28).reshape((1, 28, 28))
predictions = model.predict(test_input)
print('Predictions for zero input')
print(predictions[0])
model.save_weights('model')
print()
print('Model was saved.')