-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpokegan_wgan.py
222 lines (201 loc) · 9.55 KB
/
pokegan_wgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import sys
import numpy as np
import keras
from keras.models import Model, Sequential
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, Activation
from keras.layers.convolutional import Convolution2D, Conv2DTranspose, Deconvolution2D, Cropping2D, UpSampling2D
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import LeakyReLU
from keras.initializers import RandomNormal
from keras.optimizers import Adam, SGD, RMSprop
from keras import backend as K
from sklearn.externals import joblib
from functools import partial
from keras.layers.merge import _Merge
from keras.models import load_model
from skimage import io
import matplotlib.pyplot as plt
import math
BATCH_SIZE = 64
TRAINING_RATIO = 5 # The training ratio is the number of discriminator updates per generator update. The paper uses 5.
CLIPPING_PARAM = 0.003
def wloss(actual, predicted):
return K.mean(actual * predicted)
class PokeGAN:
def build(self, generated_size=(48,48), alpha=0.2):
# GENERATOR +++++++++++++++++++++++
self.initial_size = (int(generated_size[0]/16), int(generated_size[1]/16))
width, height = self.initial_size
channels_count = 512
initializer=RandomNormal(mean=0., stddev=CLIPPING_PARAM)
self.generator = Sequential()
self.generator.add(Dense(channels_count * width*height, input_shape=(100,), kernel_initializer=initializer))
self.generator.add(BatchNormalization())
self.generator.add(LeakyReLU(alpha))
self.generator.add(Reshape([height, width, channels_count]))
self.generator.add(Conv2DTranspose(channels_count//2, 5, strides=2,
padding='same',
data_format='channels_last',
kernel_initializer=initializer))
self.generator.add(BatchNormalization(momentum=0.5))
self.generator.add(Activation('relu'))
self.generator.add(Conv2DTranspose(channels_count//4, 5, strides=2,
padding='same',
data_format='channels_last',
kernel_initializer=initializer))
self.generator.add(BatchNormalization(momentum=0.5))
self.generator.add(Activation('relu'))
self.generator.add(Conv2DTranspose(channels_count//8, 5, strides=2,
padding='same',
data_format='channels_last',
kernel_initializer=initializer))
self.generator.add(BatchNormalization(momentum=0.5))
self.generator.add(Activation('relu'))
self.generator.add(Conv2DTranspose(3, 5, strides=2, padding='same', data_format='channels_last'))
self.generator.add(Activation('tanh'))
print("Generator Summary: ")
self.generator.summary()
#+++++++++++++++++++++++++++++++++++
#DISCRIMINATOR +++++++++++++++++++++
base = 64
input_shape=(generated_size[0], generated_size[1], 3)
self.discriminator = Sequential()
self.discriminator.add(Convolution2D(
base, 5,
strides=2,
kernel_initializer=initializer,
padding='same',
data_format='channels_last',
input_shape=input_shape))
self.discriminator.add(LeakyReLU(alpha))
self.discriminator.add(Convolution2D(
base * 2, 5,
strides=2,
kernel_initializer=initializer,
padding='same',
data_format='channels_last'))
self.discriminator.add(LeakyReLU(alpha))
# self.discriminator.add(Dropout(0.25))
self.discriminator.add(Convolution2D(
base * 4, 5,
strides=2,
kernel_initializer=initializer,
padding='same',
data_format='channels_last'))
self.discriminator.add(LeakyReLU(alpha))
# self.discriminator.add(Dropout(0.25))
self.discriminator.add(Convolution2D(
base * 8, 5,
strides=2,
kernel_initializer=initializer,
padding='same',
data_format='channels_last'))
self.discriminator.add(LeakyReLU(alpha))
# self.discriminator.add(Dropout(0.25))
self.discriminator.add(Flatten())
self.discriminator.add(Dense(units=1, activation=None))
self.discriminator.summary()
#+++++++++++++++++++++++++++++++++++
# d_optim = Adam(0.0001, beta_1=0.5, beta_2=0.9)
# g_optim = Adam(0.0001, beta_1=0.5, beta_2=0.9)
d_optim = RMSprop(lr=0.00005)
g_optim = RMSprop(lr=0.00005)
self.discriminator.compile(loss=wloss, optimizer = d_optim, metrics=None)
self.generator.compile(loss=wloss, optimizer=g_optim, metrics=None)
# z = Input(shape=(100,))
# image = self.generator(z)
# self.discriminator.trainable = False
# valid = self.discriminator(image)
# self.gan = Model(z, valid)
# self.gan.compile(loss='binary_crossentropy', optimizer=g_optim)
self.gan = Sequential()
self.discriminator.trainable = False
self.gan.add(self.generator)
self.gan.add(self.discriminator)
self.gan.compile(loss=wloss, optimizer=g_optim, metrics=None)
def train(self, dump_filename, epochs=100):
training_data = joblib.load(dump_filename)
g_loss = []
d_loss = []
#zero_y = np.zeros((BATCH_SIZE, 1), dtype=np.float64)
for epoch in range(epochs):
np.random.shuffle(training_data)
print("Epoch is", epoch)
print("Number of batches", int(training_data.shape[0]/BATCH_SIZE))
index = 0
while index < int(training_data.shape[0]/BATCH_SIZE):
for disc_index in range(TRAINING_RATIO):
noise = np.random.normal(-1, 1, size=(BATCH_SIZE,100))
if (index+1)*BATCH_SIZE >= training_data.shape[0]:
break
real_images = training_data[index*BATCH_SIZE:(index+1)*BATCH_SIZE]
# if not (np.max(real_images) <= 1.0 and np.min(real_images) >= -1.0):
# real_images = (real_images / 255.0).astype(np.float64)
# real_images = real_images - 1.0
generated_images = self.generator.predict(noise)
real_y = np.ones((BATCH_SIZE,1), dtype=np.float64)
fake_y = np.ones((BATCH_SIZE,1), dtype=np.float64) * -1.0
self.discriminator.trainable = True
for layer in self.discriminator.layers:
weights = layer.get_weights()
weights = [np.clip(w, -1.0*CLIPPING_PARAM, CLIPPING_PARAM) for w in weights]
layer.set_weights(weights)
d_loss_real = self.discriminator.train_on_batch(real_images, real_y)
d_loss_fake = self.discriminator.train_on_batch(generated_images, fake_y)
d_loss.append(d_loss_real - d_loss_fake)
index += 1
self.discriminator.trainable = False
noise = np.random.normal(-1, 1, size=(BATCH_SIZE,100))
fake_y = np.ones((BATCH_SIZE,1),dtype=np.float64)
g_loss.append(self.gan.train_on_batch(noise, fake_y))
print("epoch: {}, dloss: {}, gloss: {}".format(epoch, d_loss[-1], g_loss[-1]))
sample = self.generator.predict(np.random.normal(-1, 1, (10, 100)))
genned = sample[0]
for i in range(1,10):
genned = np.concatenate((genned, sample[i]), axis=1)
io.imsave('generated/epoch_{}.png'.format(epoch), genned)
plt.figure(1)
plt.subplot(211)
plt.plot(
range(len(g_loss)), g_loss, 'b',
range(len(d_loss)), d_loss, 'r',
)
plt.show()
def predict(self, num, save=False, filename='generated/samples.png'):
if save:
samples = self.generator.predict(np.random.normal(-1, 1, (num, 100)))
genned = samples[0]
for i in range(1,num):
genned = np.concatenate((genned, samples[i]), axis=1)
io.imsave(filename, genned)
else:
while True:
cmd = input("Enter q to quit. Otherwise, press enter to generate.")
if cmd == 'q':
return
samples = self.generator.predict(np.random.normal(-1, 1, (num, 100)))
genned = samples[0]
for i in range(1,num):
genned = np.concatenate((genned, samples[i]), axis=1)
io.imshow(genned)
plt.show()
def save(self, filename):
self.discriminator.save(filename + '_disc.h5')
print('saved discriminator as ' + filename + '_disc.h5')
self.generator.save(filename + '_gen.h5')
print('saved generator as ' + filename + '_gen.h5')
# self.gan.save(filename + '_gan.h5')
# print('saved gan as ' + filename + '_gan.h5')
def load(self, filename):
self.discriminator = keras.models.load_model(filename + '_disc.h5',custom_objects={'wloss': wloss})
print('loaded discriminator!')
self.generator = keras.models.load_model(filename + '_gen.h5', custom_objects={'wloss':wloss})
print('loaded generator!')
self.gan = Sequential()
self.discriminator.trainable = False
self.gan.add(self.generator)
self.gan.add(self.discriminator)
self.gan.compile(loss=wloss, optimizer=RMSprop(lr=0.00005), metrics=None)
print('compiled GAN! Ready for generation.')
# self.gan = keras.models.load_model(filename + '_gan.h5')
# print('loaded gan!')