-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathutils.py
180 lines (150 loc) · 4.91 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# -*- coding: utf-8 -*-
# /usr/bin/python3
'''
Feb. 2019 by kyubyong park.
https://www.github.com/kyubyong/transformer.
Utility functions
'''
import tensorflow as tf
# from tensorflow.python import pywrap_tensorflow
# import numpy as np
import json
import os, re
import logging
logging.basicConfig(level=logging.INFO)
def calc_num_batches(total_num, batch_size):
'''Calculates the number of batches.
total_num: total sample number
batch_size
Returns
number of batches, allowing for remainders.'''
return total_num // batch_size + int(total_num % batch_size != 0)
def convert_idx_to_token_tensor(inputs, idx2token):
'''Converts int32 tensor to string tensor.
inputs: 1d int32 tensor. indices.
idx2token: dictionary
Returns
1d string tensor.
'''
def my_func(inputs):
return " ".join(idx2token[elem] for elem in inputs)
return tf.py_func(my_func, [inputs], tf.string)
# # def pad(x, maxlen):
# # '''Pads x, list of sequences, and make it as a numpy array.
# # x: list of sequences. e.g., [[2, 3, 4], [5, 6, 7, 8, 9], ...]
# # maxlen: scalar
# #
# # Returns
# # numpy int32 array of (len(x), maxlen)
# # '''
# # padded = []
# # for seq in x:
# # seq += [0] * (maxlen - len(seq))
# # padded.append(seq)
# #
# # arry = np.array(padded, np.int32)
# # assert arry.shape == (len(x), maxlen), "Failed to make an array"
#
# return arry
def postprocess(hypotheses, idx2token):
'''Processes translation outputs.
hypotheses: list of encoded predictions
idx2token: dictionary
Returns
processed hypotheses
'''
_hypotheses = []
for h in hypotheses:
sent = "".join(idx2token[idx] for idx in h)
sent = sent.split("</s>")[0].strip()
sent = sent.replace("▁", " ") # remove bpe symbols
_hypotheses.append(sent.strip())
return _hypotheses
def save_hparams(hparams, path):
'''Saves hparams to path
hparams: argsparse object.
path: output directory.
Writes
hparams as literal dictionary to path.
'''
if not os.path.exists(path): os.makedirs(path)
hp = json.dumps(vars(hparams))
with open(os.path.join(path, "hparams"), 'w') as fout:
fout.write(hp)
def load_hparams(parser, path):
'''Loads hparams and overrides parser
parser: argsparse parser
path: directory or file where hparams are saved
'''
if not os.path.isdir(path):
path = os.path.dirname(path)
d = open(os.path.join(path, "hparams"), 'r').read()
flag2val = json.loads(d)
for f, v in flag2val.items():
parser.f = v
def save_variable_specs(fpath):
'''Saves information about variables such as
their name, shape, and total parameter number
fpath: string. output file path
Writes
a text file named fpath.
'''
def _get_size(shp):
'''Gets size of tensor shape
shp: TensorShape
Returns
size
'''
size = 1
for d in range(len(shp)):
size *=shp[d]
return size
params, num_params = [], 0
for v in tf.global_variables():
params.append("{}==={}".format(v.name, v.shape))
num_params += _get_size(v.shape)
print("num_params: ", num_params)
with open(fpath, 'w') as fout:
fout.write("num_params: {}\n".format(num_params))
fout.write("\n".join(params))
logging.info("Variables info has been saved.")
def get_hypotheses(num_batches, num_samples, sess, tensor, dict):
'''Gets hypotheses.
num_batches: scalar.
num_samples: scalar.
sess: tensorflow sess object
tensor: target tensor to fetch
dict: idx2token dictionary
Returns
hypotheses: list of sents
'''
hypotheses = []
for _ in range(num_batches):
h = sess.run(tensor)
hypotheses.extend(h.tolist())
hypotheses = postprocess(hypotheses, dict)
return hypotheses[:num_samples]
def calc_bleu(ref, translation):
'''Calculates bleu score and appends the report to translation
ref: reference file path
translation: model output file path
Returns
translation that the bleu score is appended to'''
get_bleu_score = "perl multi-bleu.perl {} < {} > {}".format(ref, translation, "temp")
os.system(get_bleu_score)
bleu_score_report = open("temp", "r").read()
with open(translation, "a") as fout:
fout.write("\n{}".format(bleu_score_report))
try:
score = re.findall("BLEU = ([^,]+)", bleu_score_report)[0]
new_translation = translation + "B{}".format(score)
os.system("mv {} {}".format(translation, new_translation))
os.remove(translation)
except: pass
os.remove("temp")
# def get_inference_variables(ckpt, filter):
# reader = pywrap_tensorflow.NewCheckpointReader(ckpt)
# var_to_shape_map = reader.get_variable_to_shape_map()
# vars = [v for v in sorted(var_to_shape_map) if filter not in v]
# return vars