forked from GrayScaleHY/asr_cn_tf1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_am.py
231 lines (205 loc) · 7.83 KB
/
utils_am.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import difflib
import numpy as np
import tensorflow as tf
import scipy.io.wavfile as wav
from tqdm import tqdm
from scipy.fftpack import fft
from python_speech_features import mfcc
from keras import backend as K
import re
import math
def dic2args(dic):
"""
将dict转换成args的格式。
"""
params = tf.contrib.training.HParams()
for keys in dic:
params.add_hparam(keys, dic[keys])
return params
def data_hparams():
params = tf.contrib.training.HParams(
# vocab
data_type='train',
data_path='data/',
batch_size=1,
data_length=None)
return params
class get_data():
def __init__(self, args):
self.data_type = args.data_type
self.data_path = args.data_path
self.data_length = args.data_length
self.batch_size = args.batch_size
self.source_init()
def source_init(self):
print('get source list...')
# 将kaldi形式的data文件转成[text]和[wav path]的两个list
pny_list, wav_list = data_2_list(self.data_path)
self.wav_lst = []
self.pny_lst = []
for i in range(len(wav_list)):
self.wav_lst.append(wav_list[i])
self.pny_lst.append(pny_list[i].split(' '))
if self.data_length:
self.wav_lst = self.wav_lst[:self.data_length]
self.pny_lst = self.pny_lst[:self.data_length]
print('make am vocab...')
self.am_vocab = self.mk_am_vocab(self.pny_lst)
self.batch_num = len(self.pny_lst) // self.batch_size # 分多少个batch
def get_am_batch(self):
"""
迭代器,生成输入到网络的input和output。
"""
while 1:
for i in range(self.batch_num):
wav_data_lst = []
label_data_lst = []
for index in range(i*self.batch_size,(i+1)*self.batch_size):
# 计算音频特征
# feature = compute_fbank(self.wav_lst[index])
feature = get_mfcc(self.wav_lst[index])
## feature的长度要大于ctc label长度的8倍。
label = self.pny2id(self.pny_lst[index], self.am_vocab)
label_ctc_len = self.ctc_len(label)
if feature.shape[0] // 8 >= label_ctc_len: # 之所以要8的倍数是因为卷积模型做了三次步长为2的strite
wav_data_lst.append(feature)
label_data_lst.append(label)
# 将一个batch的feature整合成一个四维矩阵array
pad_wav_data, input_length = self.wav_padding(wav_data_lst)
pad_label_data, label_length = self.label_padding(label_data_lst)
# 将input和output打包成dict
inputs = {'the_inputs': pad_wav_data,
'the_labels': pad_label_data,
'input_length': input_length,
'label_length': label_length,
}
outputs = {'ctc': np.zeros(pad_wav_data.shape[0], )} # 一个batch的大小
yield inputs, outputs
def pny2id(self, line, vocab):
return [vocab.index(pny) for pny in line]
def han2id(self, line, vocab):
return [vocab.index(han) for han in line]
def wav_padding(self, wav_data_lst):
"""
输入一个2维矩阵的list(该list中的每个矩阵第二维相同)。
将改矩阵整合成一个(batch, h, w, channel)的四维矩阵。
改矩阵的h为8的倍数。
返回array矩阵和原来list中每个矩阵的长度除以八的列表。
"""
wav_lens = [math.ceil(len(data)/8) for data in wav_data_lst]
new_wav_data_lst = np.zeros((len(wav_data_lst), max(wav_lens)*8, wav_data_lst[0].shape[1], 1))
for i in range(len(wav_data_lst)):
new_wav_data_lst[i, :wav_data_lst[i].shape[0], :, 0] = wav_data_lst[i]
return new_wav_data_lst, np.array(wav_lens)
def label_padding(self, label_data_lst):
"""
输入一个label的list,将其转换成二维的array矩阵。
"""
label_lens = np.array([len(label) for label in label_data_lst])
new_label_data_lst = np.zeros((len(label_data_lst), max(label_lens)))
for i in range(len(label_data_lst)):
new_label_data_lst[i][:len(label_data_lst[i])] = label_data_lst[i]
return new_label_data_lst, label_lens
def mk_am_vocab(self, data):
vocab = []
for line in tqdm(data):
line = line
for pny in line:
if pny not in vocab:
vocab.append(pny)
vocab.append('_')
return vocab
def ctc_len(self, label):
"""
如果有连续两个相同label,则返回长度加一。
"""
add_len = 0
label_len = len(label)
for i in range(label_len - 1):
if label[i] == label[i + 1]:
add_len += 1
return label_len + add_len
def data_2_list(data_path):
"""
将kaldi形式的text和wav.scp转换成一一对应的[wav path]和[text]列表。
"""
text_dic = {}
pny_list = []
wav_list = []
for s in open(os.path.join(data_path,"text")):
s_s = re.split(" ",s.strip())
text_dic[s_s[0]] = " ".join(s_s[1:])
for s in open(os.path.join(data_path,"wav.scp")):
s_s = re.split(" ",s.strip())
pny_list.append(text_dic[s_s[0]])
wav_list.append(s_s[1])
return pny_list, wav_list
def get_mfcc(file):
"""
返回维度为32的mfcc
"""
fs, data = wav.read(file)
mfcc_ = mfcc(data,fs,winlen=0.032,winstep=0.016,numcep=32,nfilt=64)
return mfcc_
def compute_mfcc(file):
"""
对音频文件提取mfcc特征
"""
fs, audio = wav.read(file)
mfcc_feat = mfcc(audio, samplerate=fs, numcep=26)
mfcc_feat = mfcc_feat[::3] ## 跳帧
mfcc_feat = np.transpose(mfcc_feat)
return mfcc_feat
def compute_fbank(file):
"""
获取信号的时频图
"""
x = np.linspace(0, 400 - 1, 400, dtype=np.int64)
w = 0.54 - 0.46 * np.cos(2 * np.pi * (x) / (400 - 1)) # 汉明窗
fs, wavsignal = wav.read(file)
# wav波形 加时间窗以及时移10ms
time_window = 25 # 单位ms
wav_arr = np.array(wavsignal)
range0_end = int(len(wavsignal) / fs * 1000 - time_window) // 10 + 1 # 计算循环终止的位置,也就是最终生成的窗数
data_input = np.zeros((range0_end, 200), dtype=np.float) # 用于存放最终的频率特征数据
data_line = np.zeros((1, 400), dtype=np.float)
for i in range(0, range0_end):
p_start = i * 160
p_end = p_start + 400
data_line = wav_arr[p_start:p_end]
data_line = data_line * w # 加窗
data_line = np.abs(fft(data_line))
data_input[i] = data_line[0:200] # 设置为400除以2的值(即200)是取一半数据,因为是对称的
data_input = np.log(data_input + 1)
# data_input = data_input[::]
return data_input
# word error rate------------------------------------
def GetEditDistance(str1, str2):
"""
字错率
"""
leven_cost = 0
s = difflib.SequenceMatcher(None, str1, str2)
for tag, i1, i2, j1, j2 in s.get_opcodes():
if tag == 'replace':
leven_cost += max(i2-i1, j2-j1)
elif tag == 'insert':
leven_cost += (j2-j1)
elif tag == 'delete':
leven_cost += (i2-i1)
return leven_cost
def decode_ctc(num_result, num2word):
"""
ctc解码
"""
result = num_result[:, :, :]
in_len = np.zeros((1), dtype = np.int32)
in_len[0] = result.shape[1]
r = K.ctc_decode(result, in_len, greedy = True, beam_width=10, top_paths=1)
r1 = K.get_value(r[0][0])
r1 = r1[0]
text = []
for i in r1:
text.append(num2word[i])
return r1, text