-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmva_prediction_analysis.py
81 lines (54 loc) · 2.45 KB
/
mva_prediction_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import statsmodels.api as sm
import pandas as pd
import time
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import r2_score
start = time.clock()
def mva_prediction_score(dataset,split_number,quadratic_reg=False):
y_train = dataset[['DELTA_MVA']].iloc[:split_number]
X_train = dataset[['SES', 'CovarUnc', 'Covar', 'Average_Connection']].iloc[:split_number]
if quadratic_reg == True:
X_train['SES_sq'] = np.square(X_train['SES'])
X_train['CovarUnc_sq'] = np.square(X_train['CovarUnc'])
X_train['Covar_sq'] = np.square(X_train['Covar'])
X_train['Average_Connection_sq'] = np.square(X_train['Average_Connection'])
X_train = sm.add_constant(X_train)
y_test = dataset[['DELTA_MVA']].iloc[split_number:]
X_test = dataset[['SES', 'CovarUnc', 'Covar', 'Average_Connection']].iloc[split_number:]
if quadratic_reg == True:
X_test['SES_sq'] = np.square(X_test['SES'])
X_test['CovarUnc_sq'] = np.square(X_test['CovarUnc'])
X_test['Covar_sq'] = np.square(X_test['Covar'])
X_test['Average_Connection_sq'] = np.square(X_test['Average_Connection'])
X_test = sm.add_constant(X_test)
# Effettuo la regressione sul training set
model = sm.OLS(y_train.astype(float), X_train.astype(float))
results = model.fit()
# Predico usando il test set
pred_matrix = dataset[['Date']].iloc[split_number:].reset_index(drop=True)
predictions = results.predict(X_test)
pred_matrix.loc[:, 'Pred_DELTA_MVA'] = pd.Series(predictions, index=pred_matrix.index)
score = r2_score(y_test, predictions)
return score
#Carico il dataset
filename = 'dataset.csv'
dataset = pd.read_csv(filename)
print(dataset)
results = pd.DataFrame(columns=['SplitNumber','Linear','Quadratic'])
min_sample = 12
max_sample = 18
for i in range(min_sample,max_sample):
results = results.append({'SplitNumber': i,
'Linear': mva_prediction_score(dataset,split_number=i),
'Quadratic': mva_prediction_score(dataset, split_number=i,quadratic_reg=True)},
ignore_index=True)
print(results)
plt.plot(results['Linear'], label="Linear")
plt.plot(results['Quadratic'], label="Quadratic", color='r')
plt.title('MVA Prediction Analisys')
plt.xticks(list(range(0, max_sample-min_sample)), list(range(min_sample,max_sample)))
plt.legend()
plt.xlabel('Training set size')
plt.ylabel('R^2 Score')
plt.show()