-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcross_domain_main.py
320 lines (234 loc) · 11.2 KB
/
cross_domain_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import torch
from tqdm import tqdm
import argparse
import numpy as np
from util.pc_rotate import PointcloudRotate
# from Dataloader.model_net_cross_val import get_sets
# from Dataloader.shapenet_cross_val import get_sets # not used
# from Dataloader.modelnet40_fs import get_sets # not used
from util.get_acc import cal_cfm
import torch.nn as nn
# ======== load model =========
# from model.network import fs_network
# from model.network_gait import fs_network
from model.mm_network import fs_network
import logging
import os
from torch.utils.tensorboard import SummaryWriter
import json
import yaml
from Dataloader.cross_domain_dl import get_sets
# ============== Get Configuration =================
def get_arg():
cfg=argparse.ArgumentParser()
cfg.add_argument('--exp_name',default='dgcnn_mm4_cia_crossdm_exp1', type=str)
cfg.add_argument('--solo_base_train', action='store_true', help='train the sla merely on base classes')
cfg.add_argument('--exp_des', default='dgcnn_mm4_cia_crossdm_exp1: cross domain exps w/ dgcnn + cia')
cfg.add_argument('--multigpu',default=False)
cfg.add_argument('--epochs',default=80)
cfg.add_argument('--decay_ep',default=5)
cfg.add_argument('--gamma',default=0.7)
cfg.add_argument('--lr',default=0.0001)
cfg.add_argument('--train',action='store_false',default=True)
cfg.add_argument('--seed',default=0)
cfg.add_argument('--device',default='cuda')
cfg.add_argument('--lr_sch',default=False)
cfg.add_argument('--data_aug',default=True)
# ======== few shot cfg =============#
cfg.add_argument('--k_way',default=5, type=int)
cfg.add_argument('--n_shot',default=5, type=int)
cfg.add_argument('--query',default=15, type=int)
cfg.add_argument('--backbone',default='dgcnn_mm4',type=str, choices=['dgcnn_mm4','dgcnn','dgcnn_qmm2','bin_dgcnn_mm','dgcnn_sqmm3','dgcnn_sqmm', 'dgcnn_sqmm2', 'viewnetjj_sqmm', 'viewnet_mm', 'dgcnn_mm', 'dgcnn','viewnet'])
cfg.add_argument('--fs_head',type=str,default='cia',choices=['bin_trip_CIA','trip_pw','Trip_CIA_sqmm','trip','bin_cia','protonet','cia','Trip_CIA_mm'])
cfg.add_argument('--fold',default=0, type=int)
# ===================================#
# ======== path needed ==============#
cfg.add_argument('--project_path',default='./')
cfg.add_argument('--source_dataset', default='modelnet30', type=str, choices=['modelnet30','modelnet30C','shapnet40'])
cfg.add_argument('--source_data_path',default='/home/myang47/data/ShapeNet45_fs') #
cfg.add_argument('--trgt_data_path',default='/home/myang47/data/scanobjectnn/ScanObjectNN_fs_cross_validation/Data')
cfg.add_argument('--source_num_cls', default=45)
cfg.add_argument('--trgt_num_cls', default=15)
cfg.add_argument('--val_epoch_size', type=int, default=600)
cfg.add_argument('--exp_folder_name',default='Shapenet_Scan_cross_domain')
# ===================================#
return cfg.parse_args()
cfg=get_arg()
# ==================================================
# SETUP PATH FOR SAVING EXPERIMENTAL RESULTS
# exp_path=os.path.join(cfg.project_path,cfg.exp_folder_name,cfg.exp_name)
# if not os.path.exists(exp_path):
# os.makedirs(exp_path)
if cfg.source_dataset == 'modelnet30':
cfg.source_data_path = '/home/myang47/data/modelnet30'
cfg.source_num_cls = 26
elif cfg.source_dataset == 'modelnet30C':
cfg.source_data_path = '/home/myang47/data/ModelNet30_C'
cfg.source_num_cls = 26
elif cfg.source_dataset == 'shapnet40':
cfg.source_data_path = '/home/myang47/data/ShapeNet45_fs'
cfg.source_num_cls = 44
# ============= create logging ==============
def get_logger(file_name='accuracy.log'):
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s, %(name)s, %(message)s')
########### this is used to set the log file ##########
file_handler = logging.FileHandler(file_name)
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(formatter)
#######################################################
######### this is used to set the output in the terminal/screen ########
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
#################################################################
####### add the log file handler and terminal handerler to the logger #######
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
##############################################################################
return logger
# ============================================
def test_model(model,val_loader,cfg):
global logger
logger=get_logger(file_name='testing_result.log')
exp_path=os.path.join(cfg.exp_name,'pth_file')
picked_pth=sorted(os.listdir(exp_path),key=lambda x:int(x.split('_')[-1]))[-1]
pth_file=torch.load(os.path.join(exp_path,picked_pth))
model.load_state_dict(pth_file['model_state'])
model=model.cuda()
bar=tqdm(val_loader,ncols=100,unit='batch',leave=False)
summary=run_one_epoch(model,bar,'test',loss_func=None)
acc_list=summary['acc']
mean_acc=np.mean(acc_list)
std_acc=np.std(acc_list)
interval=1.960*(std_acc/np.sqrt(len(acc_list)))
logger.debug('Mean: {}, Interval: {}'.format(mean_acc,interval))
def main(cfg):
global logger
# logger=get_logger(os.path.join(exp_path, 'accuracy.log'))
# np.random.seed(cfg.seed)
# torch.manual_seed(cfg.seed)
# torch.cuda.manual_seed(cfg.seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.enabled=False
# IF SOLO_BASE_TRAIN=TRUE, SET QUERY=0
if cfg.solo_base_train:
cfg.query = 0
train_loader, val_loader = get_sets(source_data_path=cfg.source_data_path, trgt_data_path=cfg.trgt_data_path, source_num_cls=cfg.source_num_cls, trgt_num_cls=cfg.trgt_num_cls, k_way=cfg.k_way, n_shot=cfg.n_shot, query_num=cfg.query)
model = fs_network(cfg)
if cfg.multigpu:
model=nn.DataParallel(model)
if cfg.train:
train_model(model,train_loader,val_loader,cfg)
else:
test_model(model,val_loader,cfg)
def train_model(model,train_loader,val_loader,cfg):
device=torch.device(cfg.device)
model=model.to(device)
#====== loss and optimizer =======
loss_func=nn.CrossEntropyLoss()
optimizer=torch.optim.Adam(model.parameters(),lr=cfg.lr)
if cfg.lr_sch:
lr_schedule=torch.optim.lr_scheduler.MultiStepLR(optimizer,milestones=np.arange(10,cfg.epochs,cfg.decay_ep),gamma=cfg.gamma)
def train_one_epoch():
bar=tqdm(train_loader,ncols=100,unit='batch',leave=False)
epsum=run_one_epoch(model,bar,'train',loss_func=loss_func,optimizer=optimizer)
summary={"loss/train":np.mean(epsum['loss'])}
# summary['train_sppt_acc'] = np.mean(epsum['train_sppt_acc'])
return summary
def eval_one_epoch():
bar=tqdm(val_loader,ncols=100,unit='batch',leave=False)
epsum=run_one_epoch(model, bar,"valid",loss_func=loss_func)
mean_acc=np.mean(epsum['acc'])
summary={'meac/valid':mean_acc}
test_accuracies = np.array(epsum['acc'])
test_accuracies = np.reshape(test_accuracies, -1)
stds = np.std(test_accuracies, 0)
ci95 = 1.96 * stds / np.sqrt(cfg.val_epoch_size)
summary['std/valid'] = ci95
summary["loss/valid"]=np.mean(epsum['loss'])
return summary,epsum['cfm']
# ======== define exp path ===========
exp_path=cfg.exp_name
if not os.path.exists(exp_path):
os.makedirs(exp_path)
logger=get_logger(os.path.join(exp_path, 'accuracy.log'))
# save config into json #
cfg_dict=vars(cfg)
yaml_file=os.path.join(exp_path,'config.yaml')
with open(yaml_file,'w') as outfile:
yaml.dump(cfg_dict, outfile, default_flow_style=False)
# f = open(json_file, "w")
# json.dump(cfg_dict, f)
# f.close()
#########################
tensorboard=SummaryWriter(log_dir=os.path.join(exp_path,'TB'),purge_step=cfg.epochs)
pth_path=os.path.join(exp_path,'pth_file')
if not os.path.exists(pth_path):
os.mkdir(pth_path)
# =====================================
# ========= train start ===============
acc_list=[]
sppt_acc_list = []
tqdm_epochs=tqdm(range(cfg.epochs),unit='epoch',ncols=100)
for e in tqdm_epochs:
train_summary=train_one_epoch()
val_summary,conf_mat=eval_one_epoch()
summary={**train_summary,**val_summary}
if cfg.lr_sch:
lr_schedule.step()
accuracy=val_summary['meac/valid']
std = val_summary['std/valid']
acc_list.append(val_summary['meac/valid'])
logger.debug('Epoch {}: . FSL Acc: {:.5f}, std: {:.2%}. Highest FSL Acc: {:.5f}'.format(e, accuracy, std, np.max(acc_list)))
# logger.debug('Epoch {}: . Sppt Acc: {:.5f}. Highest Sppt Acc: {:.5f}'.format(e, sppt_acc, np.max(sppt_acc_list)))
# print('epoch {}: {}. Highese: {}'.format(e,accuracy,np.max(acc_list)))
if np.max(acc_list)==acc_list[-1]:
summary_saved={**summary,
'model_state':model.state_dict(),
'optimizer_state':optimizer.state_dict(),
'cfm':conf_mat}
torch.save(summary_saved,os.path.join(pth_path,'best.pth'))
for name,val in summary.items():
tensorboard.add_scalar(name,val,e)
# =======================================
def run_one_epoch(model,bar,mode,loss_func,optimizer=None,show_interval=10):
confusion_mat=np.zeros((cfg.k_way,cfg.k_way))
summary={"acc":[],"loss":[]}
device=next(model.parameters()).device
if mode=='train':
model.train()
else:
model.eval()
for i, (x_cpu,y_cpu) in enumerate(bar):
x, y = x_cpu.to(device), y_cpu.to(device)
sppt_y = y[:cfg.k_way*cfg.n_shot]
if mode=='train':
q_pred, loss = model(x, mixup_hidden=True)
#==take one step==#
optimizer.zero_grad()
loss.backward()
optimizer.step()
#=================#
else:
with torch.no_grad():
q_pred, loss = model(x, mixup_hidden=False)
summary['loss']+=[loss.item()]
if mode=='train':
if i%show_interval==0:
bar.set_description("Loss: %.3f"%(np.mean(summary['loss'])))
# sppt_ssl_acc = sum(torch.argmax(s_pred, dim=-1) == ssl_sppt_target)*1.0 / ssl_sppt_target.size(0)
# summary['train_sppt_acc'] += [sppt_ssl_acc.item()]
else:
batch_cfm=cal_cfm(q_pred, model.q_label, ncls=cfg.k_way)
batch_acc=np.trace(batch_cfm)/np.sum(batch_cfm)
summary['acc'].append(batch_acc)
if i%show_interval==0:
bar.set_description("mea_ac: %.3f"%(np.mean(summary['acc'])))
confusion_mat+=batch_cfm
if mode!='train':
summary['cfm']=confusion_mat
return summary
if __name__=='__main__':
main(cfg)