-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_brats2021.py
240 lines (194 loc) · 8.24 KB
/
train_brats2021.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import time
import warnings
from copy import deepcopy
from os.path import join
warnings.filterwarnings("ignore")
import numpy as np
import torch
import torch.nn as nn
from monai.inferers import sliding_window_inference
from torch.cuda.amp import GradScaler, autocast
import utils.metrics as metrics
from configs import parse_seg_args
from dataset import brats2021
from models import get_unet
from utils.loss import SoftDiceBCEWithLogitsLoss
from utils.misc import (AverageMeter, CaseSegMetricsMeterBraTS, ProgressMeter, LeaderboardBraTS,
brats_post_processing, initialization, load_cases_split, save_brats_nifti)
from utils.optim import get_optimizer
from utils.scheduler import get_scheduler
def train(args, epoch, model, train_loader, loss_fn, optimizer, scheduler, scaler, writer, logger):
model.train()
data_time = AverageMeter('Data', ':6.3f')
batch_time = AverageMeter('Time', ':6.3f')
bce_meter = AverageMeter('BCE', ':.4f')
dsc_meter = AverageMeter('Dice', ':.4f')
loss_meter = AverageMeter('Loss', ':.4f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, bce_meter, dsc_meter, loss_meter],
prefix=f"Train: [{epoch}]")
end = time.time()
for i, (image, label, _, _) in enumerate(train_loader):
# init
image, label = image.cuda(), label.float().cuda()
bsz = image.size(0)
data_time.update(time.time() - end)
with autocast((args.amp) and (scaler is not None)):
# forward
# TODO: adapt to deep supervision
preds = model(image)
bce_loss, dsc_loss = loss_fn(preds, label)
loss = bce_loss + dsc_loss
# compute gradient and do optimizer step
optimizer.zero_grad()
if args.amp and scaler is not None:
scaler.scale(loss).backward()
if args.clip_grad:
scaler.unscale_(optimizer) # enable grad clipping
nn.utils.clip_grad_norm_(model.parameters(), 10)
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
if args.clip_grad:
nn.utils.clip_grad_norm_(model.parameters(), 10)
optimizer.step()
# logging
torch.cuda.synchronize()
bce_meter.update(bce_loss.item(), bsz)
dsc_meter.update(dsc_loss.item(), bsz)
loss_meter.update(loss.item(), bsz)
batch_time.update(time.time() - end)
# monitor training progress
if (i == 0) or (i + 1) % args.print_freq == 0:
progress.display(i+1, logger)
end = time.time()
if scheduler is not None:
scheduler.step()
train_tb = {
'bce_loss': bce_meter.avg,
'dsc_loss': dsc_meter.avg,
'total_loss': loss_meter.avg,
'lr': optimizer.state_dict()['param_groups'][0]['lr'],
}
for key, value in train_tb.items():
writer.add_scalar(f"train/{key}", value, epoch)
def infer(args, epoch, model:nn.Module, infer_loader, writer, logger, mode:str, save_pred:bool=False):
model.eval()
batch_time = AverageMeter('Time', ':6.3f')
case_metrics_meter = CaseSegMetricsMeterBraTS()
# make save epoch folder
folder_dir = mode if epoch is None else f"{mode}_epoch_{epoch:02d}"
save_path = join(args.exp_dir, folder_dir)
if not os.path.exists(save_path):
os.system(f"mkdir -p {save_path}")
with torch.no_grad():
end = time.time()
for i, (image, label, _, brats_names) in enumerate(infer_loader):
# get data
image, label = image.cuda(), label.bool().cuda()
bsz = image.size(0)
# get seg map
seg_map = sliding_window_inference(
inputs=image,
predictor=model,
roi_size=args.patch_size,
sw_batch_size=args.sw_batch_size,
overlap=args.patch_overlap,
mode=args.sliding_window_mode
)
# discrete
seg_map = torch.where(seg_map > 0.5, True, False)
# post-processing
seg_map = brats_post_processing(seg_map)
# calc metric
dice = metrics.dice(seg_map, label)
hd95 = metrics.hd95(seg_map, label)
# output seg map
if save_pred:
save_brats_nifti(seg_map, brats_names, mode, args.data_root, save_path)
# logging
torch.cuda.synchronize()
batch_time.update(time.time() - end)
case_metrics_meter.update(dice, hd95, brats_names, bsz)
# monitor training progress
if (i == 0) or (i + 1) % args.print_freq == 0:
mean_metrics = case_metrics_meter.mean()
logger.info("\t".join([
f'{mode.capitalize()}: [{epoch}][{i+1}/{len(infer_loader)}]', str(batch_time),
f"Dice_WT {dice[:, 1].mean():.3f} ({mean_metrics['Dice_WT']:.3f})",
f"Dice_TC {dice[:, 0].mean():.3f} ({mean_metrics['Dice_TC']:.3f})",
f"Dice_ET {dice[:, 2].mean():.3f} ({mean_metrics['Dice_ET']:.3f})",
f"HD95_WT {hd95[:, 1].mean():7.3f} ({mean_metrics['HD95_WT']:7.3f})",
f"HD95_TC {hd95[:, 0].mean():7.3f} ({mean_metrics['HD95_TC']:7.3f})",
f"HD95_ET {hd95[:, 2].mean():7.3f} ({mean_metrics['HD95_ET']:7.3f})",
]))
end = time.time()
# output case metric csv
case_metrics_meter.output(save_path)
# get validation metrics and log to tensorboard
infer_metrics = case_metrics_meter.mean()
for key, value in infer_metrics.items():
writer.add_scalar(f"{mode}/{key}", value, epoch)
return infer_metrics
def main():
args = parse_seg_args()
logger, writer = initialization(args)
# dataloaders
train_cases, val_cases, test_cases = load_cases_split(args.cases_split)
train_loader = brats2021.get_train_loader(args, train_cases)
val_loader = brats2021.get_infer_loader(args, val_cases)
test_loader = brats2021.get_infer_loader(args, test_cases)
# model & stuff
model = get_unet(args).cuda()
if args.data_parallel:
model = nn.DataParallel(model).cuda()
optimizer = get_optimizer(args, model)
scheduler = get_scheduler(args, optimizer)
loss = SoftDiceBCEWithLogitsLoss().cuda()
if args.amp:
scaler = GradScaler()
logger.info("==> Using AMP (Auto Mixed Precision)")
else:
scaler = None
# load model
if args.weight_path is not None:
logger.info("==> Loading pretrain model...")
assert args.weight_path.endswith(".pth")
model_state = torch.load(args.weight_path)['model']
model.load_state_dict(model_state)
# train & val
logger.info("==> Training starts...")
best_model = {}
val_leaderboard = LeaderboardBraTS()
for epoch in range(args.epochs):
train(args, epoch, model, train_loader, loss, optimizer, scheduler, scaler, writer, logger)
# validation
if ((epoch + 1) % args.eval_freq == 0):
logger.info(f"==> Validation starts...")
# inference on validation set
val_metrics = infer(args, epoch, model, val_loader, writer, logger, mode='val')
# model selection
val_leaderboard.update(epoch, val_metrics)
best_model.update({epoch: deepcopy(model.state_dict())})
logger.info(f"==> Validation ends...")
torch.cuda.empty_cache()
# ouput final leaderboard and its rank
val_leaderboard.output(args.exp_dir)
# test
logger.info("==> Testing starts...")
best_epoch = val_leaderboard.get_best_epoch()
best_model = best_model[best_epoch]
model.load_state_dict(best_model)
infer(args, best_epoch, model, test_loader, writer, logger, mode='test', save_pred=args.save_pred)
# save the best model on validation set
if args.save_model:
logger.info("==> Saving...")
state = {'model': best_model, 'epoch': best_epoch, 'args':args}
torch.save(state, os.path.join(
args.exp_dir, f"test_epoch_{best_epoch:02d}", f'best_ckpt.pth'))
logger.info("==> Testing ends...")
if __name__ == '__main__':
main()