-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmain.py
79 lines (68 loc) · 3.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import argparse
import sys
from utils import create_logger, seed_set
from utils.demo_visualize import demo_visualize
from utils.script import *
sys.path.append(os.getcwd())
from config import Config, update_config
import torch
from tensorboardX import SummaryWriter
from utils.training import Trainer
from utils.evaluation import compute_stats
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg',
default='h36m', help='h36m or humaneva')
parser.add_argument('--mode', default='train', help='train / eval / pred / switch/ control/ zero_shot')
parser.add_argument('--iter', type=int, default=0)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--device', type=str,
default=torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu'))
parser.add_argument('--multimodal_threshold', type=float, default=0.5)
parser.add_argument('--multimodal_th_high', type=float, default=0.1)
parser.add_argument('--milestone', type=list, default=[75, 150, 225, 275, 350, 450])
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--save_model_interval', type=int, default=10)
parser.add_argument('--save_gif_interval', type=int, default=10)
parser.add_argument('--save_metrics_interval', type=int, default=100)
parser.add_argument('--ckpt', type=str, default='./checkpoints/h36m_ckpt.pt')
parser.add_argument('--ema', type=bool, default=True)
parser.add_argument('--vis_switch_num', type=int, default=10)
parser.add_argument('--vis_col', type=int, default=5)
parser.add_argument('--vis_row', type=int, default=3)
args = parser.parse_args()
"""setup"""
seed_set(args.seed)
cfg = Config(f'{args.cfg}', test=(args.mode != 'train'))
cfg = update_config(cfg, vars(args))
dataset, dataset_multi_test = dataset_split(cfg)
"""logger"""
tb_logger = SummaryWriter(cfg.tb_dir)
logger = create_logger(os.path.join(cfg.log_dir, 'log.txt'))
display_exp_setting(logger, cfg)
"""model"""
model, diffusion = create_model_and_diffusion(cfg)
logger.info(">>> total params: {:.2f}M".format(
sum(p.numel() for p in list(model.parameters())) / 1000000.0))
if args.mode == 'train':
# prepare full evaluation dataset
multimodal_dict = get_multimodal_gt_full(logger, dataset_multi_test, args, cfg)
trainer = Trainer(
model=model,
diffusion=diffusion,
dataset=dataset,
cfg=cfg,
multimodal_dict=multimodal_dict,
logger=logger,
tb_logger=tb_logger)
trainer.loop()
elif args.mode == 'eval':
ckpt = torch.load(args.ckpt)
model.load_state_dict(ckpt)
# prepare full evaluation dataset
multimodal_dict = get_multimodal_gt_full(logger, dataset_multi_test, args, cfg)
compute_stats(diffusion, multimodal_dict, model, logger, cfg)
else:
ckpt = torch.load(args.ckpt)
model.load_state_dict(ckpt)
demo_visualize(args.mode, cfg, model, diffusion, dataset)