-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
167 lines (133 loc) · 6.42 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# -*-coding:utf-8-*-
# @Time : 2021/1/21 下午3:15
# @Author : LiuFeng
# @File : test.py
import os
import socket
import argparse
import numpy as np
import tensorflow as tf
from models import pointnet2 as model
import utils.provider as provider
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--test_file', default='test.py', help='Model name [default: model]')
parser.add_argument('--log_dir', default='cls_log/pointnet2_log', help='Log dir [default: log]')
parser.add_argument('--batch_size', type=int, default=4, help='Batch Size during training [default: 1]')
parser.add_argument('--model', default='pointnet2', help='Model name: pointnet_cls or pointnet_cls_basic')
parser.add_argument('--visu', action='store_true', help='Whether to dump image for error case [default: False]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]')
parser.add_argument('--model_path', default='logs/cls_log/pointnet2_log/model.ckpt', help='model checkpoint file path')
FLAGS = parser.parse_args()
GPU_INDEX = FLAGS.gpu
TEST_FILE = FLAGS.test_file
NUM_POINT = FLAGS.num_point
BATCH_SIZE = FLAGS.batch_size
MODEL_PATH = FLAGS.model_path
pwd = os.getcwd()
BASE_DIR = pwd
MODEL_PATH = os.path.join(BASE_DIR, MODEL_PATH)
LOG_DIR = FLAGS.log_dir
LOG_DIR = os.path.join(BASE_DIR, os.path.join("logs", LOG_DIR))
TRAIN_FILE = os.path.join(BASE_DIR, TEST_FILE + ".py")
os.system('cp {} {}'.format(TEST_FILE, LOG_DIR))
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_test.txt'), 'w')
NUM_CLASSES = 40
SHAPE_NAMES = [line.rstrip() for line in
open(os.path.join(BASE_DIR, 'datasets/modelnet40_ply_hdf5_2048/shape_names.txt'))]
HOSTNAME = socket.gethostname()
# ModelNet40 official train/test split
TEST_FILES = provider.getDataFiles(os.path.join(BASE_DIR, 'datasets/modelnet40_ply_hdf5_2048/test_files.txt'))
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
def evaluate(num_votes):
is_training = False
with tf.device('/gpu:' + str(GPU_INDEX)):
pointclouds_pl, labels_pl = model.get_placeholder(BATCH_SIZE, NUM_POINT)
is_training_pl = tf.placeholder(tf.bool, shape=())
# simple model
pred = model.get_model(pointclouds_pl, is_training_pl)
loss = model.get_loss(pred, labels_pl)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = True
sess = tf.Session(config=config)
# Restore variables from disk.
saver.restore(sess, MODEL_PATH)
log_string("Model restored.")
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': loss}
eval_one_epoch(sess, ops, num_votes)
def eval_one_epoch(sess, ops, num_votes=1, topk=1):
error_cnt = 0
is_training = False
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
fout = open(os.path.join(LOG_DIR, 'pred_label.txt'), 'w')
for fn in range(len(TEST_FILES)):
log_string('----' + str(fn) + '----')
current_data, current_label = provider.loadDataFile(TEST_FILES[fn])
current_data = current_data[:, 0:NUM_POINT, :]
current_label = np.squeeze(current_label)
print(current_data.shape)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
print(file_size)
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx + 1) * BATCH_SIZE
cur_batch_size = end_idx - start_idx
# Aggregating BEG
batch_loss_sum = 0 # sum of losses for the batch
batch_pred_sum = np.zeros((cur_batch_size, NUM_CLASSES)) # score for classes
batch_pred_classes = np.zeros((cur_batch_size, NUM_CLASSES)) # 0/1 for classes
for vote_idx in range(num_votes):
rotated_data = provider.rotate_point_cloud_by_angle(current_data[start_idx:end_idx, :, :],
vote_idx / float(num_votes) * np.pi * 2)
feed_dict = {ops['pointclouds_pl']: rotated_data,
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training}
loss_val, pred_val = sess.run([ops['loss'], ops['pred']],
feed_dict=feed_dict)
batch_pred_sum += pred_val
batch_pred_val = np.argmax(pred_val, 1)
for el_idx in range(cur_batch_size):
batch_pred_classes[el_idx, batch_pred_val[el_idx]] += 1
batch_loss_sum += (loss_val * cur_batch_size / float(num_votes))
# pred_val_topk = np.argsort(batch_pred_sum, axis=-1)[:,-1*np.array(range(topk))-1]
# pred_val = np.argmax(batch_pred_classes, 1)
pred_val = np.argmax(batch_pred_sum, 1)
# Aggregating END
correct = np.sum(pred_val == current_label[start_idx:end_idx])
# correct = np.sum(pred_val_topk[:,0:topk] == label_val)
total_correct += correct
total_seen += cur_batch_size
loss_sum += batch_loss_sum
for i in range(start_idx, end_idx):
l = current_label[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i - start_idx] == l)
fout.write('%d, %d\n' % (pred_val[i - start_idx], l))
log_string('eval mean loss: %f' % (loss_sum / float(total_seen)))
log_string('eval accuracy: %f' % (total_correct / float(total_seen)))
log_string('eval avg class acc: %f' % (
np.mean(np.array(total_correct_class) / np.array(total_seen_class, dtype=np.float))))
class_accuracies = np.array(total_correct_class) / np.array(total_seen_class, dtype=np.float)
for i, name in enumerate(SHAPE_NAMES):
log_string('%10s:\t%0.3f' % (name, class_accuracies[i]))
if __name__ == '__main__':
with tf.Graph().as_default():
evaluate(num_votes=1)
LOG_FOUT.close()