-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepareamber.py
executable file
·719 lines (659 loc) · 30.4 KB
/
prepareamber.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
#!/usr/bin/env python3
import argparse, re
import simplepdb as pdb
import pdb_util as util
import os, shutil, glob, sys, logging
from plumbum import FG, TEE
from plumbum.cmd import sed, grep, cut, uniq, wc
try:
from plumbum.cmd import obabel
except ImportError:
raise ImportError('Check that obabel is on your path')
try:
from plumbum.cmd import antechamber, pdb4amber, tleap, pmemd_cuda
except ImportError as e:
print(e)
raise ImportError('Check that AMBER binaries are on your path')
try:
from plumbum.cmd import parmchk
except ImportError:
try:
from plumbum.cmd import parmchk2 as parmchk
except ImportError:
raise ImportError('Check parmchk[2] on your path')
try:
from plumbum.cmd import match_atomname
except ImportError:
raise ImportError('Check match_atomname (one of the antechamber-related'
' AmberTools packages) has been built - starting with AmberTools18 it'
' is not built by default, but can be built manually from'
' $AMBERHOME/AmberTools/src/antechamber/')
class Tee(object):
'''For runfile, duplicate stdout to file'''
def __init__(self, name=None):
if name:
self.file = open(name, 'w')
else:
self.file = None
def writeln(self, data):
print(data)
if self.file:
self.file.write(str(data)+'\n')
self.file.flush()
runfile = Tee() #a global variable so I don't have to pass it around
def find_ff(amberhome, ffname):
ff = ''
if os.path.isfile(amberhome + '/dat/leap/cmd/' + ffname):
ff = amberhome + '/dat/leap/cmd/' + ffname
elif os.path.isfile(amberhome + '/dat/leap/cmd/leaprc.protein.' + ffname):
ff = amberhome + '/dat/leap/cmd/leaprc.protein.' + ffname
elif os.path.isfile(amberhome + '/dat/leap/cmd/oldff/' + ffname):
ff = amberhome + '/dat/leap/cmd/oldff/' + ffname
elif os.path.isfile(amberhome + '/dat/leap/cmd/oldff/leaprc.' + ffname):
ff = amberhome + '/dat/leap/cmd/oldff/leaprc.' + ffname
else:
print("Warning: force field %s not found in %s! This is likely to cause \
problems later.\n"%(ffname,amberhome))
return ff
def get_cmd(input_str):
cmd_dict = {'.frcmod' : 'loadamberparams', '.lib' : 'loadoff', '.off' :
'loadoff', '.prep' : 'loadAmberPrep', '.mol2' : 'loadmol2', '.pdb' :
'loadpdb'}
ext = os.path.splitext(input_str)[-1]
return cmd_dict[ext]
def get_waterbox(water_model):
if water_model == 'leaprc.water.opc':
return ' OPCBOX '
elif water_model == 'leaprc.water.tip3p':
return ' TIP3PBOX '
elif water_model == 'leaprc.water.spce':
return ' SPCBOX '
elif water_model == 'leaprc.water.tip4pew':
return ' TIP4PEWBOX '
def get_water_nickname(water_model):
if water_model == 'leaprc.water.opc':
return 'OPC'
elif water_model == 'leaprc.water.tip3p':
return 'TP3'
elif water_model == 'leaprc.water.spce':
return 'SPC'
elif water_model == 'leaprc.water.tip4pew':
return 'T4E'
def make_amber_parm(fname, base, ff, molname='', water_model = '',
wat_dist = 0, libs=[], frcmod = '', extra=None):
'''
Generate AMBER parameters with tleap
'''
inpcrd = base + '.inpcrd'
prmtop = base + '.prmtop'
if not molname: molname = fname[:3].upper()
with open(base + '.tleap', 'w') as leap_input:
for name in ff:
leap_input.write('source %s\n' %name)
leap_input.write('source leaprc.gaff\n')
if water_model: # source before loading structures
water_nickname = get_water_nickname(water_model)
leap_input.write('WAT = %s\n' %water_nickname)
leap_input.write('HOH = %s\n' %water_nickname)
leap_input.write('source ' + water_model + '\n')
for lib in libs:
leap_input.write(get_cmd(lib) + ' ' + lib + '\n')
leap_input.write(molname + '=' + get_cmd(fname) + ' ' + fname + '\n')
if extra:
extracmds = open(extra).read()
extracmds = extracmds.replace('MOLNAME',molname)
print(extracmds)
leap_input.write(extracmds)
if water_model:
leap_input.write('solvateoct '+ molname + get_waterbox(water_model) +
str(wat_dist) + '\n' +
'addions '+molname+' Na+ 0\n' +
'addions '+molname+' Cl- 0\n')
elif frcmod:
leap_input.write('loadamberparams '+frcmod+'\n' +
'saveoff '+molname+' '+base+'.lib\n')
leap_input.write('saveamberparm ' + molname+ ' ' + prmtop + ' ' + inpcrd + '\n')
leap_input.write('quit\n')
command = tleap['-f', base + '.tleap']
runfile.writeln(command)
command & FG
def do_amber_min_constraint(fname, base):
'''
Do AMBER minimization with protein constraint
'''
try:
numres = (grep['ATOM', fname] | cut['-b', '23-26'] | uniq | wc)()
numres = numres.split()[0].strip()
except Exception as e:
if e[1] == 1:
numres = 0
with open(base + '_min1.in', 'w') as min_input:
min_input.write(base + ': initial minimization solvent + ions\n' +
' &cntrl\n' +
' imin = 1,\n' +
' maxcyc = 1000,\n' +
' ncyc = 500,\n' +
' ntb = 1,\n' +
' ntr = 1,\n' +
' cut = 10.0\n' +
' /\n' +
'Hold the protein fixed\n' +
'500.0\n' +
'FIND\n' +
'* * S *\n' +
'* * B *\n' +
'* * 3 *\n' +
'* * E *\n' +
'* * M *\n' +
'SEARCH\n' +
'RES 1 ' + str(numres) + '\n' +
'END\n' +
'END\n')
command = pmemd_cuda['-O', '-i', base+'_min1.in', '-o', base+'_min1.out', '-p',
base+'.prmtop', '-c', base+'.inpcrd', '-r', base+'_min1.rst',
'-ref', base+'.inpcrd']
runfile.writeln(command)
command & FG
def do_amber_min(base):
'''
Do unconstrained AMBER minimization
'''
with open(base + '_min2.in', 'w') as min_input:
min_input.write(base + ': minimization whole system\n' +
' &cntrl\n' +
' imin = 1,\n' +
' maxcyc = 5000,\n' +
' ncyc = 2000,\n' +
' ntb = 1,\n' +
' ntr = 0,\n' +
' cut = 10.0\n' +
' /\n')
command = pmemd_cuda['-O', '-i', base+'_min2.in', '-o', base+'_min2.out', '-p',
base+'.prmtop', '-c', base+'_min1.rst', '-r', base+'_min2.rst']
runfile.writeln(command)
command & FG
def do_amber_warmup(fname, base, temperature):
'''
Do AMBER MD to gradually increase system to target temp
'''
try:
numres = (grep['ATOM', fname] | cut['-b', '23-26'] | uniq | wc)()
numres = numres.split()[0].strip()
except Exception as e:
if e[1] == 1:
numres = 0
with open(base + '_md1.in','w') as md_input:
md_input.write(' &cntrl\n' +
' imin = 0,\n' +
' irest = 0,\n' +
' ntx = 1,\n' +
' ntb = 1,\n' +
' cut = 10.0,\n' +
' ntr = 1,\n' +
' ntc = 2,\n' +
' ntf = 2,\n' +
' tempi = 0.0,\n' +
' temp0 = ' + str(temperature) + '\n' +
' ntt = 3,\n' +
' gamma_ln = 1.0,\n' +
' nstlim = 50000, dt = 0.002, ntxo = 2,\n' +
' ntpr = 1000, ntwx = 1000, ntwr = 10000,\n' +
' ioutfm = 1\n' +
' /\n' +
'Keep prot fixed with weak restraints\n' +
'10.0\n' +
'FIND\n' +
'* * S *\n' +
'* * B *\n' +
'* * 3 *\n'
'* * E *\n' +
'* * M *\n' +
'SEARCH\n' +
'RES 1 ' + str(numres) + '\n' +
'END\n' +
'END\n')
command = pmemd_cuda['-O', '-i', base+'_md1.in', '-o', base+'_md1.out', '-p',
base+'.prmtop', '-c', base+'_min2.rst', '-r', base+'_md1.rst',
'-ref', base+'_min2.rst', '-x', base+'_md1.nc']
runfile.writeln(command)
command & FG
def do_amber_constant_pressure(base, temp):
'''
Do AMBER MD to equilibrate system at constant pressure
'''
with open(base + '_md2.in','w') as md_input:
md_input.write(base + ': 100ps MD\n' +
' &cntrl\n' +
' imin = 0, irest = 1, ntx = 7,\n' +
' ntb = 2, pres0 = 1.0, ntp = 1,\n' +
' taup = 2.0,\n' +
' cut = 10.0, ntr = 0,\n' +
' ntc = 2, ntf = 2,\n' +
' tempi = '+str(temp)+', temp0 = '+str(temp)+',\n' +
' ntt = 3, gamma_ln = 1.0,\n' +
' nstlim = 50000, dt = 0.002, ntxo = 2,\n' +
' ntpr = 5000, ntwx = 5000, ntwr = 500000,\n' +
' ioutfm = 1\n' +
' /\n')
command = pmemd_cuda['-O', '-i', base+'_md2.in', '-o', base+'_md2.out', '-p',
base+'.prmtop', '-c', base+'_md1.rst', '-r', base+'_md2.rst',
'-x', base+'_md2.nc']
runfile.writeln(command)
command & FG
def make_amber_production_input(base, args):
'''
Make input files for production run AMBER MD; length is in nanoseconds
'''
nstlim = int(float(args.prod_length) / .000002)
irest = int(args.keep_velocities)
ntx = 7 if args.keep_velocities else 1
with open(base + '_md3.in','w') as md_input:
md_input.write(base + ': ' + str(args.prod_length) + 'ns MD\n' +
' &cntrl\n' +
' imin = 0, irest = '+str(irest)+', ntx = '+str(ntx)+',\n' +
' ntb = 2, pres0 = 1.0, ntp = 1,\n' +
' taup = 2.0,\n' +
' cut = 10.0, ntr = 0,\n' +
' ntc = 2, ntf = 2,\n' +
' tempi = {0}, temp0 = {0},\n'.format(args.temperature) +
' ntt = 3, gamma_ln = 1.0,\n' +
' nstlim = '+str(nstlim)+', dt = 0.002, ntxo = 2,\n' +
' ntpr = 5000, ntwx = '+str(args.coord_dump_freq)+', ntwr = 500000,\n' +
' ioutfm = 1\n' +
'/\n')
def do_amber_preproduction(fname, base, args, ff):
'''
Do minimization with constraints, minimization without constraints, initial
MD as temperature is raised to target temp, second MD where system is
equilibrated at constant pressure, and generate input files for production
run MD but don't run it (becuz it's PREproduction, see?)
'''
do_amber_min_constraint(fname, base)
do_amber_min(base)
do_amber_warmup(fname, base, args.temperature)
do_amber_constant_pressure(base, args.temperature)
make_amber_production_input(base, args)
def do_amber_production(base, dorun):
'''
Does AMBER production run MD locally. If dorun is false, only print command
'''
command = pmemd_cuda['-O', '-i', base+'_md3.in', '-o', base+'_md3.out', '-p',
base+'.prmtop', '-c', base+'_md2.rst', '-r', base+'_md3.rst',
'-x', base+'_md3.nc']
runfile.writeln(command)
if dorun:
command & FG
def do_antechamber(fname, net_charge, ff, molname, base = ''):
'''
Run antechamber and get correctly named versions of the following: mol2
with bcc charges, frcmod, lib, prmtop, inpcrd
'''
if not base: base = util.get_base(fname)
ext = os.path.splitext(fname)[-1]
ext = ext.lstrip('.')
mol2 = base + '_amber.mol2'
#TODO: known issues with phosphates (see PDB: 2PQC) when getting the net
#charge from Gasteiger charges computed with Open Babel
try:
command = antechamber['-i', fname, '-fi', ext, '-o', mol2, '-fo', 'mol2', '-c',
'bcc', '-nc', str(net_charge), '-s', '2']
runfile.writeln(command)
command()
except Exception as e:
passed = False
charges = []
if net_charge != 0:
charges.append(0)
if net_charge != -1:
charges.append(-1)
for charge in charges:
try:
command = antechamber['-i', fname, '-fi', ext, '-o', mol2, '-fo', 'mol2', '-c',
'bcc', '-nc', str(charge), '-s', '2']
runfile.writeln(command)
command()
passed = True
break
except Exception as e:
pass
if not passed:
print('Antechamber failed. Check {0} structure. Aborting...\n'.format(fname))
sys.exit()
frcmod = base + '.frcmod'
parmchk['-i', mol2, '-f', 'mol2', '-o', frcmod]()
make_amber_parm(mol2, base, ff, molname=molname, frcmod=frcmod)
def set_matches(fname, libs, reslist, orphaned_res, mol, force=False):
'''
Find whether any units defined by a lib are required; if they are, update
the liblist to include that lib and remove the units it defines from
orphaned_res
'''
units = util.get_units(fname)
matches = set(units).intersection(reslist)
#TODO: make this work for prep and check bonds as well as atoms.
#require that atom names and connectivity match before adding lib
libatoms = []
ext = os.path.splitext(fname)[-1][0:4]
if ext != 'prep':
with open(fname,'r') as f:
atomcopy = False
for line in f:
if line.startswith('!'):
if line.split()[0].split('.')[-1] == 'atoms':
atomcopy = True
else:
atomcopy = False
elif atomcopy:
aname = line.split()[0].strip('"')
if not aname.startswith("H"): #ignore hydrogen
libatoms.append(aname)
molatoms = set([name.strip() for name in mol.mol_data['atomname']])
if not set(libatoms).issubset(molatoms) or ext == 'prep' and not force:
matches = set([])
print("Unit(s) %s defines atoms that differ from undefined residue: %s"% (' '.join(units), ' '.join(set(libatoms) - molatoms)))
if matches:
#redefine a unit iff found in a user-provided lib, but warn the user about the
#duplication. don't redefine if found locally.
if not matches.intersection(orphaned_res) and not force:
print('Unit %s found in %s defined previously, \
skipping to avoid redefinition\n' % (' '.join(match for match in
matches), fname))
else:
if not matches.intersection(orphaned_res):
print('Unit %s found in %s defined previously, \
adding user-provided lib but redefinition may cause problems\n' \
% (' '.join(match for match in matches), fname))
libs.add(fname)
frcmod = util.get_base(fname) + '.frcmod'
if os.path.isfile(frcmod):
libs.add(frcmod)
orphaned_res -= matches
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Generates pre-production files for AMBER \
MD. Can handle a receptor or ligand by themselves (checks for ligand library \
files in the current directory and generates them if they don't exist) or \
sets up the complex if given both a receptor and ligand.")
parser.add_argument('-s', '--structures', nargs='+', required=True, help='Structures \
for which you want to run a simulation. N.B. if more than one is provided \
they will be simulated together.')
parser.add_argument('-n', '--out_name',
help='Optionally provide a filename prefix for the output. For multi-structure inputs, default is "complex."')
parser.add_argument('-p', '--libs', nargs='+', required=False, help="Optionally specify \
a prefix for nonstandard residue library files; this can include their path if they aren't \
in the current directory. If the relevant files exist we assume you want \
to use them, otherwise we assume this is where you want them to go and \
derive the residue name accordingly.")
parser.add_argument('-w', '--water_dist', default=12, help='Water box \
distance; defaults to 12.')
parser.add_argument('-wm', '--water_model', default='tip3p',
help='Water model; OPC, SPCE, TIP4P, and TIP3P are available. \
Defaults to TIP3P.')
parser.add_argument('-ff', '--force_field', default='leaprc.protein.ff15ipq',
help='Force field; defaults to leaprc.protein.ff15ipq.')
parser.add_argument('-eff', '--extra_force_field', default='',
help='Extra force fields (e.g. DNA, lipids); defaults to null')
parser.add_argument('-t', '--temperature', default=300, help='Simulation \
temperature; defaults to 300K.')
parser.add_argument('-l', '--prod_length', default=100, help='Length of \
production-run MD. This is used to generate the input files for that MD, \
but note that by default this MD is not run. Units are nanoseconds.')
parser.add_argument('-k', '--keep_velocities', default=False,
action='store_true', help='Keep velocities from preproduction run \
when starting the production MD. Default is false.')
parser.add_argument('-r', '--run_prod_md', default=False,
action='store_true', help='Run production MD locally when all preprocessing \
is finished. Default is false, because you might want to run it on a \
cluster.')
parser.add_argument('-noh', '--no_touch_hyd', dest='noh', default=False,
action='store_true', help="Don't remove any hydrogens.")
parser.add_argument('-nc', '--net_charge', help='Optionally specify a net \
charge for small molecule parametrization with antechamber.')
parser.add_argument('-parm', '--parm_only', action='store_true', default =
False, help="Only generate the necessary ligand parameters, don't do the \
preproduction MDs")
parser.add_argument('-ui', '--uninteractive', action='store_true',
default=False, help="Turn off interactive mode, which exists to let \
you check the output of pdb4amber for potentially serious problems \
with input structures.")
parser.add_argument('-O', '--overwrite', action='store_false',
default=True, help='Overwrite files in the current directory that \
are generated by this script. Default is True.')
parser.add_argument('-df', '--coord_dump_freq', default=5000,
help='Frequency for dumping coordinates to traj_file. Defaults to 5000. \
The old script referred to this as the "timestep."')
parser.add_argument('--extra', help="File with additional leap commands to apply")
args = parser.parse_args()
#Check whether AMBERHOME is set and the desired force field is available
amberhome = os.environ['AMBERHOME']
if not amberhome:
print("Warning: AMBERHOME is not set! This is likely to cause problems \
later.\n")
else:
ff = find_ff(amberhome, args.force_field)
if args.extra_force_field:
nff = find_ff(amberhome, args.extra_force_field)
else:
nff = ''
#Find out which ions are defined with our water model
ion_params = []
if args.water_model != 'opc':
ion_params.append(amberhome + '/dat/leap/parm/frcmod.ionsjc_' +
args.water_model)
ion_params.append(amberhome + '/dat/leap/parm/frcmod.ions234lm_126_' +
args.water_model)
else:
ion_params.append(amberhome + '/dat/leap/parm/frcmod.ionsjc_tip4pew')
ion_params.append(amberhome + '/dat/leap/parm/frcmod.ions234lm_126_tip4pew')
ions = util.get_ions(ion_params)
#Find out which water model we're using
assert args.water_model in ['opc', 'tip3p', 'spce', 'tip4'], 'Unknown water \
model %s\n' %args.water_model
if args.water_model == 'opc':
args.water_model = 'leaprc.water.opc'
elif args.water_model == 'tip3p':
args.water_model = 'leaprc.water.tip3p'
elif args.water_model == 'spce':
args.water_model = 'leaprc.water.spce'
elif args.water_model == 'tip4':
args.water_model = 'leaprc.water.tip4pew'
#do we have nonstandard residues?
mol_data = {}
nonstandard_res = {}
standard_res = util.get_available_res(ff)
ff = [ff]
if nff:
standard_res = standard_res.union(util.get_available_res(nff))
ff = ff.append(nff)
#pdb4amber seems to delete mercury (HG) along with hydrogens; for now my
#hacky fix is to store the relevant atom info if mercury is present and add
#the mercury back in after stripping...I'm preemptively doing this for
#hafnium too
metal_info = {}
#if any structure was not provided in PDB format, we will attempt to create
#one from what was provided using obabel, choosing a filename that will not
#overwrite anything in the directory (optionally)
for structure in args.structures:
net_charge = None
#the "structure" string in the args.structure list will be updated so
#that it corresponds to the PDB we should use for subsequent steps
assert os.path.isfile(structure),'%s does not exist\n' % structure
#"base" is the base filename (no extension) from which others will be derived
base = util.get_base(structure)
ext = os.path.splitext(structure)[-1]
if 'pdb' not in ext:
#if it's a mol2, store the net_charge from the input because
#conversion to a pdb and back to a mol2 with openbabel is not
#guaranteed to result in the same partial charges
if args.net_charge:
net_charge = args.net_charge
elif 'mol2' in ext:
net_charge = util.get_charge(structure)
outpdb = base + '.pdb'
if not args.overwrite:
outpdb = util.get_fname(outpdb)
try:
obabel[structure, '-O', outpdb, '-xn']()
except Exception as e:
print('Cannot create PDB from input, error {0} : {1}. Check \
{2}. Aborting...\n'.format(e.errno, e.strerror, outpdb))
sys.exit()
idx = args.structures.index(structure)
args.structures[idx] = outpdb
structure = outpdb
mol_res = {}
mol_data[structure] = pdb.simplepdb(structure)
if not mol_data[structure].has_unique_names() and not mol_data[structure].is_protein():
mol_data[structure].rename_atoms()
print("Renaming atoms for",structure)
mol_res[structure] = set(mol_data[structure].mol_data['resname'])
ion_resnames = set(ions.keys())
ions_present = set.intersection(mol_res[structure], ion_resnames)
metal_info[structure] = {}
#TODO: the pdb4amber problem this is trying to address still exists, but changes to this script's handling of ions mean this fails to solve the problem
if 'HG' in ions_present:
metal_info[structure]['HG'] = mol_data[structure].get_res_info({'resname':'HG'})
if 'HF' in ions_present:
metal_info[structure]['HF'] = mol_data[structure].get_res_info({'resname':'HF'})
nonstandard_res[structure] = list(mol_res[structure] - standard_res -
ion_resnames)
#if nonstandard residues, do we have the necessary library files?
#check for prep, lib, and off; just add the frcmod if there is one
libs = set([])
if not args.libs:
args.libs = []
for struct,reslist in list(nonstandard_res.items()):
#track which units you don't have libs for
orphaned_res = set(reslist)
base = util.get_base(struct)
if orphaned_res:
#try any user-provided locations first
for user_lib in args.libs:
for ext in ['.lib','.off','.prep']:
fname = user_lib + ext
if os.path.isfile(fname):
set_matches(fname, libs, reslist, orphaned_res,
mol_data[struct], True)
#if residues are still undefined, check the current directory too
if orphaned_res:
local_libs = [name for name in glob.glob('*.lib') +
glob.glob('*.off') + glob.glob('*.prep')]
for lib in local_libs:
set_matches(lib, libs, reslist, orphaned_res, mol_data[struct])
is_protein = mol_data[struct].is_protein()
#for now, require that the ligand be provided separately from the protein -
#that way we don't need to worry about differentiating between modified
#residues (or other things we don't want to strip out of the protein) and
#small molecules we can parametrize with antechamber
assert not (is_protein and orphaned_res), \
"Undefined units %s in protein - check for modified residues, ions, or \
cofactors\n" % ' '.join(orphaned_res)
if is_protein and reslist:
print("NOT RUNNING pdb4amber due to presence of modified residues.")
elif is_protein and not args.noh:
fname = base + '_amber.pdb'
command = pdb4amber['-y', '-i', struct, '-o', fname]
runfile.writeln(command)
code,stdout,stderr = command & TEE
idx = args.structures.index(struct)
args.structures[idx] = fname
if not args.uninteractive:
input('Read the above messages and then press any key to continue; note that prepareamber will insert any missing TER records but does not add ACE/NME caps...\n')
#TODO: I mean, we _could_ add the ACE/NME caps...
mol_data[fname] = pdb.simplepdb(fname)
#if there were gaps, add appropriate TERs
for line in stderr.splitlines():
m = re.search(r'^gap .*between (\S+).(\d+)',line)
if m:
gap_res = m.group(2)
mol_data[fname].add_ter(gap_res)
for deleted_ion,data in metal_info[struct].items():
current_residues = set(mol_data[fname].mol_data['resname'])
if deleted_ion not in current_residues:
for res in data:
mol_data[fname].add_residue(res)
assert len(orphaned_res)<2, "%s has multiple ligands; break them into \
separate files to process with antechamber\n" % struct
#if we're handling a ligand and don't have library files, we will need at
#least the pdb-formatted data and a mol2 from which we can derive gasteiger
#charges for antechamber; make these with babel and find the net charge
orphaned_res = list(orphaned_res)
if orphaned_res:
#"molname" will be the name of the unit for AMBER
#TODO: check whether, if there are multiple ligands to be fit in
#antechamber, the user has provided unit names for all of them or
#they have distinct residue names
molname = orphaned_res[0]
mol_data[struct].sanitize()
mol_data[struct].set_resname(orphaned_res[0])
tempname = base + '_temp.pdb'
ligname = base + '_amber.pdb'
if not args.overwrite:
tempname = util.get_fname(tempname)
ligname = util.get_fname(ligname)
if os.path.isfile(ligname):
os.remove(ligname)
mol2 = base + '_amber.mol2'
#create a PDB that has unique atom names, hydrogens, all HETATM
#records, element names, and the correct residue name
if not args.noh:
mol_data[struct].writepdb(tempname)
obabel[tempname, '-O', ligname, '-h','-xn']()
os.remove(tempname)
mol_data[struct] = pdb.simplepdb(ligname)
mol_data[struct].sanitize()
mol_data[struct].set_recordname('HETATM')
os.remove(ligname)
mol_data[struct].writepdb(ligname)
else:
mol_data[struct].writepdb(ligname)
idx = args.structures.index(struct)
args.structures[idx] = ligname
mol_data[ligname] = mol_data[struct]
#only compute if we didn't already get a value using an original mol2
if net_charge is None:
obabel[ligname, '-O', mol2]()
net_charge = util.get_charge(mol2)
#run antechamber
print('Parametrizing unit %s with antechamber.\n' % ' '.join(orphaned_res))
if util.is_secret_peptide(mol_data[ligname]):
print('Warning: the ligand %s maybe actually be a peptide. If antechamber fails, check the residue names\n' %ligname)
do_antechamber(ligname, net_charge, ff, molname, base)
#add the libraries created in the last step to the libs list
libs.add(base + '.lib')
libs.add(base + '.frcmod')
#Antechamber does not preserve the input atomnames. It comes packaged with
#a program called match_atomname to cope with this.
command = match_atomname['-i', ligname, '-fi', 'pdb', '-r', mol2, '-fr',
'mol2', '-o', ligname, '-h', 1]
runfile.writeln(command)
command()
mol_data[ligname] = pdb.simplepdb(ligname)
#always add requeted frcmod files as they may apply to multiple ligands
for lib in args.libs:
if os.path.isfile(lib+'.frcmod'):
libs.add(lib+'.frcmod')
#ok, now we can be pretty sure we know what to do and that we are able to do it
#create complex if there are multiple structures
if args.out_name:
complex_name = args.out_name + '.pdb'
elif len(args.structures) > 1:
complex_name = 'complex.pdb'
else:
complex_name = args.structures[0]
runfile = Tee(os.path.splitext(complex_name)[0]+'.run')
if len(args.structures) > 1:
start_atom, start_res = 1,1
if os.path.isfile(complex_name):
os.remove(complex_name)
final_mols = [mol_data[file] for file in args.structures]
mol_data[args.structures[0]].writepdb(complex_name, final_mols)
elif complex_name != args.structures[0]:
mol_data[args.structures[0]].writepdb(complex_name)
base = util.get_base(complex_name)
#make initial parameters files
make_amber_parm(complex_name, base, ff, 'complex', args.water_model, args.water_dist, libs, extra=args.extra)
#run the two minimization and two pre-production MDs
if not args.parm_only:
do_amber_preproduction(complex_name, base, args, ff)
#run the final production MD
do_amber_production(base, args.run_prod_md)