forked from NVIDIA/pix2pixHD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_engine.py
173 lines (146 loc) · 5.71 KB
/
run_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import sys
from random import randint
import numpy as np
import tensorrt
try:
from PIL import Image
import pycuda.driver as cuda
import pycuda.gpuarray as gpuarray
import pycuda.autoinit
import argparse
except ImportError as err:
sys.stderr.write("""ERROR: failed to import module ({})
Please make sure you have pycuda and the example dependencies installed.
https://wiki.tiker.net/PyCuda/Installation/Linux
pip(3) install tensorrt[examples]
""".format(err))
exit(1)
try:
import tensorrt as trt
from tensorrt.parsers import caffeparser
from tensorrt.parsers import onnxparser
except ImportError as err:
sys.stderr.write("""ERROR: failed to import module ({})
Please make sure you have the TensorRT Library installed
and accessible in your LD_LIBRARY_PATH
""".format(err))
exit(1)
G_LOGGER = trt.infer.ConsoleLogger(trt.infer.LogSeverity.INFO)
class Profiler(trt.infer.Profiler):
"""
Example Implimentation of a Profiler
Is identical to the Profiler class in trt.infer so it is possible
to just use that instead of implementing this if further
functionality is not needed
"""
def __init__(self, timing_iter):
trt.infer.Profiler.__init__(self)
self.timing_iterations = timing_iter
self.profile = []
def report_layer_time(self, layerName, ms):
record = next((r for r in self.profile if r[0] == layerName), (None, None))
if record == (None, None):
self.profile.append((layerName, ms))
else:
self.profile[self.profile.index(record)] = (record[0], record[1] + ms)
def print_layer_times(self):
totalTime = 0
for i in range(len(self.profile)):
print("{:40.40} {:4.3f}ms".format(self.profile[i][0], self.profile[i][1] / self.timing_iterations))
totalTime += self.profile[i][1]
print("Time over all layers: {:4.2f} ms per iteration".format(totalTime / self.timing_iterations))
def get_input_output_names(trt_engine):
nbindings = trt_engine.get_nb_bindings();
maps = []
for b in range(0, nbindings):
dims = trt_engine.get_binding_dimensions(b).to_DimsCHW()
name = trt_engine.get_binding_name(b)
type = trt_engine.get_binding_data_type(b)
if (trt_engine.binding_is_input(b)):
maps.append(name)
print("Found input: ", name)
else:
maps.append(name)
print("Found output: ", name)
print("shape=" + str(dims.C()) + " , " + str(dims.H()) + " , " + str(dims.W()))
print("dtype=" + str(type))
return maps
def create_memory(engine, name, buf, mem, batchsize, inp, inp_idx):
binding_idx = engine.get_binding_index(name)
if binding_idx == -1:
raise AttributeError("Not a valid binding")
print("Binding: name={}, bindingIndex={}".format(name, str(binding_idx)))
dims = engine.get_binding_dimensions(binding_idx).to_DimsCHW()
eltCount = dims.C() * dims.H() * dims.W() * batchsize
if engine.binding_is_input(binding_idx):
h_mem = inp[inp_idx]
inp_idx = inp_idx + 1
else:
h_mem = np.random.uniform(0.0, 255.0, eltCount).astype(np.dtype('f4'))
d_mem = cuda.mem_alloc(eltCount * 4)
cuda.memcpy_htod(d_mem, h_mem)
buf.insert(binding_idx, int(d_mem))
mem.append(d_mem)
return inp_idx
#Run inference on device
def time_inference(engine, batch_size, inp):
bindings = []
mem = []
inp_idx = 0
for io in get_input_output_names(engine):
inp_idx = create_memory(engine, io, bindings, mem,
batch_size, inp, inp_idx)
context = engine.create_execution_context()
g_prof = Profiler(500)
context.set_profiler(g_prof)
for i in range(iter):
context.execute(batch_size, bindings)
g_prof.print_layer_times()
context.destroy()
return
def convert_to_datatype(v):
if v==8:
return trt.infer.DataType.INT8
elif v==16:
return trt.infer.DataType.HALF
elif v==32:
return trt.infer.DataType.FLOAT
else:
print("ERROR: Invalid model data type bit depth: " + str(v))
return trt.infer.DataType.INT8
def run_trt_engine(engine_file, bs, it):
engine = trt.utils.load_engine(G_LOGGER, engine_file)
time_inference(engine, bs, it)
def run_onnx(onnx_file, data_type, bs, inp):
# Create onnx_config
apex = onnxparser.create_onnxconfig()
apex.set_model_file_name(onnx_file)
apex.set_model_dtype(convert_to_datatype(data_type))
# create parser
trt_parser = onnxparser.create_onnxparser(apex)
assert(trt_parser)
data_type = apex.get_model_dtype()
onnx_filename = apex.get_model_file_name()
trt_parser.parse(onnx_filename, data_type)
trt_parser.report_parsing_info()
trt_parser.convert_to_trtnetwork()
trt_network = trt_parser.get_trtnetwork()
assert(trt_network)
# create infer builder
trt_builder = trt.infer.create_infer_builder(G_LOGGER)
trt_builder.set_max_batch_size(max_batch_size)
trt_builder.set_max_workspace_size(max_workspace_size)
if (apex.get_model_dtype() == trt.infer.DataType_kHALF):
print("------------------- Running FP16 -----------------------------")
trt_builder.set_half2_mode(True)
elif (apex.get_model_dtype() == trt.infer.DataType_kINT8):
print("------------------- Running INT8 -----------------------------")
trt_builder.set_int8_mode(True)
else:
print("------------------- Running FP32 -----------------------------")
print("----- Builder is Done -----")
print("----- Creating Engine -----")
trt_engine = trt_builder.build_cuda_engine(trt_network)
print("----- Engine is built -----")
time_inference(engine, bs, inp)