-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathefficiency_main.py
114 lines (87 loc) · 3.65 KB
/
efficiency_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from trainers.time_series_trainer import *
import argparse
import math
import wandb
import os
import pandas as pd
import torch
def get_args():
parser = argparse.ArgumentParser(description='Time Series Prediction with Non-parametric Hopfield Models')
parser.add_argument('--data', type=str, choices=["ETTh1", "ETTm1", "Traffic", "WTH", "ECL", "ILI"], default='ETTh1')
parser.add_argument('--d_model', type=int, default=16)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--epoch', type=int, default=20)
parser.add_argument('--n_heads', type=int, default=4)
parser.add_argument('--scale', type=float, default=0.1)
parser.add_argument('--update_steps', type=int, default=1)
parser.add_argument('--mode', type=str, default='softmax')
parser.add_argument('--favor_mode', type=str, default="gaussian")
parser.add_argument('--kernel_fn', type=str, default="relu")
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--in_len', type=int, default=96)
parser.add_argument('--prob', type=float, default=0.2)
args = parser.parse_args()
return vars(args)
if __name__ == "__main__":
torch.set_num_threads(3)
logs = {
'model':[],
'duration':[],
'Flops':[],
'Sequence Length':[],
"Prob":[]
}
args = get_args()
in_lens = [24, 48, 96, 192, 336, 720, 1440, 2880]
win_size = [4, 6, 8, 12, 14, 18, 30, 48]
# for model in ["softmax", "sparsemax", "rand", "topk", "window", "favor", "linear"]:
for model in ["softmax", "sparsemax", "rand_fast", "window", "favor", "linear"]:
# for model in ["softmax", "rand_fast", "window"]:
torch.cuda.empty_cache()
args["mode"] = model
args["win_size"] = 2
if model in ["rand_fast"]:
for prob in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:
args["prob"] = prob
for in_len in in_lens:
args["in_len"] = in_len
args["out_len"] = in_len
trainer = Trainer(args, logs)
flops, dur = trainer.flops_exp()
logs["Flops"].append(flops)
logs["duration"].append(dur)
logs["model"].append(model)
logs["Sequence Length"].append(in_len)
logs["Prob"].append(prob)
del trainer
elif model != "window":
for in_len in in_lens:
prob = 0.0
args["in_len"] = in_len
args["out_len"] = in_len
trainer = Trainer(args, logs)
flops, dur = trainer.flops_exp()
logs["Flops"].append(flops)
logs["duration"].append(dur)
logs["model"].append(model)
logs["Sequence Length"].append(in_len)
logs["Prob"].append(prob)
del trainer
elif model == "window":
for i, in_len in enumerate(in_lens):
w = win_size[i]
args["win_size"] = w
print(in_len, w)
prob = 0.0
args["in_len"] = in_len
args["out_len"] = in_len
trainer = Trainer(args, logs)
flops, dur = trainer.flops_exp()
logs["Flops"].append(flops)
logs["duration"].append(dur)
logs["model"].append(model)
logs["Sequence Length"].append(in_len)
logs["Prob"].append(prob)
del trainer
df = pd.DataFrame(logs)
df.to_csv('./mts_cost.csv', index=False)