-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathPlotDoseDistribution.py
91 lines (74 loc) · 3.4 KB
/
PlotDoseDistribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
def plot_dose_distribution(blood_dose_total, dose_contributions, mean_blood_dose=None):
x_max1 = 2 * np.percentile(blood_dose_total.dose, 90)
x_max2 = max([2 * np.percentile(dose, 90) for dose in dose_contributions.values()])
bins1 = np.linspace(0, x_max1, 100)
bins2 = np.linspace(0, x_max2, 100)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
ax1.hist(blood_dose_total.dose, bins=bins1)
ax1.axvline(np.mean(blood_dose_total.dose), ymax=1, c='k', linestyle='-',
label='Simulated mean dose - {:.3f} Gy'.format(np.mean(blood_dose_total.dose)))
if mean_blood_dose is not None:
ax1.axvline(mean_blood_dose, ymax=1, c='red', linestyle='--',
label='Expected mean dose - {:.3f} Gy'.format(mean_blood_dose))
for organ, dose in dose_contributions.items():
ax2.hist(dose, bins=bins2[1:], histtype='step', linewidth=1.5, alpha=0.7, label=organ)
ax1.set_xlabel('Dose (Gy)')
ax2.set_xlabel('Dose (Gy)')
ax1.set_title('Blood dose histogram')
ax2.set_title('Blood dose contributions')
ax1.legend()
ax2.legend()
plt.show()
def plot_volumes(volume_ref, volume, plot_slice=None, cmap_ref='Greys_r', cmap='Greys_r', scrollable=False):
"""
Plotting method to visualize 3D volumes.
Either visualize a slice, or scroll through the entire volume in interactive mode.
"""
if plot_slice is None:
plot_slice = np.argmax(np.sum(volume, axis=(0, 1)))
if scrollable:
backend = matplotlib.get_backend()
# you need interactive mode for scrolling, on Mac this works:
matplotlib.use("QtAgg")
fig, ax = plt.subplots(1, 1)
tracker = IndexTracker(ax, volume_ref, volume, plot_slice, cmap_ref, cmap)
fig.canvas.mpl_connect('scroll_event', tracker.onscroll)
plt.show()
# return to original backend.
matplotlib.use(backend)
else:
fig, ax = plt.subplots(1, 1)
img = ax.imshow(volume_ref[:, :, plot_slice], cmap=cmap_ref)
c_bar = fig.colorbar(img)
c_bar.set_label('Treatment dose at slice {} (Gy)'.format(plot_slice))
ax.imshow(volume[:, :, plot_slice], cmap=cmap, alpha=0.75)
plt.show()
class IndexTracker(object):
def __init__(self, ax, X, Y, plot_slice, cmap_ref='Greys', cmap='Greys_r'):
self.ax = ax
self.X = X
self.Y = Y
self.plot_slice = plot_slice
_, _, self.slices = X.shape
self.im1 = ax.imshow(self.X[:, :, self.plot_slice], cmap=cmap_ref)
self.im2 = ax.imshow(self.Y[:, :, self.plot_slice], cmap=cmap, alpha=0.75)
c_bar = plt.colorbar(self.im1)
c_bar.set_label('Treatment dose (Gy)')
self.update()
def onscroll(self, event):
if event.button == 'up':
self.plot_slice = (self.plot_slice + 1) % self.slices
else:
self.plot_slice = (self.plot_slice - 1) % self.slices
self.update()
def update(self):
im1_data = self.im1.to_rgba(self.X[:, :, self.plot_slice], alpha=self.im1.get_alpha())
im2_data = self.im2.to_rgba(self.Y[:, :, self.plot_slice], alpha=self.im2.get_alpha())
self.im1.set_data(im1_data)
self.im2.set_data(im2_data)
self.ax.set_ylabel('slice %s' % self.plot_slice)
self.im1.axes.figure.canvas.draw()
self.im2.axes.figure.canvas.draw()