-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathUART.c
1173 lines (1125 loc) · 46.3 KB
/
UART.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// AC CONTROL/DRIVER BOARD 21
#include "UART.h"
void ShowMenu(void);
void ShowConfig();
void u16x_to_str(char *str, unsigned val, unsigned char digits);
void u16_to_str(char *str, unsigned val, unsigned char digits);
void int16_to_str(char *str, int val, unsigned char digits);
int TransmitString(const char* str);
char IntToCharHex(unsigned int i);
void FetchRTData(void);
void StopAllMotorTests(void);
extern void InitPIStruct(void);
extern void EESaveValues(void);
extern void InitializeThrottleAndCurrentVariables(void);
extern void TurnOffADAndPWM();
extern void InitADAndPWM();
extern void InitQEI();
volatile UARTCommand myUARTCommand = {0,0,{0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0},0};
extern volatile int IqRefRef;
extern volatile int IdRefRef;
extern volatile int captureData;
extern volatile int dataCaptureIndex;
extern volatile int currentMaxIterationsBeforeZeroCrossing;
extern volatile int vRef1;
extern volatile int vRef2;
extern volatile int maxRPS_times16;
extern volatile unsigned int faultBits;
extern volatile SavedValuesStruct savedValues;
extern volatile SavedValuesStruct2 savedValues2;
extern unsigned int revCounterMax;
extern volatile unsigned int poscnt;
extern volatile unsigned int counter10k;
extern volatile unsigned int counter1k;
extern volatile piType myPI;
extern volatile rotorTestType myRotorTest;
extern volatile angleOffsetTestType myAngleOffsetTest;
extern volatile motorSaliencyTestType myMotorSaliencyTest;
extern volatile int bigArray1[];
volatile int readyToDisplayBigArrays = 0;
volatile dataStream myDataStream;
volatile int timeSinceLastCarriageReturn = 0;
volatile char newChar = 0;
volatile int echoNewChar = 0;
volatile dataStream myDataStream;
char intString[] = "xxxxxxxxxx";
// 0 1 2 3 4
// 01234567890123456789012345678901234567890
char showConfigString[] = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";
void InitUART2() {
U2BRG = 15; //For 14.7MHz, 115200bps=7 38.4kbps==23. For 29.5MHz, 115200bps == 15.
U2MODE = 0; // initialize to 0.
U2MODEbits.PDSEL = 0b00; // 8 N
U2MODEbits.STSEL = 0; // 1 stop bit.
IEC1bits.U2RXIE = 1; // enable receive interrupts.
IPC6bits.U2RXIP = 5; // INTERRUPT priority of 2.
//bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit
//11 =Interrupt flag bit is set when Receive Buffer is full (i.e., has 4 data characters)
//10 =Interrupt flag bit is set when Receive Buffer is 3/4 full (i.e., has 3 data characters)
//0x =Interrupt flag bit is set when a character is received
U2STAbits.URXISEL = 0b00; // 0b11 later..
U2MODEbits.UARTEN = 1; // enable the uart
asm("nop");
U2STAbits.UTXEN = 1; // Enable transmissions
Nop();Nop();Nop();Nop();
Nop();Nop();Nop();Nop();
U2STAbits.OERR = 0; // ClearReceiveBuffer();
}
void __attribute__((__interrupt__, auto_psv)) _U2RXInterrupt(void) {
IFS1bits.U2RXIF = 0; // clear the interrupt.
echoNewChar = 1;
newChar = U2RXREG; // get the character that caused the interrupt.
if (myUARTCommand.complete == 1) { // just ignore everything until the command is processed.
return;
}
if (newChar == 0x0d) { // carriage return.
// if (counter10k - timeSinceLastCarriageReturn < 2000) return;
// timeSinceLastCarriageReturn = counter10k;
myUARTCommand.complete = 1;
myUARTCommand.string[myUARTCommand.i] = 0; // instead of placing a carriage return, place a 0 to null terminate the string.
return;
}
if (myUARTCommand.i >= MAX_COMMAND_LENGTH) { // the command was too long. It's just garbage anyway, so start over.
//myUARTCommand.complete = 0; // It can't make it here unless myUARTCommand.complete == 0 anyway.
myUARTCommand.i = 0; // just clear the array, and start over.
myUARTCommand.string[0] = 0;
// myUARTCommand.number = 0; // This is done in "ProcessCommand", so you don't need to do it here.
return;
}
myUARTCommand.string[myUARTCommand.i] = newChar; // save the character that caused the interrupt!
myUARTCommand.i++;
}
// process the command, and reset UARTCommandPtr back to zero.
// myUARTCommand is of the form XXXXXXXXX YYYYY<enter>
void ProcessCommand(void) {
static int i = 0;
if (echoNewChar) {
// StopAllMotorTests(); // also, stop the motor tests.
while (echoNewChar) {
if (U2STAbits.UTXBF == 0) { // TransmitReady();
U2TXREG = newChar; // SendCharacter(newChar);
if (newChar == 0x0d) {
while (1) {
if (U2STAbits.UTXBF == 0) { // TransmitReady();
U2TXREG = 0x0a; // SendCharacter(line feed);
break;
}
}
}
echoNewChar = 0;
}
}
}
else {
if (myUARTCommand.complete != 1) { // if the command isn't yet complete, don't try to process it! Maybe someone is only half-way done with their command. Ex: "sav". Process "sav"? No! wait until they type "save<cr>"
return;
}
myUARTCommand.number = 0;
for (i = 0; myUARTCommand.string[i] != 0; i++) {
if (myUARTCommand.string[i] == ' ') {
myUARTCommand.number = atoi((char *)&myUARTCommand.string[i+1]);
myUARTCommand.string[i] = 0; // null terminate the text portion.
break;
}
}
if (!strcmp((const char *)&myUARTCommand.string[0], "save")) {
TurnOffADAndPWM();
EESaveValues();
InitADAndPWM();
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "motor-type")) {
if (myUARTCommand.number > 0 && myUARTCommand.number < 5) {
TurnOffADAndPWM();
savedValues.motorType = myUARTCommand.number;
InitADAndPWM();
InitQEI();
}
}
// Let's say you typed the command "kp 1035". The following would have happened:
// myUARTCommand.string[] would contain only the text portion of the command, and is terminated with a 0. string[] = {'p',0,?,?,?,?,?,?,?,?,?,?,?,...}
// Also, myUARTCommand.number = the number argument after the command. So, number = 1035.
else if (!strcmp((const char *)&myUARTCommand.string[0], "kp")) {
if (myUARTCommand.number <= 32767u && myUARTCommand.number > 0) {
savedValues.Kp = (int)(myUARTCommand.number);
InitPIStruct();
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "ki")){
if (myUARTCommand.number <= 32767u && myUARTCommand.number > 0) {
savedValues.Ki = (int)(myUARTCommand.number);
InitPIStruct();
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "angle-offset")){
if (myUARTCommand.number <= 511 && myUARTCommand.number >= 0) {
savedValues2.angleOffset = (unsigned int)(myUARTCommand.number); // this one is the extra for displaying on the screen.
myAngleOffsetTest.currentAngleOffset = savedValues2.angleOffset; // this is the working copy.
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "saliency")){
if (myUARTCommand.number <= 1024 && myUARTCommand.number >= 0) { //
savedValues2.KArrayIndex = (unsigned int)(myUARTCommand.number); // this one is the extra for displaying on the screen.
myMotorSaliencyTest.KArrayIndex = savedValues2.KArrayIndex; // this is the working copy.
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "current-sensor-amps-per-volt")) { //
if (myUARTCommand.number <= 480 && myUARTCommand.number > 0) {
savedValues.currentSensorAmpsPerVolt = (int)(myUARTCommand.number);
InitializeThrottleAndCurrentVariables();
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "max-regen-position")) {
if (myUARTCommand.number <= 1023u && myUARTCommand.number > 0) {
savedValues.maxRegenPosition = (int)(myUARTCommand.number);
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "min-regen-position")) {
if (myUARTCommand.number <= 1023u && myUARTCommand.number > 0) {
savedValues.minRegenPosition = (int)(myUARTCommand.number);
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "min-throttle-position")) {
if (myUARTCommand.number <= 1023u && myUARTCommand.number > 0) {
savedValues.minThrottlePosition = (int)(myUARTCommand.number);
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "max-throttle-position")) {
if (myUARTCommand.number <= 1023u && myUARTCommand.number > 0) {
savedValues.maxThrottlePosition = (int)(myUARTCommand.number);
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "fault-throttle-position")) {
if (myUARTCommand.number <= 1023u && myUARTCommand.number > 0) {
savedValues.throttleFaultPosition = (int)(myUARTCommand.number);
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "max-battery-amps")) {
if (myUARTCommand.number <= 9999 && myUARTCommand.number > 0) {
savedValues.maxBatteryAmps = (int)(myUARTCommand.number);
InitializeThrottleAndCurrentVariables();
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "max-battery-amps-regen")) {
if (myUARTCommand.number <= 9999 && myUARTCommand.number > 0) {
savedValues.maxBatteryAmpsRegen = (int)(myUARTCommand.number);
InitializeThrottleAndCurrentVariables();
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "max-motor-amps")) {
if (myUARTCommand.number <= 999 && myUARTCommand.number > 0) {
savedValues.maxMotorAmps = (int)(myUARTCommand.number);
InitializeThrottleAndCurrentVariables();
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "max-motor-amps-regen")) {
if (myUARTCommand.number <= 999 && myUARTCommand.number > 0) {
savedValues.maxMotorAmpsRegen = (int)(myUARTCommand.number);
InitializeThrottleAndCurrentVariables();
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "precharge-time")) {
if (myUARTCommand.number <= 9999 && myUARTCommand.number > 0) {
savedValues.prechargeTime = (int)(myUARTCommand.number);
}
}
// NOW WE ARE ON SavedValues2...
else if (!strcmp((const char *)&myUARTCommand.string[0], "rotor-time-constant")) {
if (myUARTCommand.number <= ROTOR_TIME_CONSTANT_ARRAY_SIZE+5 && myUARTCommand.number >= 5) {
myRotorTest.timeConstantIndex = savedValues2.rotorTimeConstantIndex = (int)(myUARTCommand.number-5);
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "pole-pairs")) {
if (myUARTCommand.number <= 999 && myUARTCommand.number >= 1) {
savedValues2.numberOfPolePairs = (int)(myUARTCommand.number);
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "max-rpm")) {
if (myUARTCommand.number <= 32767 && myUARTCommand.number > 0) {
savedValues2.maxRPM = (int)(myUARTCommand.number);
maxRPS_times16 = (((long)savedValues2.maxRPM) << 2) / 15; // 4/15 to convert to rps_times16
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "throttle-type")) { // 0 means hall effect throttle, or maxOHms to 0 Ohms. 1 means 0 Ohms to maxOhms throttle
if (myUARTCommand.number <= 1) {
savedValues2.throttleType = (int)(myUARTCommand.number);
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "encoder-ticks")) {
if (myUARTCommand.number <= 5000u && myUARTCommand.number >= 16) {
savedValues2.encoderTicks = (int)(myUARTCommand.number);
revCounterMax = (unsigned)(160000L / (4*savedValues2.encoderTicks)); // 4* because I'm doing 4 times resolution for the encoder. 160,000 because revolutions per 16 seconds is computed as: 16*10,000*poscnt * rev/(maxPosCnt*revcounter*(16sec)
// revCounterMax may only be of use for the induction motor.
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "pi-ratio")) {
if (myUARTCommand.number < 1000 && myUARTCommand.number >= 50) {
myPI.ratioKpKi = (int)(myUARTCommand.number);
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "run-pi-test")) {
currentMaxIterationsBeforeZeroCrossing = 20;
myPI.testRunning = 1;
myPI.testFinished = 0;
myPI.zeroCrossingIndex = -1;
myPI.Kp = myPI.ratioKpKi;
myPI.Ki = 1;
// myPI.Kp = savedValues.Kp;
// myPI.Ki = savedValues.Ki;
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "run-pi-test2")) {
myPI.testRunning2 = 1;
myPI.zeroCrossingIndex = -1;
// myPI.Kp = myPI.ratioKpKi;
// myPI.Ki = 1;
myPI.Kp = savedValues.Kp;
myPI.Ki = savedValues.Ki;
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "run-rotor-test")) {
if (savedValues.motorType == 1) {
myRotorTest.startTime = counter10k;
myRotorTest.timeConstantIndex = 0; // always start at zero, and then it will increment up to around 145, giving each rotorTimeConstant candidate 5 seconds to spin the motor the best it can.
myRotorTest.testRunning = 1;
myRotorTest.testFinished = 0;
myRotorTest.maxTestSpeed = 0;
myRotorTest.bestTimeConstantIndex = 0;
}
else {
TransmitString("Your motor type is currently set to permanent magnet. This test is for an AC induction motor!\r\n");
TransmitString("To change your motor to AC induction, the command is 'motor-type 1'\r\n");
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "run-angle-offset-test")) {
if (savedValues.motorType >= 2) {
if (myUARTCommand.number < 512) { // angleOffset is normalized to something in [0,511]
myAngleOffsetTest.startTime = counter10k;
myAngleOffsetTest.currentAngleOffset = myUARTCommand.number; // it will increment up to 511, giving each angle candidate some time.
myAngleOffsetTest.testRunning = 1;
myAngleOffsetTest.testFinished = 0;
myAngleOffsetTest.testFailed = 1;
// myAngleOffsetTest.maxTestSpeed = 0;
// myAngleOffsetTest.bestAngleOffset = 0;
}
}
else {
TransmitString("Your motor type is AC induction. This test is for a permanent maget AC motor!\r\n");
TransmitString("To change your motor to permanent maget, the command is 'motor-type 2'\r\n");
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "run-saliency-test")) {
if (savedValues.motorType >= 2) {
if (myUARTCommand.number < 1024) { // What percent of the currentRadius should Id be (but negative)?
myMotorSaliencyTest.startTime = myMotorSaliencyTest.elapsedTime = counter10k;
myMotorSaliencyTest.KArrayIndex = myUARTCommand.number;
myMotorSaliencyTest.testRunning = 1;
myMotorSaliencyTest.testFinished = 0;
myMotorSaliencyTest.testFailed = 1;
// myMotorSaliencyTest.maxTestSpeed = 0;
// myMotorSaliencyTest.bestKArrayIndex = 0;
}
}
else {
TransmitString("Your motor type is AC induction. This test is for a permanent maget AC motor!\r\n");
TransmitString("To change your motor to permanent maget, the command is 'motor-type 2' or 'motor-type 3'\r\n");
}
}
else if ((!strcmp((const char *)&myUARTCommand.string[0], "config")) || (!strcmp((const char *)&myUARTCommand.string[0], "settings"))) {
ShowConfig();
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "data-stream-period")) { // in milliseconds
if (myUARTCommand.number > 0) {
myDataStream.period = myUARTCommand.number;
myDataStream.showStreamOnce = 0;
// bit 15 set: display myDataStream.timer
// Bit 14 set: display myDataStream.Id_times10
// bit 13 set: display myDataStream.Iq_times10
// Bit 12 set: display myDataStream.IdRef_times10
// bit 11 set: display myDataStream.IqRef_times10
// Bit 10 set: display myDataStream.Vd
// bit 9 set: display myDataStream.Vq
// Bit 8 set: display myDataStream.Ia_times10
// bit 7 set: display myDataStream.Ib_times10
// bit 6 set: display myDataStream.Ic_times10
// Bit 5 set: display myDataStream.Va
// bit 4 set: display myDataStream.Vb
// bit 3 set: display myDataStream.Vc
// bit 2 set: display myDataStream.percentOfVoltageDiskBeingUsed
// bit 1 set: display myDataStream.batteryAmps_times10
// bit 0 set: future use
// int dataToDisplaySet2;
// Bit 15 set: display myDataStream.rawThrottle
// bit 14 set: display myDataStream.throttle
// Bit 13 set: display myDataStream.temperature
// bit 12 set: display myDataStream.slipSpeedRPM
// Bit 11 set: display myDataStream.electricalSpeedRPM
// bit 10 set: display myDataStream.mechanicalSpeedRPM
// bit 9 set: display poscnt, which is a saved copy of the encoder ticks. It's just a way to debug the encoder, to make sure it's working.
// Bit 8-0 set: future use.
if (savedValues2.dataToDisplaySet1 & 32768) {
TransmitString("time,");
}
if (savedValues2.dataToDisplaySet1 & 16384) {
TransmitString("Id,");
}
if (savedValues2.dataToDisplaySet1 & 8192) {
TransmitString("Iq,");
}
if (savedValues2.dataToDisplaySet1 & 4096) {
TransmitString("IdRef,");
}
if (savedValues2.dataToDisplaySet1 & 2048) {
TransmitString("IqRef,");
}
if (savedValues2.dataToDisplaySet1 & 256) {
TransmitString("Ia,");
}
if (savedValues2.dataToDisplaySet1 & 128) {
TransmitString("Ib,");
}
if (savedValues2.dataToDisplaySet1 & 64) {
TransmitString("Ic,");
}
if (savedValues2.dataToDisplaySet1 & 4) {
TransmitString("percentVolts,");
}
if (savedValues2.dataToDisplaySet1 & 2) {
TransmitString("batteryAmps,");
}
if (savedValues2.dataToDisplaySet2 & 32768) {
TransmitString("rawThrottle,");
}
if (savedValues2.dataToDisplaySet2 & 16384) {
TransmitString("throttle,");
}
if (savedValues2.dataToDisplaySet2 & 8192) {
TransmitString("temperaure,");
}
if (savedValues2.dataToDisplaySet2 & 4096) {
TransmitString("slipSpeed,");
}
if (savedValues2.dataToDisplaySet2 & 2048) {
TransmitString("electricalSpeed,");
}
if (savedValues2.dataToDisplaySet2 & 1024) {
TransmitString("mechanicalSpeed,");
}
if (savedValues2.dataToDisplaySet2 & 512) {
TransmitString("poscnt,");
}
TransmitString("\r\n");
myDataStream.startTime = counter1k;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "data")) { // show the datastream one time.
myDataStream.period = 1;
myDataStream.showStreamOnce = 1;
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-time")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet1 |= 32768;
}
else {
savedValues2.dataToDisplaySet1 &= ~32768;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-id")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet1 |= 16384;
}
else {
savedValues2.dataToDisplaySet1 &= ~16384;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-iq")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet1 |= 8192;
}
else {
savedValues2.dataToDisplaySet1 &= ~8192;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-idref")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet1 |= 4096;
}
else {
savedValues2.dataToDisplaySet1 &= ~4096;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-iqref")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet1 |= 2048;
}
else {
savedValues2.dataToDisplaySet1 &= ~2048;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-ia")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet1 |= 256;
}
else {
savedValues2.dataToDisplaySet1 &= ~256;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-ib")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet1 |= 128;
}
else {
savedValues2.dataToDisplaySet1 &= ~128;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-ic")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet1 |= 64;
}
else {
savedValues2.dataToDisplaySet1 &= ~64;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-percent-volts")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet1 |= 4;
}
else {
savedValues2.dataToDisplaySet1 &= ~4;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-battery-amps")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet1 |= 2;
}
else {
savedValues2.dataToDisplaySet1 &= ~2;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-raw-throttle")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet2 |= 32768;
}
else {
savedValues2.dataToDisplaySet2 &= ~32768;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-throttle")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet2 |= 16384;
}
else {
savedValues2.dataToDisplaySet2 &= ~16384;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-temperature")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet2 |= 8192;
}
else {
savedValues2.dataToDisplaySet2 &= ~8192;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-slip-speed")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet2 |= 4096;
}
else {
savedValues2.dataToDisplaySet2 &= ~4096;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-electrical-speed")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet2 |= 2048;
}
else {
savedValues2.dataToDisplaySet2 &= ~2048;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-mechanical-speed")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet2 |= 1024;
}
else {
savedValues2.dataToDisplaySet2 &= ~1024;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "stream-poscnt")) { // in milliseconds
if (myUARTCommand.number == 1) {
savedValues2.dataToDisplaySet2 |= 512;
}
else {
savedValues2.dataToDisplaySet2 &= ~512;
}
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "off")) {
if (myRotorTest.testRunning) { // Stop the rotor test if it was running, and just keep the best value of the rotor time constant that you had found up to this point.
savedValues2.rotorTimeConstantIndex = myRotorTest.bestTimeConstantIndex;
myRotorTest.timeConstantIndex = savedValues2.rotorTimeConstantIndex;
myRotorTest.testRunning = 0;
myRotorTest.testFinished = 1;
// currentRadiusRefRef = 0;
}
else if (myPI.testRunning) { // Stop the PI test if it was running.
currentMaxIterationsBeforeZeroCrossing = 20;
InitPIStruct();
myPI.testFailed = 1;
myPI.testFinished = 1;
// currentRadiusRefRef = 0;
}
if (myAngleOffsetTest.testRunning) { //
myAngleOffsetTest.testRunning = 0;
myAngleOffsetTest.testFinished = 1;
}
myDataStream.period = 0; // Stop the data stream if it was running. I already do this any time a key is hit, so this is redundant.
// if the PI test is running, terminate it.
// if the rotor test is running, stop and use the current best rotorTimeConstant that has been found so far.
// if the angle offset test is running, stop and use the current best angle offset that has been found so far.
ShowMenu();
}
else if (!strcmp((const char*)&myUARTCommand.string[0], "swap-ab")) {
savedValues2.swapAB = (myUARTCommand.number & 1);
QEICONbits.SWPAB = savedValues2.swapAB;
}
else if (!strcmp((const char*)&myUARTCommand.string[0], "2")) {
if (myAngleOffsetTest.currentAngleOffset < 511-5) {
myAngleOffsetTest.currentAngleOffset+=5;
savedValues2.angleOffset = myAngleOffsetTest.currentAngleOffset; // this is the working copy.
}
}
else if (!strcmp((const char*)&myUARTCommand.string[0], "1")) {
if (myAngleOffsetTest.currentAngleOffset >= 5) {
myAngleOffsetTest.currentAngleOffset-=5;
savedValues2.angleOffset = myAngleOffsetTest.currentAngleOffset; // this is the working copy.
}
}
// else if (!strcmp((const char*)&myUARTCommand.string[0], "4")) {
// }
// else if (!strcmp((const char*)&myUARTCommand.string[0], "3")) {
// }
else if (!strcmp((const char*)&myUARTCommand.string[0], "c")) {
dataCaptureIndex = 0;
captureData = 1;
}
else if (!strcmp((const char *)&myUARTCommand.string[0], "?")) { // show the valid list of commands
TransmitString("List of valid commands:\r\n");
TransmitString("save\r\n");
TransmitString("motor-type xxx (rangle 1-4)\r\n");
TransmitString("kp xxx (range 0-32767)\r\n");
TransmitString("ki xxx (range 0-32767)\r\n");
TransmitString("current-sensor-amps-per-volt xxx (range 0-480)\r\n");
TransmitString("max-regen-position xxx (range 0-1023)\r\n");
TransmitString("min-regen-position xxx (range 0-1023)\r\n");
TransmitString("min-throttle-position xxx (range 0-1023)\r\n");
TransmitString("max-throttle-position xxx (range 0-1023)\r\n");
TransmitString("fault-throttle-position xxx (range 0-1023)\r\n");
TransmitString("max-battery-amps xxx (range 0-999)\r\n");
TransmitString("max-battery-amps-regen xxx (range 0-999)\r\n");
TransmitString("max-motor-amps xxx (range 0-999)\r\n");
TransmitString("max-motor-amps-regen xxx (range 0-999)\r\n");
TransmitString("precharge-time xxx (in tenths of a sec. range 0-9999)\r\n");
TransmitString("rotor-time-constant xxx (in millisec. range 0-150)\r\n");
TransmitString("pole-pairs xxx (range 0-999)\r\n");
TransmitString("max-rpm xxx (range 0-32767)\r\n");
TransmitString("throttle-type xxx (range 0-1)\r\n");
TransmitString("encoder-ticks xxx (range 64-5000)\r\n");
TransmitString("pi-ratio xxx (range 50-1000. pi-ratio = Kp/Ki)\r\n");
TransmitString("angle-offset xxx (range 0-511)\r\n");
TransmitString("saliency xxx (range 0-1023)\r\n");
TransmitString("run-pi-test\r\n");
TransmitString("run-rotor-test\r\n");
TransmitString("run-angle-offset-test\r\n");
TransmitString("run-saliency-test\r\n");
TransmitString("config\r\n");
TransmitString("data-stream-period xxx (range 0-32767)\r\n");
TransmitString("data\r\n");
TransmitString("stream-time xxx (range 0-1)\r\n");
TransmitString("stream-id xxx (range 0-1)\r\n");
TransmitString("stream-iq xxx (range 0-1)\r\n");
TransmitString("stream-idref xxx (range 0-1)\r\n");
TransmitString("stream-iqref xxx (range 0-1)\r\n");
TransmitString("stream-ia xxx (range 0-1)\r\n");
TransmitString("stream-ib xxx (range 0-1)\r\n");
TransmitString("stream-ic xxx (range 0-1)\r\n");
TransmitString("stream-percent-volts xxx (range 0-1)\r\n");
TransmitString("stream-battery-amps xxx (range 0-1)\r\n");
TransmitString("stream-raw-throttle xxx (range 0-1)\r\n");
TransmitString("stream-throttle xxx (range 0-1)\r\n");
TransmitString("stream-temperature xxx (range 0-1)\r\n");
TransmitString("stream-slip-speed xxx (range 0-1)\r\n");
TransmitString("stream-electrical-speed xxx (range 0-1)\r\n");
TransmitString("stream-mechanical-speed xxx (range 0-1)\r\n");
TransmitString("stream-poscnt xxx (range 0-1)\r\n");
TransmitString("off (this stops the data stream)\r\n");
TransmitString("swap-ab xxx (range 0-1)\r\n");
}
else {
TransmitString("Invalid command. Type '?' to see a valid list of commands.\r\n");
}
myUARTCommand.string[0] = 0; // clear the string.
myUARTCommand.i = 0;
myUARTCommand.number = 0;
myUARTCommand.complete = 0; // You processed that command. Dump it! Do this last. The ISR will only run through if the command is NOT yet complete (in other words, if complete == 0).
}
}
void StopAllMotorTests() {
myDataStream.period = 0; // stop the data stream during this test.
myPI.testRunning = 0; // stop the PI test if it's running
myPI.testFailed = 1;
myPI.testFinished = 0;
myRotorTest.testRunning = 0; // stop the rotor time constant search if there was one.
myRotorTest.testFinished = 0;
myAngleOffsetTest.testRunning = 0; // stop the permanent magnet angle offset search if there was one.
myAngleOffsetTest.testFinished = 0;
myMotorSaliencyTest.testRunning = 0; // stop the permanent magnet angle offset search if there was one.
myMotorSaliencyTest.testFinished = 0;
}
void ShowConfig() {
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// motor-type=x\r\n
strcpy(showConfigString,"motor-type=x\r\n");
u16_to_str(&showConfigString[11], savedValues.motorType, 1);
TransmitString(showConfigString);
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// kp=xxxxx ki=xxxxx\r\n
strcpy(showConfigString,"kp=xxxxx ki=xxxxx\r\n");
u16_to_str(&showConfigString[3], savedValues.Kp, 5);
u16_to_str(&showConfigString[12], savedValues.Ki, 5);
TransmitString(showConfigString);
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// current-sensor-amps-per-volt=xxxx\r\n;
strcpy(showConfigString,"current-sensor-amps-per-volt=xxxx\r\n");
u16_to_str(&showConfigString[29], savedValues.currentSensorAmpsPerVolt, 4);
TransmitString(showConfigString);
// 0 1 2 3 4 5 6 7 8
// 01234567890123456789012345678901234567890123456789012345678901234567890123456789012345
// max-regen-position=xxxx\r\n
// min-regen-position=xxxx\r\n
strcpy(showConfigString,"max-regen-position=xxxx\r\n");
u16_to_str(&showConfigString[19], savedValues.maxRegenPosition, 4);
TransmitString(showConfigString);
strcpy(showConfigString,"min-regen-position=xxxx\r\n");
u16_to_str(&showConfigString[19], savedValues.minRegenPosition, 4);
TransmitString(showConfigString);
// 0 1 2 3 4 5 6 7 8
// 01234567890123456789012345678901234567890123456789012345678901234567890123456789012345
// min-throttle-position=xxxx\r\n
// max-throttle-position=xxxx\r\n
// fault-throttle-position=xxxx\r\n
strcpy(showConfigString,"min-throttle-position=xxxx\r\n");
u16_to_str(&showConfigString[22], savedValues.minThrottlePosition, 4);
TransmitString(showConfigString);
strcpy(showConfigString,"max-throttle-position=xxxx\r\n");
u16_to_str(&showConfigString[22], savedValues.maxThrottlePosition, 4);
TransmitString(showConfigString);
strcpy(showConfigString,"fault-throttle-position=xxxx\r\n");
u16_to_str(&showConfigString[24], savedValues.throttleFaultPosition, 4);
TransmitString(showConfigString);
// 0 1 2 3 4 5 6 7 8
// 01234567890123456789012345678901234567890123456789012345678901234567890123456789012345
// max-battery-amps=xxxx amps\r\n
// max-battery-amps-regen=xxxx amps\r\n
strcpy(showConfigString,"max-battery-amps=xxxz amps\r\n");
u16_to_str(&showConfigString[17], savedValues.maxBatteryAmps, 4);
TransmitString(showConfigString);
strcpy(showConfigString,"max-battery-amps-regen=xzxx amps\r\n");
u16_to_str(&showConfigString[23], savedValues.maxBatteryAmpsRegen, 4);
TransmitString(showConfigString);
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// max-motor-amps=xxx amps\r\n
// max-motor-amps-regen=xxx amps\r\n
strcpy(showConfigString,"max-motor-amps=xxx amps\r\n");
u16_to_str(&showConfigString[15], savedValues.maxMotorAmps, 3);
TransmitString(showConfigString);
strcpy(showConfigString,"max-motor-amps-regen=xxx amps\r\n");
u16_to_str(&showConfigString[21], savedValues.maxMotorAmpsRegen, 3);
TransmitString(showConfigString);
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// precharge-time=xxxx tenths of a sec\r\n
strcpy(showConfigString,"precharge-time=xxxx tenths of a sec\r\n");
u16_to_str(&showConfigString[15], savedValues.prechargeTime, 4);
TransmitString(showConfigString);
if (savedValues.motorType == 1) {
// **NOW WE ARE IN SavedValues2**
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// rotor-time-constant=xxx ms\r\n
//
strcpy(showConfigString,"rotor-time-constant=xxx ms\r\n");
u16_to_str(&showConfigString[20], savedValues2.rotorTimeConstantIndex+5, 3); // for display purposes, add 5 so it's millisec.
TransmitString(showConfigString);
}
else {
// **NOW WE ARE IN SavedValues2**
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// angle-offset=xxx\r\n
//
strcpy(showConfigString,"angle-offset=xxx\r\n");
u16_to_str(&showConfigString[13], savedValues2.angleOffset, 3); // for display purposes, add 5 so it's millisec.
TransmitString(showConfigString);
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// saliency=xxxx\r\n
//
strcpy(showConfigString,"saliency=xxxx\r\n");
u16_to_str(&showConfigString[9], savedValues2.KArrayIndex, 4); // for display purposes, add 5 so it's millisec.
TransmitString(showConfigString);
}
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// pole-pairs=xxx\r\n
//
strcpy(showConfigString,"pole-pairs=xxx\r\n");
u16_to_str(&showConfigString[11], savedValues2.numberOfPolePairs, 3);
TransmitString(showConfigString);
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// max-rpm=xxxxx rev/min\r\n
//
strcpy(showConfigString,"max-rpm=xxxxx rev/min\r\n");
u16_to_str(&showConfigString[8], savedValues2.maxRPM, 5);
TransmitString(showConfigString);
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// throttle-type=x\r\n
//
strcpy(showConfigString,"throttle-type=x\r\n");
u16_to_str(&showConfigString[14], savedValues2.throttleType, 1);
TransmitString(showConfigString);
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// encoder-ticks=xxxx ticks/rev\r\n
//
strcpy(showConfigString,"encoder-ticks=xxxx ticks/rev\r\n");
u16_to_str(&showConfigString[14], savedValues2.encoderTicks, 4);
TransmitString(showConfigString);
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// pi-ratio=xxx\r\n
//
strcpy(showConfigString,"pi-ratio=xxx\r\n");
u16_to_str(&showConfigString[9], myPI.ratioKpKi, 3); // ADCBUF1 is the raw throttle.
TransmitString(showConfigString);
// 0 1 2 3 4 5
// 012345678901234567890123456789012345678901234567890123456789
// raw-throttle=xxxx\r\n
//
strcpy(showConfigString,"raw-throttle=xxxx\r\n");
u16_to_str(&showConfigString[13], ADCBUF1, 4); // ADCBUF1 is the raw throttle.
TransmitString(showConfigString);
}
// Input is an integer from 0 to 15. Output is a character in '0', '1', '2', ..., '9', 'a','b','c','d','e','f'
char IntToCharHex(unsigned int i) {
if (i <= 9) {
return ((unsigned char)(i + 48));
}
else {
return ((unsigned char)(i + 55));
}
}
void ShowMenu(void)
{
TransmitString("AC controller firmware, ver. 1.0\r\n");
}
// convert val to string (inside body of string) with specified number of digits
// do NOT terminate string
void u16_to_str(char *str, unsigned val, unsigned char digits)
{
str = str + (digits - 1); // go from right to left.
while (digits > 0) { //
*str = (unsigned char)(val % 10) + '0';
val = val / 10;
str--;
digits--;
}
}
// convert val to string (inside body of string) with specified number of digits (not counting the + or - sign).
// do NOT terminate string
// Ex: -2345 should have length 4. It will be printed as -2345
// 2345 should also have length 4. It will be printed as +2345.
// So, the first symbol is either '-' or '+'.
void int16_to_str(char *str, int val, unsigned char digits)
{
if (val < 0) {
str[0] = '-';
val = -val;
}
else {
str[0] = '+';
}
str = str + digits; // go from right to left.
while (digits > 0) { //
*str = (unsigned char)(val % 10) + '0';
val = val / 10;
str--;
digits--;
}
}
// convert val to hex string (inside body of string) with specified number of digits
// do NOT terminate string
void u16x_to_str(char *str, unsigned val, unsigned char digits)
{
unsigned char nibble;
str = str + (digits - 1);
while (digits > 0) {
nibble = val & 0x000f;
if (nibble >= 10) nibble = (nibble - 10) + 'A';
else nibble = nibble + '0';
*str = nibble;
val = val >> 4;
str--;
digits--;
}
}
int TransmitString(const char* str) { // For echoing onto the display
unsigned int i = 0;
unsigned int now = 0;
// now = TMR5; // timer 4 runs at 59KHz. Timer5 is the high word of the 32 bit timer. So, it updates about 1 time per second.
while (1) {
if (str[i] == 0) {
return 1;
}
if (U2STAbits.UTXBF == 0) { // TransmitReady();
U2TXREG = str[i]; // SendCharacter(str[i]);
i++;
}
// if (TMR5 - now > 5000) { // 5 seconds
// faultBits |= UART_FAULT;
// return 0;
// }
// #ifndef DEBUG
// ClrWdt();
// #endif
}
}
void StreamData() {
static volatile int tenths = 0;
static volatile int temp;
// unsigned int dataToDisplaySet1;
// 0b0000 0000 0000 0000
// bit 15 set: display myDataStream.timer
// Bit 14 set: display myDataStream.Id_times10
// bit 13 set: display myDataStream.Iq_times10
// Bit 12 set: display myDataStream.IdRef_times10
// bit 11 set: display myDataStream.IqRef_times10
// Bit 10 set: display myDataStream.Vd
// bit 9 set: display myDataStream.Vq
// Bit 8 set: display myDataStream.Ia_times10
// bit 7 set: display myDataStream.Ib_times10
// bit 6 set: display myDataStream.Ic_times10
// Bit 5 set: display myDataStream.Va
// bit 4 set: display myDataStream.Vb
// bit 3 set: display myDataStream.Vc
// bit 2 set: display myDataStream.percentOfVoltageDiskBeingUsed
// bit 1 set: display myDataStream.batteryAmps_times10
// bit 0 set: future use
// unsigned int dataToDisplaySet2;
// Bit 15 set: display myDataStream.rawThrottle
// bit 14 set: display myDataStream.throttle
// Bit 13 set: display myDataStream.temperature
// bit 12 set: display myDataStream.slipSpeedRPM
// Bit 11 set: display myDataStream.electricalSpeedRPM
// bit 10 set: display myDataStream.mechanicalSpeedRPM
// bit 9 set: display poscnt
// Bit 8-0 set: future use.
if (savedValues2.dataToDisplaySet1 & 32768) {
u16_to_str((char *)&intString[0], myDataStream.timer, 5); // intString[] = "00345". Now, add a comma and null terminate it.
intString[5] = ',';
intString[6] = 0;
TransmitString((char *)&intString[0]);
}
if (savedValues2.dataToDisplaySet1 & 16384) {
temp = abs(myDataStream.Id_times10);
tenths = temp % 10;
myDataStream.Id_times10 /= 10;
int16_to_str((char *)&intString[0], myDataStream.Id_times10, 3); // ex: intString[] = "+087"
intString[4] = '.';
intString[5] = (char)(tenths + 48);
intString[6] = ',';
intString[7] = 0; // null terminate it.
TransmitString((char *)&intString[0]);
}
if (savedValues2.dataToDisplaySet1 & 8192) {
temp = abs(myDataStream.Iq_times10);
tenths = temp % 10;
myDataStream.Iq_times10 /= 10;
int16_to_str((char *)&intString[0], myDataStream.Iq_times10, 3); // ex: intString[] = "+087"
intString[4] = '.';
intString[5] = (char)(tenths + 48);
intString[6] = ',';
intString[7] = 0; // null terminate it.
TransmitString((char *)&intString[0]);
}
if (savedValues2.dataToDisplaySet1 & 4096) {
temp = abs(myDataStream.IdRef_times10);