-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmodel.py
51 lines (34 loc) · 1.36 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import tflearn
import tensorflow as tf
import nltk
from nltk.stem.lancaster import LancasterStemmer
class create_model:
def __init__(self, train, output, tags, all_questions_words):
tf.reset_default_graph()
self.tags = tags
self.words = all_questions_words
self.network = tflearn.input_data(shape=[None,len(train[0])])
self.network = tflearn.fully_connected(self.network, 8)
self.network = tflearn.fully_connected(self.network, 8)
self.network = tflearn.fully_connected(self.network, len(output[0]), activation= "softmax")
self.network = tflearn.regression(self.network)
self.model = tflearn.DNN(self.network)
def fit_model(self, train, output, n=400, batch = 8, metric=True):
self.model.fit(train, output, n_epoch = n, batch_size=batch, show_metric=metric)
def input_words(self, sentence):
bag_of_words = [0 for _ in range(len(self.words))]
stemmer = LancasterStemmer()
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [stemmer.stem(w.lower()) for w in sentence_words]
for s in sentence_words:
for i,j in enumerate(self.words):
if j == s:
bag_of_words[i] = 1
return np.array(bag_of_words)
def predict_tag(self, sentence):
results = self.model.predict([self.input_words(sentence)])
# tag = self.tags[np.argmax(results)]
return np.argmax(results)
def get_tags(self):
return self.tags