-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
50 lines (37 loc) · 1.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from train import training
from utils.data import load_dataset
from utils.delta import setup_delta_tracking
from utils.helpers import load_model
def run_experiment(epochs, model_name, training_type, configs):
""" Runs the basic experiment"""
print(epochs, "CONFIGS: ", configs)
# set seed for reproducibility.
seed = configs.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# gpu training specific seed settings.
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# load data
loaders = load_dataset(configs)
# load model
model = load_model(model_name, training_type, configs)
# loss
criterion = nn.CrossEntropyLoss().cuda()
# optimizer
# optimizer = optim.SGD(model.parameters(), configs.lr,
# momentum=configs.momentum,
# weight_decay=configs.weight_decay)
optimizer = optim.Adam(model.parameters(), configs.lr)
# get tracking dictionaries
model_weights, layer_dict = setup_delta_tracking(model)
# train model
rmae_delta_dict, train_acc_arr, test_acc_arr = training(
epochs, loaders, model, optimizer, criterion, model_weights, layer_dict, configs)
return rmae_delta_dict, train_acc_arr, test_acc_arr