-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQwen2.py
46 lines (40 loc) · 1.56 KB
/
Qwen2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from LLM import LLM
import torch
class Qwen2(LLM):
def load_model(self):
self.id = 3
self.tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct")
self.model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-7B-Instruct", torch_dtype="auto", device_map="auto"
)
self.model.eval()
print("Qwen2 model loaded")
def generate(self, prompt: str) -> str:
# inputs = self.tokenizer(prompt, return_tensors="pt")
# outputs = self.model.generate(**inputs)
# return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
device = "cuda"
messages = [
{
"role": "system",
"content": "You are an AI assistant that answers Place related MCQ questions.",
},
{
"role": "user",
"content": prompt,
},
]
text = self.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
model_inputs = self.tokenizer([text], return_tensors="pt").to(device)
generated_ids = self.model.generate(model_inputs.input_ids, max_new_tokens=4096)
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[
0
]
return response