forked from devendrachaplot/Neural-SLAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
arguments.py
248 lines (223 loc) · 13.1 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import math
import torch
def get_args():
parser = argparse.ArgumentParser(description='Active-Neural-SLAM')
## General Arguments
parser.add_argument('--seed', type=int, default=1,
help='random seed (default: 1)')
parser.add_argument('--auto_gpu_config', type=int, default=1)
parser.add_argument('--total_num_scenes', type=str, default="auto")
parser.add_argument('-n', '--num_processes', type=int, default=4,
help="""how many training processes to use (default:4)
Overridden when auto_gpu_config=1
and training on gpus """)
parser.add_argument('--num_processes_per_gpu', type=int, default=11)
parser.add_argument('--num_processes_on_first_gpu', type=int, default=0)
parser.add_argument('--num_episodes', type=int, default=1000000,
help='number of training episodes (default: 1000000)')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--eval', type=int, default=0,
help='1: evaluate models (default: 0)')
parser.add_argument('--train_global', type=int, default=1,
help="""0: Do not train the Global Policy
1: Train the Global Policy (default: 1)""")
parser.add_argument('--train_local', type=int, default=1,
help="""0: Do not train the Local Policy
1: Train the Local Policy (default: 1)""")
parser.add_argument('--train_slam', type=int, default=1,
help="""0: Do not train the Neural SLAM Module
1: Train the Neural SLAM Module (default: 1)""")
# Logging, loading models, visualization
parser.add_argument('--log_interval', type=int, default=10,
help="""log interval, one log per n updates
(default: 10) """)
parser.add_argument('--save_interval', type=int, default=1,
help="""save interval""")
parser.add_argument('-d', '--dump_location', type=str, default="./tmp/",
help='path to dump models and log (default: ./tmp/)')
parser.add_argument('--exp_name', type=str, default="exp1",
help='experiment name (default: exp1)')
parser.add_argument('--save_periodic', type=int, default=500000,
help='Model save frequency in number of updates')
parser.add_argument('--load_slam', type=str, default="0",
help="""model path to load,
0 to not reload (default: 0)""")
parser.add_argument('--load_global', type=str, default="0",
help="""model path to load,
0 to not reload (default: 0)""")
parser.add_argument('--load_local', type=str, default="0",
help="""model path to load,
0 to not reload (default: 0)""")
parser.add_argument('-v', '--visualize', type=int, default=0,
help='1:Render the frame (default: 0)')
parser.add_argument('--vis_type', type=int, default=1,
help='1: Show predicted map, 2: Show GT map')
parser.add_argument('--print_images', type=int, default=0,
help='1: save visualization as images')
parser.add_argument('--save_trajectory_data', type=str, default="0")
# Environment, dataset and episode specifications
parser.add_argument('-efw', '--env_frame_width', type=int, default=256,
help='Frame width (default:84)')
parser.add_argument('-efh', '--env_frame_height', type=int, default=256,
help='Frame height (default:84)')
parser.add_argument('-fw', '--frame_width', type=int, default=128,
help='Frame width (default:84)')
parser.add_argument('-fh', '--frame_height', type=int, default=128,
help='Frame height (default:84)')
parser.add_argument('-el', '--max_episode_length', type=int, default=1000,
help="""Maximum episode length in seconds for
Doom (default: 180)""")
parser.add_argument("--sim_gpu_id", type=int, default=0,
help="gpu id on which scenes are loaded")
parser.add_argument("--task_config", type=str,
default="tasks/pointnav_gibson.yaml",
help="path to config yaml containing task information")
parser.add_argument("--split", type=str, default="train",
help="dataset split (train | val | val_mini) ")
parser.add_argument('-na', '--noisy_actions', type=int, default=1)
parser.add_argument('-no', '--noisy_odometry', type=int, default=1)
parser.add_argument('--camera_height', type=float, default=1.25,
help="agent camera height in metres")
parser.add_argument('--hfov', type=float, default=90.0,
help="horizontal field of view in degrees")
parser.add_argument('--randomize_env_every', type=int, default=1000,
help="randomize scene in a thread every k episodes")
## Global Policy RL PPO Hyperparameters
parser.add_argument('--global_lr', type=float, default=2.5e-5,
help='global learning rate (default: 2.5e-5)')
parser.add_argument('--global_hidden_size', type=int, default=256,
help='local_hidden_size')
parser.add_argument('--eps', type=float, default=1e-5,
help='RL Optimizer epsilon (default: 1e-5)')
parser.add_argument('--alpha', type=float, default=0.99,
help='RL Optimizer alpha (default: 0.99)')
parser.add_argument('--gamma', type=float, default=0.99,
help='discount factor for rewards (default: 0.99)')
parser.add_argument('--use_gae', action='store_true', default=False,
help='use generalized advantage estimation')
parser.add_argument('--tau', type=float, default=0.95,
help='gae parameter (default: 0.95)')
parser.add_argument('--entropy_coef', type=float, default=0.001,
help='entropy term coefficient (default: 0.01)')
parser.add_argument('--value_loss_coef', type=float, default=0.5,
help='value loss coefficient (default: 0.5)')
parser.add_argument('--max_grad_norm', type=float, default=0.5,
help='max norm of gradients (default: 0.5)')
parser.add_argument('--num_global_steps', type=int, default=40,
help='number of forward steps in A2C (default: 5)')
parser.add_argument('--ppo_epoch', type=int, default=4,
help='number of ppo epochs (default: 4)')
parser.add_argument('--num_mini_batch', type=str, default="auto",
help='number of batches for ppo (default: 32)')
parser.add_argument('--clip_param', type=float, default=0.2,
help='ppo clip parameter (default: 0.2)')
parser.add_argument('--use_recurrent_global', type=int, default=0,
help='use a recurrent global policy')
# Local Policy
parser.add_argument('--local_optimizer', type=str,
default='adam,lr=0.0001')
parser.add_argument('--num_local_steps', type=int, default=25,
help="""Number of steps the local can
perform between each global instruction""")
parser.add_argument('--local_hidden_size', type=int, default=512,
help='local_hidden_size')
parser.add_argument('--short_goal_dist', type=int, default=1,
help="""Maximum distance between the agent
and the short term goal""")
parser.add_argument('--local_policy_update_freq', type=int, default=5)
parser.add_argument('--use_recurrent_local', type=int, default=1,
help='use a recurrent local policy')
parser.add_argument('--use_deterministic_local', type=int, default=0,
help="use classical deterministic local policy")
# Neural SLAM Module
parser.add_argument('-pe', '--use_pose_estimation', type=int, default=2)
parser.add_argument('--goals_size', type=int, default=2)
parser.add_argument('-pt', '--pretrained_resnet', type=int, default=1)
parser.add_argument('--slam_optimizer', type=str, default='adam,lr=0.0001')
parser.add_argument('-sbs', '--slam_batch_size', type=int, default=72)
parser.add_argument('-sit', '--slam_iterations', type=int, default=10)
parser.add_argument('-sms', '--slam_memory_size', type=int, default=500000)
parser.add_argument('--proj_loss_coeff', type=float, default=1.0)
parser.add_argument('--pose_loss_coeff', type=float, default=10000.0)
parser.add_argument('--exp_loss_coeff', type=float, default=1.0)
parser.add_argument('--global_downscaling', type=int, default=2)
parser.add_argument('--map_pred_threshold', type=float, default=0.5)
parser.add_argument('--vision_range', type=int, default=64)
parser.add_argument('--obstacle_boundary', type=int, default=5)
parser.add_argument('--map_resolution', type=int, default=5)
parser.add_argument('--du_scale', type=int, default=2)
parser.add_argument('--map_size_cm', type=int, default=2400)
parser.add_argument('-ot', '--obs_threshold', type=float, default=1)
parser.add_argument('-ct', '--collision_threshold', type=float, default=0.20)
parser.add_argument('-nl', '--noise_level', type=float, default=1.0)
# parse arguments
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
if args.auto_gpu_config:
num_gpus = torch.cuda.device_count()
if args.total_num_scenes != "auto":
args.total_num_scenes = int(args.total_num_scenes)
elif "gibson" in args.task_config and \
"train" in args.split:
args.total_num_scenes = 72
elif "gibson" in args.task_config and \
"val_mt" in args.split:
args.total_num_scenes = 14
elif "gibson" in args.task_config and \
"val" in args.split:
args.total_num_scenes = 1
else:
assert False, "Unknown task config, please specify" + \
" total_num_scenes"
# Automatically configure number of training threads based on
# number of GPUs available and GPU memory size
total_num_scenes = args.total_num_scenes
gpu_memory = 1000
for i in range(num_gpus):
gpu_memory = min(gpu_memory,
torch.cuda.get_device_properties(i).total_memory \
/1024/1024/1024)
if i==0:
assert torch.cuda.get_device_properties(i).total_memory \
/1024/1024/1024 > 10.0, "Insufficient GPU memory"
num_processes_per_gpu = int(gpu_memory/1.4)
num_processes_on_first_gpu = int((gpu_memory - 10.0)/1.4)
if num_gpus == 1:
args.num_processes_on_first_gpu = num_processes_on_first_gpu
args.num_processes_per_gpu = 0
args.num_processes = num_processes_on_first_gpu
else:
total_threads = num_processes_per_gpu * (num_gpus - 1) \
+ num_processes_on_first_gpu
num_scenes_per_thread = math.ceil(total_num_scenes/total_threads)
num_threads = math.ceil(total_num_scenes/num_scenes_per_thread)
args.num_processes_per_gpu = min(num_processes_per_gpu,
math.ceil(num_threads//(num_gpus-1)))
args.num_processes_on_first_gpu = max(0,
num_threads - args.num_processes_per_gpu*(num_gpus - 1))
args.num_processes = num_threads
args.sim_gpu_id = 1
print("Auto GPU config:")
print("Number of processes: {}".format(args.num_processes))
print("Number of processes on GPU 0: {}".format(
args.num_processes_on_first_gpu))
print("Number of processes per GPU: {}".format(
args.num_processes_per_gpu))
if args.eval == 1:
if args.train_global:
print("WARNING: Training Global Policy during evaluation")
if args.train_local:
print("WARNING: Training Local Policy during evaluation")
if args.train_slam:
print("WARNING: Training Neural SLAM module during evaluation")
assert args.short_goal_dist >= 1, "args.short_goal_dist >= 1"
if args.use_deterministic_local:
args.train_local = 0
if args.num_mini_batch == "auto":
args.num_mini_batch = args.num_processes // 2
else:
args.num_mini_batch = int(args.num_mini_batch)
return args