-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun.py
80 lines (62 loc) · 2.05 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""Generic main function for VSR experiments."""
import argparse
import pathlib
import tensorflow as tf
import yaml
from dataset import dataset_builder
from learner.learner import StandardLearner
from util import common_util, constant_util, plugin
def _parse_argument():
"""Return arguments for VSR."""
parser = argparse.ArgumentParser(description='Codebase for MAI 2022 VSR.')
parser.add_argument(
'--process',
help='Process type.',
type=str,
default='train',
choices=['train', 'test'],
required=True
)
parser.add_argument(
'--config_path',
help='Path of yaml config file of the application.',
type=str,
default=None,
required=True
)
args = parser.parse_args()
return args
def main(args):
"""Run main function for vision quality experiments.
Args:
args: A `dict` contain augments 'process' and 'config_path'.
Raises:
ValueError:
1. If test dataset can't be prepared.
2. If process type is not 'train' or 'test'.
"""
# prepare configurations
with open(args.config_path, 'r') as f:
config = yaml.load(f.read(), Loader=yaml.SafeLoader)
log_dir = config.pop('log_dir', constant_util.LOG_DIR)
pathlib.Path(log_dir).mkdir(parents=True, exist_ok=True)
common_util.copy_file(args.config_path, log_dir)
# prepare dataset
dataset = dataset_builder.build_dataset(config['dataset'])
# prepare model
model_builder = plugin.plugin_from_file(
config['model']['path'], config['model']['name'], tf.keras.Model
)
common_util.copy_file(config['model']['path'], log_dir)
model = model_builder()
# prepare learner
learner = StandardLearner(config['learner'], model, dataset, log_dir)
if args.process == 'train':
learner.train()
elif args.process == 'test':
learner.test()
else:
raise ValueError(f'Wrong process type {args.process}')
if __name__ == '__main__':
arguments = _parse_argument()
main(arguments)