forked from danyang-liu/AnchorKG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKPRN_train.py
264 lines (237 loc) · 12.5 KB
/
KPRN_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
from utils.parse_config import ConfigParser
import argparse
from utils.util import *
from utils.metrics import *
import json
import random
import time
from utils.pytorchtools import *
class KPRN(nn.Module):
def __init__(self, config, doc_feature_embedding, entity_embedding, relation_embedding, device=torch.device('cpu')):
super(KPRN, self).__init__()
self.device = device
self.config = config
self.gamma = config["gamma"]
self.doc_feature_embedding = doc_feature_embedding
self.entity_embedding = nn.Embedding.from_pretrained(entity_embedding)
self.relation_embedding = nn.Embedding.from_pretrained(relation_embedding)
self.innews_relation = nn.Embedding(1, self.config['embedding_size']).to(device)
self.news_compress = nn.Sequential(
nn.Linear(self.config['doc_embedding_size'], self.config['embedding_size']),
nn.ELU(),
nn.Linear(self.config['embedding_size'], self.config['embedding_size']),
nn.Tanh()
).to(device)
self.entity_compress = nn.Sequential(
nn.Linear(self.config['entity_embedding_size'], self.config['embedding_size'], bias=False),
nn.Tanh(),
).to(device)
self.relation_compress = nn.Sequential(
nn.Linear(self.config['entity_embedding_size'], self.config['embedding_size'], bias=False),
nn.Tanh(),
).to(device)
self.gru = nn.GRU(2*self.config['embedding_size'], self.config['embedding_size'], batch_first=True).to(device)
self.gru_layer = nn.Sequential(
nn.Linear(self.config['embedding_size'], self.config['embedding_size']),
nn.ELU(),
nn.Linear(self.config['embedding_size'], 1)
).to(device)
self.sigmoid = nn.Sigmoid()
def forward(self, data):
batch_predict = []
batch_path_scores = []
for item1, item2, paths, edges in zip(data['item1'], data['item2'], data['paths'], data['edges']):
news1 = self.news_compress(self.doc_feature_embedding[item1].to(self.device)).unsqueeze(dim=0)
news2 = self.news_compress(self.doc_feature_embedding[item2].to(self.device)).unsqueeze(dim=0)
path_scores=[]
for path, edge in zip(paths, edges):
path_node_embeddings = self.entity_compress(self.entity_embedding(torch.tensor(path, dtype=torch.long)).to(self.device))#(path_len-2, embedding_size)
path_edge_embeddings = self.relation_compress(self.relation_embedding(torch.tensor(edge[1:], dtype=torch.long)).to(self.device))#(path_len-3, embedding_size)
path_node_embeddings = torch.cat((news1, path_node_embeddings, news2), dim=0) #(path_len, embedding_size)
path_edge_embeddings = torch.cat((self.innews_relation(torch.tensor([0]).to(self.device)), path_edge_embeddings, self.innews_relation(torch.tensor([0]).to(self.device)), torch.zeros([1, self.config['embedding_size']]).to(self.device)), dim=0) #(path_len, embedding_size)
path_node_embeddings = torch.unsqueeze(path_node_embeddings, 0)#(1, path_len, embedding_size)
path_edge_embeddings = torch.unsqueeze(path_edge_embeddings, 0)#(1, path_len, embedding_size)
output, _ = self.gru(torch.cat((path_node_embeddings, path_edge_embeddings), dim=2))#(1, path_len, embedding_size)
path_score = self.gru_layer(torch.squeeze(output)[-1])#[1]
path_scores.append(path_score)
path_scores = torch.stack(path_scores, dim=0) #(path_num, 1)
batch_path_scores.append(path_scores)
predict = self.sigmoid(torch.logsumexp(path_scores /self.gamma, dim=0))#[1]#path_scores.shape[0]
batch_predict.append(predict)
predicts = torch.cat(batch_predict, dim=0) #[batch_size]
loss_fn = nn.BCELoss()
loss = loss_fn(predicts, data['label'].to(self.device))
return loss, predicts, batch_path_scores
class KPRN_Dataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
sample = self.data[idx]
return sample
class KPRN_Trainer():
def __init__(self, config, model, train_dataloader, dev_dataloader, test_dataloader, device) -> None:
super().__init__()
self.config=config
self.logger = config.get_logger('trainer', config['verbosity'])
self.model = model
self.train_dataloader = train_dataloader
self.dev_dataloader = dev_dataloader
self.test_dataloader = test_dataloader
self.device = device
self.epochs = config['epochs']
self.num_train_steps = int(len(train_dataloader) * self.epochs)
self.optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], weight_decay=config['weight_decay'])
self.early_stopping = EarlyStopping(patience=config['early_stop'], greater=True)
self.ckpt_dir = config.save_dir
def train(self):
result = self._valid_epoch(-1)
for epoch in range(1, self.epochs+1):
self.logger.info("Epoch {}/{}".format(epoch, self.epochs))
self.logger.info("Training")
self._train_epoch(epoch)
self.logger.info("Validation...")
result = self._valid_epoch(epoch)
auc_score = result['auc_score']
if self.config['use_nni']:
nni.report_intermediate_result({'default': auc_score})
self.early_stopping(auc_score)
if self.early_stopping.early_stop:
self.logger.info("Early stop at epoch {}, best auc score: {:.5f}".format(epoch, self.early_stopping.best_score))
break
elif self.early_stopping.counter == 0:
self._save_checkpoint(epoch)
if self.config['use_nni']:
nni.report_final_result({"default":self.early_stopping.best_score})
def _train_epoch(self, epoch):
epoch_loss = 0
self.model.train()
t1 = time.time()
for batch in self.train_dataloader:
loss, _, _ = self.model(batch)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
#self.scheduler.step()
epoch_loss += loss.item()
t2 = time.time()
self.logger.info("epoch {}, train Loss {:.5f}, time {:.5f}".format(epoch, epoch_loss/len(self.train_dataloader), t2-t1))
def _valid_epoch(self, epoch):
self.model.eval()
with torch.no_grad():
dev_loss = 0
dev_predicts = []
dev_labels = []
for batch in self.dev_dataloader:
loss, predicts, _ = self.model(batch)
dev_loss += loss.item()
dev_predicts.extend(predicts.tolist())
dev_labels.extend(batch['label'])
dev_predicts = np.array(dev_predicts)
dev_labels = np.array(dev_labels)
auc_score = cal_auc(dev_labels, dev_predicts)
self.logger.info("epoch: {}, dev_loss: {:.5f}, dev_auc: {:.5f}".format(epoch, dev_loss/len(dev_dataloader), auc_score))
return {'auc_score': auc_score}
def predict(self):
ckpt_path = os.path.join(self.ckpt_dir, 'KPRN_model.ckpt')
#ckpt_path = "./out/saved/models/KPRN/fy6ad2rp/NhjQB-1109_211741/KPRN_model.ckpt"
self.model.load_state_dict(torch.load(ckpt_path))
self.model.eval()
with torch.no_grad():
output_path = []
for batch in self.test_dataloader:
_, _, batch_path_scores = self.model(batch)#(batch_size, num_paths, 1)
for i in range(len(batch['item1'])):
label = batch['label'][i].item()
item1 = batch['item1'][i]
item2 = batch['item2'][i]
paths = batch['paths'][i]
edges = batch['edges'][i]
try:
indices = batch_path_scores[i].reshape(-1).topk(2).indices.tolist()
except:
indices = [0]
for index in indices:
path = paths[index]
edge = edges[index]
output_path.append({'label': label, 'item1': item1, 'item2': item2, 'paths': path, 'edges': edge})
with open(self.config['datapath']+self.config['KPRN_predict_train_file'], "w") as f1:
with open(self.config['datapath']+self.config['KPRN_predict_dev_file'], "w") as f2:
for _ in output_path:
if random.random() < 0.8:
f1.write(json.dumps(_)+"\n")
else:
f2.write(json.dumps(_)+"\n")
def _save_checkpoint(self, epoch):
ckpt_path = os.path.join(self.ckpt_dir, 'KPRN_model.ckpt')
torch.save(self.model.state_dict(), ckpt_path)
self.logger.info("Saving model checkpoint to {}".format(ckpt_path))
def collate_fn(data):
batch = {}
batch['label'] = torch.tensor([item['label'] for item in data], dtype=torch.float)
batch['item1'] = [item['item1'] for item in data]
batch['item2'] = [item['item2'] for item in data]
batch['paths'] = [item['paths'] for item in data]
batch['edges'] = [item['edges'] for item in data]
return batch
def create_dataloaders(config):
with open(config['datapath']+config['KPRN_train_file'], "r") as f:
train_data = [json.loads(line) for line in f.readlines()]
with open(config['datapath']+config['KPRN_val_file'], "r") as f:
dev_data = [json.loads(line) for line in f.readlines()]
train_dataset = KPRN_Dataset(train_data)
dev_dataset = KPRN_Dataset(dev_data)
test_dataset = KPRN_Dataset(train_data + dev_data)
train_dataloader = DataLoader(
dataset=train_dataset,
batch_size=config['batch_size'],
sampler=RandomSampler(train_dataset),
num_workers=0,
collate_fn=collate_fn
)
dev_dataloader = DataLoader(
dataset=dev_dataset,
batch_size=config['batch_size'],
sampler=SequentialSampler(dev_dataset),
num_workers=0,
collate_fn=collate_fn
)
test_dataloader = DataLoader(
dataset=test_dataset,
batch_size=config['batch_size'],
sampler=SequentialSampler(test_dataset),
num_workers=0,
collate_fn=collate_fn
)
return train_dataloader, dev_dataloader, test_dataloader
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='KPRN')
parser.add_argument('-c', '--config', default="./config/KPRN_config.json", type=str, help='config file path (default: None)')
parser.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)')
parser.add_argument('-d', '--device', default=None, type=str, help='indices of GPUs to enable (default: all)')
parser.add_argument('--use_nni', action='store_true', help='use nni to tune hyperparameters')
config = ConfigParser.from_args(parser)
if config['use_nni']:
import nni
seed_everything(config['seed'])
device, deviceids = prepare_device(config['n_gpu'])
#dataset
train_dataloader, dev_dataloader, test_dataloader = create_dataloaders(config)
#model
doc_feature_embedding = np.load(config['cache_path']+"/doc_feature_embedding.npy", allow_pickle=True).item()
entity_embedding = torch.load(config['cache_path']+"/entity_embedding.pt")
relation_embedding = torch.load(config['cache_path']+"/relation_embedding.pt")
model = KPRN(config, doc_feature_embedding, entity_embedding, relation_embedding, device=device)
trainer = KPRN_Trainer(config, model, train_dataloader, dev_dataloader, test_dataloader, device=device)
trainer.logger.info("config {}".format(config.config))
trainer.logger.info("save dir {}".format(config.save_dir))
trainer.logger.info("log dir {}".format(config.log_dir))
trainer.logger.info("model {}".format(model))
trainer.train()
trainer.predict()