-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenerate_unified_boxplot_fig.py
162 lines (142 loc) · 6.53 KB
/
generate_unified_boxplot_fig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import os
from pprint import pprint
from datetime import datetime
import matplotlib
# matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from src.util.vis_utils import cm2in
__SCRIPT_DIR__ = os.path.dirname(os.path.abspath(__file__))
LABEL_COLOR_MAP = {
'Newson et al.': 'C3',
'MCnet': 'C2',
'Super SloMo': 'C1',
'bi-TAI (ours)': 'C0'
}
def draw_video_perf_boxplot_on_ax(ax, error_table_list, labels, hide_labels=False):
"""
:param ax: The PyPlot axis to draw on
:param error_table_list: list of M N x T NumPy arrays
:param labels: The labels associated with this data
:param hide_labels: Whether to print the given labels on the y-axis
"""
assert(len(error_table_list) == len(labels))
# Define box and flier properties
props = dict(
boxprops=dict(linewidth=0.1),
flierprops=dict(marker='|', markersize=4, markeredgecolor=(.9, .9, .9), markeredgewidth=0.1),
whiskerprops=dict(linewidth=0.1),
capprops=dict(linewidth=0.1),
medianprops=dict(linewidth=0.1, color='black')
)
error_table_cat = np.stack(error_table_list) # M x N x T
# Compute the score for each video by taking the mean performance across all video frames
video_scores_cat = error_table_cat.mean(axis=2) # M x N
# Reorder dimensions for boxplot call, and reverse order so first model is on top
video_scores_cat = video_scores_cat.T[:, ::-1] # N x M
# Draw box plot with outliers (fliers)
boxplot_items = ax.boxplot(video_scores_cat, vert=False, patch_artist=True, **props)
# Add model labels in reverse order (so first one goes on top)
ax.set_yticklabels('' if hide_labels else labels[::-1])
# Colorize each box
for i, patch in enumerate(boxplot_items['boxes'][::-1]):
patch.set_facecolor(LABEL_COLOR_MAP[labels[i]] if labels[i] in LABEL_COLOR_MAP else 'C%d' % i)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--results_root', type=str, default=os.path.join(__SCRIPT_DIR__, 'results'))
parser.add_argument('--dest_path', type=str,
default=os.path.join(__SCRIPT_DIR__, 'summaries', str(datetime.now()), 'unified_avg_plot.pdf'))
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--T_a', type=int, required=True)
parser.add_argument('--T_b', type=int, required=True)
parser.add_argument('--exp_names', type=str, nargs='+', required=True)
parser.add_argument('--model_labels', type=str, nargs='+', required=True)
parser.add_argument('--psnr_range', type=float, nargs=2, required=True)
parser.add_argument('--ssim_range', type=float, nargs=2, required=True)
args = parser.parse_args()
if len(args.exp_names) != len(args.model_labels):
raise ValueError('Number of arguments to --exp_names and --model_labels must match')
results_root = args.results_root
dataset = args.dataset
T_a = args.T_a
T_b = args.T_b
exp_names = args.exp_names
model_labels = args.model_labels
psnr_range = args.psnr_range
ssim_range = args.ssim_range
template = os.path.join(results_root, '{dataset}-test_data_list_T={T}', 'quantitative', '{exp_name}', 'results.npz')
quant_results_roots = [
[template.format(dataset=dataset, T=T_a, exp_name=exp_name) for exp_name in exp_names],
[template.format(dataset=dataset, T=T_b, exp_name=exp_name) for exp_name in exp_names]
]
plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.size'] = 7
fig = plt.figure(figsize=(cm2in(18.2), cm2in(4)))
# Draw PSNR T=T_a plot
ax_psnr_T_a = fig.add_subplot(111, label='a')
ax_psnr_T_a.set_position([.12, .25, .2, .68])
ax_psnr_T_a.set_xlabel('Mean PSNR (m=5)')
ax_psnr_T_a.axis([psnr_range[0], psnr_range[1], 1, len(exp_names)])
ax_psnr_T_a.tick_params(axis='y', left=False)
psnr_tables_list = []
for i, model_label in enumerate(model_labels):
try:
psnr_table = np.load(quant_results_roots[0][i])['psnr']
except IOError:
raise ValueError('Failed to read file %s' % quant_results_roots[0][i])
except Exception as e:
raise e
psnr_tables_list.append(psnr_table)
draw_video_perf_boxplot_on_ax(ax_psnr_T_a, psnr_tables_list, model_labels)
# Draw PSNR T=T_b plot
ax_psnr_T_b = fig.add_subplot(111, label='b')
ax_psnr_T_b.set_position([.34, .25, .2, .68])
ax_psnr_T_b.set_xlabel('Mean PSNR (m=10)')
ax_psnr_T_b.axis([psnr_range[0], psnr_range[1], 1, len(exp_names)])
ax_psnr_T_b.tick_params(axis='y', left=False)
psnr_tables_list = []
for i, model_label in enumerate(model_labels):
try:
psnr_table = np.load(quant_results_roots[1][i])['psnr']
except IOError:
raise ValueError('Failed to read file %s' % quant_results_roots[1][i])
except Exception as e:
raise e
psnr_tables_list.append(psnr_table)
draw_video_perf_boxplot_on_ax(ax_psnr_T_b, psnr_tables_list, model_labels, hide_labels=True)
# Draw SSIM T=T_a plot
ax_ssim_T_a = fig.add_subplot(111, label='c')
ax_ssim_T_a.set_position([.56, .25, .2, .68])
ax_ssim_T_a.set_xlabel('Mean SSIM (m=5)')
ax_ssim_T_a.axis([ssim_range[0], ssim_range[1], 1, len(exp_names)])
ax_ssim_T_a.tick_params(axis='y', left=False)
ssim_tables_list = []
for i, model_label in enumerate(model_labels):
try:
ssim_table = np.load(quant_results_roots[0][i])['ssim']
except IOError:
raise ValueError('Failed to read file %s' % quant_results_roots[0][i])
except Exception as e:
raise e
ssim_tables_list.append(ssim_table)
draw_video_perf_boxplot_on_ax(ax_ssim_T_a, ssim_tables_list, model_labels, hide_labels=True)
# Draw SSIM T=T_b plot
ax_ssim_T_b = fig.add_subplot(111, label='d')
ax_ssim_T_b.set_position([.78, .25, .2, .68])
ax_ssim_T_b.set_xlabel('Mean SSIM (m=10)')
ax_ssim_T_b.axis([ssim_range[0], ssim_range[1], 1, len(exp_names)])
ax_ssim_T_b.tick_params(axis='y', left=False)
ssim_tables_list = []
for i, model_label in enumerate(model_labels):
try:
ssim_table = np.load(quant_results_roots[1][i])['ssim']
except IOError:
raise ValueError('Failed to read file %s' % quant_results_roots[1][i])
except Exception as e:
raise e
ssim_tables_list.append(ssim_table)
draw_video_perf_boxplot_on_ax(ax_ssim_T_b, ssim_tables_list, model_labels, hide_labels=True)
plt.savefig(args.dest_path)
if __name__ == '__main__':
main()