-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathplot_paper.py
1037 lines (883 loc) · 41.6 KB
/
plot_paper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
# plot_paper.py
# Hardcoded functions for plotting the final
# plots for the paper
#
import os
import pickle
from argparse import ArgumentParser
from glob import glob
import random
import json
import numpy as np
from matplotlib import pyplot
import sklearn.metrics
import scipy
from scipy.stats import ttest_ind
# Different directories.
# The non-GAN folders contain data from the first data collection
RECORDINGS_DIR = "data/data_collection_1"
GAN_RECORDINGS_DIR = "data/data_collection_2"
PERFORMANCE_RECORDINGS_DIR = "data/data_collection_3"
FEATURES_DIR = "features"
GAN_FEATURES_DIR = "gan_features"
HUMAN_GRADING_DIR = "data/data_collection_5"
# Aimangle delta indexes in actions
AIMANGLE_DELTA_YAW_IDX = 4
AIMANGLE_DELTA_PITCH_IDX = 5
# Mapping from aimbot_class integer to name of the aimbot
AIMBOT_FILE_NAMES = {
0: None,
1: "ease_light",
2: "ease_strong",
3: "gan",
4: "gan_light",
10: "gan_group0",
11: "gan_group1"
}
AIMBOT_NAMES = {
0: "None",
1: "Light",
2: "Strong",
3: "GAN Strong",
4: "GAN Light",
10: "GAN (Group1)",
11: "GAN (Group2)"
}
# Plotting constants
TITLE_KWARGS = dict(fontsize=27)
LEGEND_KWARGS = dict(fontsize=22)
TICK_PARAMS_KWARGS = dict(axis='both', which='both', labelsize=23)
LABEL_KWARGS = dict(fontsize=27)
# Colors the worst case -> known attack -> oracle -> best case lines
SCENARIO_COLORS = ["C3", "C1", "C0", "C2"]
def compute_fpr_fnr(bona_fide_scores, aimbot_scores):
"""
Compute and return FPR and FNR points
for system with given bona_fide (non-target)
and aimbot (target) scores.
Returns two arrays: fpr and fnr.
"""
labels = np.concatenate(
(
np.zeros((bona_fide_scores.shape[0],)),
np.ones((aimbot_scores.shape[0],))
)
).astype(np.int64)
all_scores = np.concatenate((bona_fide_scores, aimbot_scores))
fpr, fnr, thresholds = sklearn.metrics.det_curve(labels, all_scores)
return fpr, fnr
def compute_mindcf_eer(bona_fide_scores, aimbot_scores, hacker_prior):
"""
Compute min DCF and EER of given bona fide (non-target) and hacker
scores (target) under the given hacker_prior.
Returns minDCF and eer (scalars).
"""
# Import SIDEKIT here to avoid importing it when library is imported
import sidekit
# fast_minDCF function will take sigmoid of the prior,
# so we take the inverse here (logit)
logit_hacker_prior = np.log(hacker_prior / (1 - hacker_prior))
results = sidekit.bosaris.fast_minDCF(aimbot_scores, bona_fide_scores, logit_hacker_prior, normalize=True)
mindcf = results[0]
eer = results[-1]
return mindcf, eer
def print_metrics():
"""
Calculate EERs and MinDCFs for the
different scenarios
"""
original_data = np.load("classification_results/dnn_scores.npz")
worst_case = np.load("evaluation_scores/worst_case.npz")
worst_case_scores = np.concatenate([data["test_scores"] for data in [original_data, worst_case]], axis=0)
worst_case_aimbots = np.concatenate([data["test_aimbots"] for data in [original_data, worst_case]], axis=0)
worst_case_data = {"test_scores": worst_case_scores, "test_aimbots": worst_case_aimbots}
group1_data = np.load("evaluation_scores/known_attack_group1.npz")
group2_data = np.load("evaluation_scores/known_attack_group2.npz")
best_case_data = np.load("evaluation_scores/best_case.npz")
train_light_data = np.load("evaluation_scores/trained_on_light.npz")
train_strong_data = np.load("evaluation_scores/trained_on_strong.npz")
best_case_original = np.load("evaluation_scores/best_case_original.npz")
# We need to go over:
# - Different aimbots (light, strong, gan1 and gan2)
# - Different scenarios (worst-case, best case etc)
# - EER and DCF
# - Different priors for DCF
# EER and DCF on x-axis
# aimbots and scenarios on y-axis
P_HACKERS = [0.5, 0.25, 0.1, 0.01]
header_print_template = "{:<15} {:<15} {:<15} {:<15} {:<15} {:<15} {:<15}"
print_template = "{:<15}& {:<15}& {:<15.2f}& {:<15.4f}& {:<15.4f}& {:<15.4f}& {:<15.4f}"
# Print header
print(header_print_template.format(
*[
"Aimbot",
"Scenario",
"EER(%)",
] + ["minDCF(p={})".format(p) for p in P_HACKERS]
))
# Maps scenario name to mapping, that tells
# which data should be used for aimbot
scenarios = {
"Worst-case": {
# Nothing for light and strong aimbot here
10: worst_case_data,
11: worst_case_data
},
"Known-attack": {
1: train_strong_data,
2: train_light_data,
10: group2_data,
11: group1_data
},
"Oracle": {
1: train_light_data,
2: train_strong_data,
10: group1_data,
11: group2_data
},
"Train-on-test": {
1: best_case_original,
2: best_case_original,
10: best_case_data,
11: best_case_data
},
}
for aimbot_class in [1, 2, 10, 11]:
for scenario_name, scenario_mapping in scenarios.items():
data = scenario_mapping.get(aimbot_class)
if data is None:
# Print emptys
print(print_template.format(AIMBOT_NAMES[aimbot_class], scenario_name, *([np.nan] * (len(P_HACKERS) + 1))))
continue
bona_fide_scores = data["test_scores"][data["test_aimbots"] == 0, 1]
aimbot_scores = data["test_scores"][data["test_aimbots"] == aimbot_class, 1]
eer = None
mindcfs = []
for p_hacker in P_HACKERS:
# EER will always be same so we can just
# use the latest
mindcf, eer = compute_mindcf_eer(bona_fide_scores, aimbot_scores, p_hacker)
mindcfs.append(mindcf)
eer = eer * 100
# Remove whitespaces for spreadsheets not to flip out
aimbot_name = AIMBOT_NAMES[aimbot_class].replace(" ", "")
print(print_template.format(aimbot_name, scenario_name, eer, *mindcfs))
def plot_dets():
"""
Plot the DET curves for classifier
accuracy with and without GAN aimbots etc.
Assume GAN classifiers have been trained and evaluated,
and that results are in evaluation_scores.
DET plotting code and adjustments are taken from scikit-learn:
https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/metrics/_plot/det_curve.py
"""
DET_TICKS = [0.001, 0.01, 0.05, 0.20, 0.5, 0.80, 0.95, 0.99, 0.999]
DET_TICKS_LOCATIONS = scipy.stats.norm.ppf(DET_TICKS)
def adjust_ax_for_det(ax):
"""Adjust given axis to pretty-show DET plots"""
# Code copied directly from the scikit-learn det_curve.py
tick_labels = [
'{:.0f}'.format(100 * s) for s in DET_TICKS
]
ax.set_xticks(DET_TICKS_LOCATIONS)
ax.set_xticklabels(tick_labels)
ax.set_xlim(-3, 3)
ax.set_yticks(DET_TICKS_LOCATIONS)
ax.set_yticklabels(tick_labels)
ax.set_ylim(-3, 3)
original_data = np.load("classification_results/dnn_scores.npz")
worst_case = np.load("evaluation_scores/worst_case.npz")
worst_case_scores = np.concatenate([data["test_scores"] for data in [original_data, worst_case]], axis=0)
worst_case_aimbots = np.concatenate([data["test_aimbots"] for data in [original_data, worst_case]], axis=0)
worst_case_data = {"test_scores": worst_case_scores, "test_aimbots": worst_case_aimbots}
group1_data = np.load("evaluation_scores/known_attack_group1.npz")
group2_data = np.load("evaluation_scores/known_attack_group2.npz")
best_case_data = np.load("evaluation_scores/best_case.npz")
train_light_data = np.load("evaluation_scores/trained_on_light.npz")
train_strong_data = np.load("evaluation_scores/trained_on_strong.npz")
best_case_original = np.load("evaluation_scores/best_case_original.npz")
fig, axs = pyplot.subplots(
nrows=1,
ncols=3,
sharey="row",
sharex="row",
figsize=[3 * 6.4, 1 * 6.4]
)
# First plot: Original aimbots + GANs without training
ax = axs[0]
ax.grid(alpha=0.2)
# Human scores are the second scores.
for aimbot_class in [1, 2]:
for i, data in enumerate([train_light_data, train_strong_data, best_case_original]):
bona_fide_scores = data["test_scores"][data["test_aimbots"] == 0, 1]
aimbot_scores = data["test_scores"][data["test_aimbots"] == aimbot_class, 1]
fpr, fnr = compute_fpr_fnr(bona_fide_scores, aimbot_scores)
style = "-" if aimbot_class == 1 else "--"
# Special handling: For light aimbot
# we need to flip the known-attack/oracle colors
c = SCENARIO_COLORS[i + 1]
if aimbot_class == 1:
if i == 0:
# Oracle
c = SCENARIO_COLORS[2]
elif i == 1:
# Known attack
c = SCENARIO_COLORS[1]
ax.plot(
scipy.stats.norm.ppf(fpr),
scipy.stats.norm.ppf(fnr),
c=SCENARIO_COLORS[i + 1],
linestyle=style
)
ax.tick_params(**TICK_PARAMS_KWARGS)
# Create bit wonkier legends
lines = []
legends = []
legend_lines = [
{"c": SCENARIO_COLORS[1], "style": "-", "name": "Known-attack"},
{"c": SCENARIO_COLORS[2], "style": "-", "name": "Oracle"},
{"c": SCENARIO_COLORS[3], "style": "-", "name": "Train-on-test"},
# Super pretty way of doing an empty space in legend
# Stackoverflow #28078846
{"c": "w", "style": "-", "name": ""},
{"c": "k", "style": "-", "name": "Light"},
{"c": "k", "style": "--", "name": "Strong"},
]
for legend_line in legend_lines:
line, = ax.plot(fpr, fnr, c=legend_line["c"], linestyle=legend_line["style"])
# Do not show in the plot
line.remove()
lines.append(line)
legends.append(legend_line["name"])
adjust_ax_for_det(ax)
ax.legend(lines, legends, **LEGEND_KWARGS)
ax.set_xlabel("False Positive Rate (%)", **LABEL_KWARGS)
ax.set_ylabel("False Negative Rate (%)", **LABEL_KWARGS)
ax.set_title("Heuristic aimbots", **TITLE_KWARGS)
# Second plot: Group 1 results
ax = axs[1]
ax.grid(alpha=0.2)
for aimbot_class in [10]:
for i, data in enumerate([worst_case, group2_data, group1_data, best_case_data]):
bona_fide_scores = data["test_scores"][data["test_aimbots"] == 0, 1]
aimbot_scores = data["test_scores"][data["test_aimbots"] == aimbot_class, 1]
fpr, fnr = compute_fpr_fnr(bona_fide_scores, aimbot_scores)
ax.plot(
scipy.stats.norm.ppf(fpr),
scipy.stats.norm.ppf(fnr),
c=SCENARIO_COLORS[i]
)
adjust_ax_for_det(ax)
ax.tick_params(**TICK_PARAMS_KWARGS)
ax.legend(["Worst-case", "Known attack", "Oracle", "Train-on-test"], **LEGEND_KWARGS)
ax.set_xlabel("False Positive Rate (%)", **LABEL_KWARGS)
ax.set_title("GAN, Group 1", **TITLE_KWARGS)
# Third plot: Group 2 results
ax = axs[2]
ax.grid(alpha=0.2)
for aimbot_class in [11]:
for i, data in enumerate([worst_case_data, group1_data, group2_data, best_case_data]):
bona_fide_scores = data["test_scores"][data["test_aimbots"] == 0, 1]
aimbot_scores = data["test_scores"][data["test_aimbots"] == aimbot_class, 1]
fpr, fnr = compute_fpr_fnr(bona_fide_scores, aimbot_scores)
ax.plot(
scipy.stats.norm.ppf(fpr),
scipy.stats.norm.ppf(fnr),
c=SCENARIO_COLORS[i]
)
adjust_ax_for_det(ax)
ax.tick_params(**TICK_PARAMS_KWARGS)
ax.legend(["Worst-case", "Known attack", "Oracle", "Train-on-test"], **LEGEND_KWARGS)
ax.set_xlabel("False Positive Rate (%)", **LABEL_KWARGS)
ax.set_title("GAN, Group 2", **TITLE_KWARGS)
fig.tight_layout()
fig.savefig("figures/dets.pdf", bbox_inches="tight", pad_inches=0.0)
def print_player_stats():
"""
Go through recordings and extracted features, and print
out player accuracy/performance (frags) with and without
different aimbots
"""
from feature_extraction import extract_vacnet
# Assumes:
# - Performance recordings are in "performance_recordings/..."
data_files = glob(os.path.join(PERFORMANCE_RECORDINGS_DIR, "*.json"))
no_aimbot_frags = []
light_aimbot_frags = []
strong_aimbot_frags = []
gan_aimbot_frags = []
no_aimbot_accuracy = []
light_aimbot_accuracy = []
strong_aimbot_accuracy = []
gan_aimbot_accuracy = []
no_aimbot_weapon_distribution = []
light_aimbot_weapon_distribution = []
strong_aimbot_weapon_distribution = []
gan_aimbot_weapon_distribution = []
for filename in data_files:
# Skip first two games which were used for warming up
if "episode0" in filename or "episode1" in filename:
continue
data = json.load(open(filename, "rb"))
frags = data["frags"][-1]
aimbot = data["aimbot"]
weapons = data["weapons"]
weapons = np.eye(6)[np.array(weapons).astype(np.int) - 1]
features = extract_vacnet(data, shots_per_feature=1, hor_only=False)
hits = features[:, -1]
accuracy = hits.mean()
if aimbot == None:
no_aimbot_frags.append(frags)
no_aimbot_accuracy.append(accuracy)
no_aimbot_weapon_distribution.append(weapons.mean(axis=0))
elif aimbot == "ease_light":
light_aimbot_frags.append(frags)
light_aimbot_accuracy.append(accuracy)
light_aimbot_weapon_distribution.append(weapons.mean(axis=0))
elif aimbot == "ease_strong":
strong_aimbot_frags.append(frags)
strong_aimbot_accuracy.append(accuracy)
strong_aimbot_weapon_distribution.append(weapons.mean(axis=0))
elif aimbot == "gan_group0":
gan_aimbot_frags.append(frags)
gan_aimbot_accuracy.append(accuracy)
gan_aimbot_weapon_distribution.append(weapons.mean(axis=0))
else:
raise ValueError("Unknown aimbot type {}".format(aimbot))
assert len(no_aimbot_accuracy) == len(light_aimbot_accuracy) == len(strong_aimbot_accuracy) == len(gan_aimbot_accuracy)
print("N={}".format(len(no_aimbot_frags)))
print("no-aimbot frags: {}".format(no_aimbot_frags))
print("light-aimbot game frags: {}".format(light_aimbot_frags))
print("strong-aimbot game frags: {}".format(strong_aimbot_frags))
print("gan-aimbot game frags: {}".format(gan_aimbot_frags))
print("\nMean no-aimbot frags: {:2.4f} +/- {:2.4f}".format(np.mean(no_aimbot_frags), np.std(no_aimbot_frags)))
print("Mean light-aimbot game frags: {:2.4f} +/- {:2.4f}".format(np.mean(light_aimbot_frags), np.std(light_aimbot_frags)))
print("Mean strong-aimbot game frags: {:2.4f} +/- {:2.4f}".format(np.mean(strong_aimbot_frags), np.std(strong_aimbot_frags)))
print("Mean gan-aimbot game frags: {:2.4f} +/- {:2.4f}".format(np.mean(gan_aimbot_frags), np.std(gan_aimbot_frags)))
print("No vs. light-aimbot p-value: {:.4f}".format(ttest_ind(no_aimbot_frags, light_aimbot_frags, equal_var=False, alternative="two-sided")[1]))
print("No vs. strong-aimbot p-value: {:.4f}".format(ttest_ind(no_aimbot_frags, strong_aimbot_frags, equal_var=False, alternative="two-sided")[1]))
print("No vs. gan-aimbot p-value: {:.4f}".format(ttest_ind(no_aimbot_frags, gan_aimbot_frags, equal_var=False, alternative="two-sided")[1]))
print("\nMean no-aimbot accuracy: {:2.4f} +/- {:2.4f}".format(np.mean(no_aimbot_accuracy), np.std(no_aimbot_accuracy)))
print("Mean light-aimbot game accuracy: {:2.4f} +/- {:2.4f}".format(np.mean(light_aimbot_accuracy), np.std(light_aimbot_accuracy)))
print("Mean strong-aimbot game accuracy: {:2.4f} +/- {:2.4f}".format(np.mean(strong_aimbot_accuracy), np.std(strong_aimbot_accuracy)))
print("Mean gan-aimbot game accuracy: {:2.4f} +/- {:2.4f}".format(np.mean(gan_aimbot_accuracy), np.std(gan_aimbot_accuracy)))
print("No vs. light-aimbot p-value: {:.4f}".format(ttest_ind(no_aimbot_accuracy, light_aimbot_accuracy, equal_var=False, alternative="two-sided")[1]))
print("No vs. strong-aimbot p-value: {:.4f}".format(ttest_ind(no_aimbot_accuracy, strong_aimbot_accuracy, equal_var=False, alternative="two-sided")[1]))
print("No vs. gan-aimbot p-value: {:.4f}".format(ttest_ind(no_aimbot_accuracy, gan_aimbot_accuracy, equal_var=False, alternative="two-sided")[1]))
print("\n Fist Pist Shot Mini Rock Plas")
print("Mean no-aimbot weapons: {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f}".format(*np.mean(no_aimbot_weapon_distribution, axis=0).tolist()))
print("Mean light-aimbot weapons: {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f}".format(*np.mean(light_aimbot_weapon_distribution, axis=0).tolist()))
print("Mean strong-aimbot weapons: {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f}".format(*np.mean(strong_aimbot_weapon_distribution, axis=0).tolist()))
print("Mean gan-aimbot weapons: {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f}".format(*np.mean(gan_aimbot_weapon_distribution, axis=0).tolist()))
def player_performance_vs_detection():
"""
Analyse correlation between player's bona fide performance
and detectability with different aimbots (e.g., "will weaker players be easier to detect when using aimbot"?)
"""
from feature_extraction import extract_vacnet
import torch
# Assumes:
# - Performance recordings are in "performance_recordings/..."
TORCH_MODEL_PATH = "gan_classification_results/dnn_group0_model.pkl"
DATA_NORMALIZATION_PATH = "gan_classification_results/feature_normalization.npz"
data_files = glob(os.path.join(PERFORMANCE_RECORDINGS_DIR, "*.json"))
normalization_stats = np.load(DATA_NORMALIZATION_PATH)
model = torch.load(TORCH_MODEL_PATH)
no_aimbot_frags = {}
no_aimbot_accuracy = {}
no_aimbot_detection_scores = {}
light_aimbot_detection_scores = {}
strong_aimbot_detection_scores = {}
gan_aimbot_detection_scores = {}
for filename in data_files:
# Skip first two games which were used for warming up
if "episode0" in filename or "episode1" in filename:
continue
player_id = "_".join(os.path.basename(filename).split("_")[:2])
data = json.load(open(filename, "rb"))
frags = data["frags"][-1]
aimbot = data["aimbot"]
weapons = data["weapons"]
weapons = np.eye(6)[np.array(weapons).astype(np.int) - 1]
features = extract_vacnet(data, shots_per_feature=1, hor_only=False)
hits = features[:, -1]
accuracy = hits.mean()
normalized_features = (features - normalization_stats["means"]) / normalization_stats["stds"]
scores = model(torch.from_numpy(normalized_features).float()).detach().numpy()[:, 1]
mean_score = scores.mean()
if aimbot == None:
no_aimbot_frags[player_id] = frags
no_aimbot_accuracy[player_id] = accuracy
no_aimbot_detection_scores[player_id] = mean_score
elif aimbot == "ease_light":
light_aimbot_detection_scores[player_id] = mean_score
elif aimbot == "ease_strong":
strong_aimbot_detection_scores[player_id] = mean_score
elif aimbot == "gan_group0":
gan_aimbot_detection_scores[player_id] = mean_score
else:
raise ValueError("Unknown aimbot type {}".format(aimbot))
assert len(no_aimbot_detection_scores) == len(light_aimbot_detection_scores) == len(strong_aimbot_detection_scores) == len(gan_aimbot_detection_scores)
player_ids = list(no_aimbot_detection_scores.keys())
no_aimbot_detection_scores = [no_aimbot_detection_scores[player_id] for player_id in player_ids]
light_aimbot_detection_scores = [light_aimbot_detection_scores[player_id] for player_id in player_ids]
strong_aimbot_detection_scores = [strong_aimbot_detection_scores[player_id] for player_id in player_ids]
gan_aimbot_detection_scores = [gan_aimbot_detection_scores[player_id] for player_id in player_ids]
no_aimbot_frags = [no_aimbot_frags[player_id] for player_id in player_ids]
no_aimbot_accuracy = [no_aimbot_accuracy[player_id] for player_id in player_ids]
fig, axs = pyplot.subplots(nrows=5, ncols=2, figsize=(5.0 * 2, 3.2 * 5))
for colum_idx, frag_or_accuracy in enumerate(("Kills", "Accuracy")):
no_aimbot_x_axis = no_aimbot_frags if frag_or_accuracy == "Kills" else no_aimbot_accuracy
axs[0, colum_idx].scatter(no_aimbot_x_axis, no_aimbot_detection_scores, label="No Aimbot", color="blue")
axs[0, colum_idx].scatter(no_aimbot_x_axis, light_aimbot_detection_scores, label="Light Aimbot", color="green")
axs[0, colum_idx].scatter(no_aimbot_x_axis, strong_aimbot_detection_scores, label="Strong Aimbot", color="red")
axs[0, colum_idx].scatter(no_aimbot_x_axis, gan_aimbot_detection_scores, label="GAN Aimbot", color="orange")
axs[0, colum_idx].set_xlabel("{} (without aimbot)".format(frag_or_accuracy))
axs[0, colum_idx].set_ylabel("Detection score\n(Higher = hacking)")
axs[0, colum_idx].legend()
axs[1, colum_idx].scatter(no_aimbot_x_axis, no_aimbot_detection_scores)
axs[1, colum_idx].set_xlabel("{} (without aimbot)".format(frag_or_accuracy))
axs[1, colum_idx].set_ylabel("Detection score\n(higher = hacking)")
axs[1, colum_idx].set_title("No Aimbot (corr = {:.3f})".format(np.corrcoef(no_aimbot_x_axis, no_aimbot_detection_scores)[0, 1]))
axs[2, colum_idx].scatter(no_aimbot_x_axis, light_aimbot_detection_scores)
axs[2, colum_idx].set_xlabel("{} (without aimbot)".format(frag_or_accuracy))
axs[2, colum_idx].set_ylabel("Detection score\n(higher = hacking)")
axs[2, colum_idx].set_title("Light Aimbot (corr = {:.3f})".format(np.corrcoef(no_aimbot_x_axis, light_aimbot_detection_scores)[0, 1]))
axs[3, colum_idx].scatter(no_aimbot_x_axis, strong_aimbot_detection_scores)
axs[3, colum_idx].set_xlabel("{} (without aimbot)".format(frag_or_accuracy))
axs[3, colum_idx].set_ylabel("Detection score\n(higher = hacking)")
axs[3, colum_idx].set_title("Strong Aimbot (corr = {:.3f})".format(np.corrcoef(no_aimbot_x_axis, strong_aimbot_detection_scores)[0, 1]))
axs[4, colum_idx].scatter(no_aimbot_x_axis, gan_aimbot_detection_scores)
axs[4, colum_idx].set_xlabel("{} (without aimbot)".format(frag_or_accuracy))
axs[4, colum_idx].set_ylabel("Detection score\n(higher = hacking)")
axs[4, colum_idx].set_title("GAN Aimbot (corr = {:.3f})".format(np.corrcoef(no_aimbot_x_axis, gan_aimbot_detection_scores)[0, 1]))
pyplot.tight_layout()
fig.savefig("figures/player_performance_vs_detection.png", dpi=200)
def multi_vector_classification():
"""
Analysis of doing classification with multiple data vectors
"""
from classification import get_player_id
import torch
VECTOR_AMOUNTS = list(range(1, 81, 1))
N_REPEATS = 200
LINE_NAMES = [
"Light",
"Strong",
"GAN"
]
AIMBOT_CLASS = [
1,
2,
10
]
TORCH_MODEL_PATHS = [
"gan_classification_results/dnn_aimbot1_model.pkl",
"gan_classification_results/dnn_aimbot2_model.pkl",
"gan_classification_results/dnn_group0_model.pkl"
]
DATA_NORMALIZATION_PATH = "gan_classification_results/feature_normalization.npz"
TRAIN_TEST_SPLIT_FILE = "gan_classification_results/train_test_split.pkl"
normalization_stats = np.load(DATA_NORMALIZATION_PATH)
testing_ids = None
with open(TRAIN_TEST_SPLIT_FILE, "rb") as f:
split_data = pickle.load(f)
testing_ids = split_data["testing_ids"]
# Line names -> {"bonafide": bonafide_scores, "hacking":aimbot_scores}
line_scores = {}
for line_name, aimbot_class, torch_model_path in zip(LINE_NAMES, AIMBOT_CLASS, TORCH_MODEL_PATHS):
model = torch.load(torch_model_path)
feature_files = glob(os.path.join("gan_classification_data", "*"))
bonafide_player_scores = []
hacking_player_scores = []
for feature_file in feature_files:
player_id = get_player_id(feature_file)
if player_id not in testing_ids:
continue
data = np.load(feature_file)
# Aimbot is same over all samples
aimbot_type = int(data["aimbot_class"][0])
features = data["features"]
if aimbot_type not in [0, aimbot_class]:
continue
normalized_features = (features - normalization_stats["means"]) / normalization_stats["stds"]
scores = model(torch.from_numpy(normalized_features).float()).detach().numpy()[:, 1]
if aimbot_type == 0:
bonafide_player_scores.append(scores.tolist())
else:
hacking_player_scores.append(scores.tolist())
line_scores[line_name] = {"bonafide": bonafide_player_scores, "hacking": hacking_player_scores}
# Now, for each "VECTOR_AMOUNTS" (number of points per player)
# we repeat N_REPEATS times
# we take vector_amount points per player by sampling, average scores and try to do classifying
line_eers = dict((name, []) for name in LINE_NAMES)
line_stds = dict((name, []) for name in LINE_NAMES)
for n_vectors in VECTOR_AMOUNTS:
for line_name in LINE_NAMES:
bonafide_scores = line_scores[line_name]["bonafide"]
hacking_scores = line_scores[line_name]["hacking"]
eers = []
for _ in range(N_REPEATS):
average_bonafide_scores = [np.mean(random.sample(scores, n_vectors)) for scores in bonafide_scores]
average_hacking_scores = [np.mean(random.sample(scores, n_vectors)) for scores in hacking_scores]
mind_dcf, eer = compute_mindcf_eer(np.array(average_bonafide_scores), np.array(average_hacking_scores), 0.5)
eers.append(eer * 100)
line_eers[line_name].append(np.mean(eers))
line_stds[line_name].append(np.std(eers))
fig = pyplot.figure(figsize=[6.4 * 0.9, 4.8 * 0.55])
ax = pyplot.gca()
for line_name in LINE_NAMES:
eers = np.array(line_eers[line_name])
stds = np.array(line_stds[line_name])
ax.plot(VECTOR_AMOUNTS, eers, label=line_name)
ax.fill_between(VECTOR_AMOUNTS, np.clip(eers - stds, 0, None), eers + stds, alpha=0.2)
ax.set_ylim(-2, 22)
ax.grid(alpha=0.2)
ax.legend(fontsize="large")
ax.set_xlabel("Number of features per game", fontsize="x-large")
ax.set_ylabel("Equal error rate (%)", fontsize="x-large")
ax.tick_params(axis='both', which='both', labelsize="large")
pyplot.tight_layout()
fig.savefig("figures/multi_vector_classification.pdf", bbox_inches="tight", pad_inches=0.0)
def plot_mouse_analysis():
"""
Analyze mouse movement of bona fide and hacking players
"""
import matplotlib.colors as mcolors
import scipy.stats
AXIS_RANGE = 5
# Load data
recordings = glob(os.path.join(RECORDINGS_DIR, "*"))
gan_recordings = glob(os.path.join(GAN_RECORDINGS_DIR, "*"))
bona_fide_mouse_movement = []
heuristic_aimbot_mouse_movement = []
gan_aimbot_mouse_movement = []
for filename in (recordings + gan_recordings):
data = json.load(open(filename, "rb"))
actions = data["actions"]
# Take yaw and pitch
mouse_movements = np.array([
(a[AIMANGLE_DELTA_YAW_IDX], a[AIMANGLE_DELTA_PITCH_IDX]) for a in actions
])
if "episode0" in filename or "episode1" in filename:
# Bona fide gameplay
bona_fide_mouse_movement.append(mouse_movements)
else:
if filename in recordings:
# Heuristic aimbot
heuristic_aimbot_mouse_movement.append(mouse_movements)
else:
gan_aimbot_mouse_movement.append(mouse_movements)
bona_fide_individual_data = bona_fide_mouse_movement
heuristic_aimbot_individual_data = heuristic_aimbot_mouse_movement
gan_aimbot_individual_data = gan_aimbot_mouse_movement
bona_fide_mouse_movement = np.concatenate(bona_fide_mouse_movement, axis=0)
heuristic_aimbot_mouse_movement = np.concatenate(heuristic_aimbot_mouse_movement, axis=0)
gan_aimbot_mouse_movement = np.concatenate(gan_aimbot_mouse_movement, axis=0)
# Plot and print out some results
figure, axs = pyplot.subplots(
nrows=1,
ncols=3,
sharey="all",
figsize=[4.8 * 3, 4.8]
)
# Put data and names in lists we will index in loop
datas = [
bona_fide_mouse_movement,
heuristic_aimbot_mouse_movement,
gan_aimbot_mouse_movement
]
individual_datas = [
bona_fide_individual_data,
heuristic_aimbot_individual_data,
gan_aimbot_individual_data
]
titles = [
"Bona fide",
"Heuristic aimbot",
"GAN aimbot"
]
for i in range(3):
data = datas[i]
individual_data = individual_datas[i]
title = titles[i]
ax = axs[i]
yaws = data[:, 0]
pitches = data[:, 1]
# Print out some basic stats
print("Statistics for {}".format(title))
print("\tYaw {:2.4f} +/- {:2.4f}".format(yaws.mean(), yaws.std()))
print("\tPitch {:2.4f} +/- {:2.4f}".format(pitches.mean(), pitches.std()))
print("\t|Yaw| {:2.4f} +/- {:2.4f}".format(np.abs(yaws).mean(), np.abs(yaws).std()))
print("\t|Pitch| {:2.4f} +/- {:2.4f}".format(np.abs(pitches).mean(), np.abs(pitches).std()))
print("\tCorr + p {:.5f} ({:.5f})".format(*scipy.stats.pearsonr(np.abs(yaws), np.abs(pitches))))
yaw_diff_corr = np.mean([scipy.stats.pearsonr(x[:-1, 0], x[1:, 0])[0] for x in individual_data])
pitch_diff_corr = np.mean([scipy.stats.pearsonr(x[:-1, 1], x[1:, 1])[0] for x in individual_data])
print("\tStep Corr {:.5f} {:.5f}".format(yaw_diff_corr, pitch_diff_corr))
print("\tStep Corr avg. {:.5f}".format((yaw_diff_corr + pitch_diff_corr) / 2))
# Remove zero-movements from the plot
zeros = (yaws == 0) & (pitches == 0)
yaws = yaws[~zeros]
pitches = pitches[~zeros]
ax.hist2d(
yaws,
pitches,
bins=50,
range=((-AXIS_RANGE, AXIS_RANGE), (-AXIS_RANGE, AXIS_RANGE)),
norm=mcolors.PowerNorm(0.5),
density=True
)
ax.set_title(title)
pyplot.tight_layout()
figure.savefig("figures/mouse_dist.png", dpi=200)
def plot_trajectories():
"""
Plot bunch of example trajectories from each aimbot category.
"""
EXAMPLES_PER_CATEGORY = 10
# Load data
recordings = glob(os.path.join(FEATURES_DIR, "*"))
gan_recordings = glob(os.path.join(GAN_FEATURES_DIR, "*"))
bona_fide_features = []
heuristic_aimbot_features = []
gan_aimbot_features = []
for filename in (recordings + gan_recordings):
data = np.load(filename)
features = data["features"]
if "episode0" in filename or "episode1" in filename:
# Bona fide gameplay
bona_fide_features.append(features)
elif "episode3" in filename and filename in recordings:
# Add strong aimbots to heuristic aimbots
heuristic_aimbot_features.append(features)
elif "episode2" in filename and filename in recordings:
# Skip light aimbots
pass
else:
# Recording is from gan_aimbot
gan_aimbot_features.append(features)
bona_fide_features = np.concatenate(bona_fide_features, axis=0)
heuristic_aimbot_features = np.concatenate(heuristic_aimbot_features, axis=0)
gan_aimbot_features = np.concatenate(gan_aimbot_features, axis=0)
figure, axs = pyplot.subplots(
nrows=3,
ncols=EXAMPLES_PER_CATEGORY,
figsize=[4.8 * (EXAMPLES_PER_CATEGORY / 3), 4.8],
sharex="none",
sharey="none"
)
titles = [
"Bona fide",
"Strong\naimbot",
"GAN\naimbot"
]
datas = [
bona_fide_features,
heuristic_aimbot_features,
gan_aimbot_features
]
for type_i in range(3):
data = datas[type_i]
for example_i in range(EXAMPLES_PER_CATEGORY):
ax = axs[type_i, example_i]
# Pick random feature
random_pick = data[random.randint(0, len(data) - 1)]
# Turn the feature vector back into trajectory.
# Assuming VAC-net-like features with a ton of hardcoding
trajectory = np.array([random_pick[:25], random_pick[25:50]]).T
trajectory = np.cumsum(trajectory, axis=0)
# Center around the point where we shot
trajectory -= trajectory[16]
# Plot
ax.plot(trajectory[:, 0], trajectory[:, 1], alpha=0.5)
colors = ["g"] + (["b"] * 15) + ["m"] + (["b"] * 7) + ["r"]
sizes = [50] + ([7] * 15) + [50] + ([7] * 7) + [50]
ax.axis("equal")
ax.set_xticks([])
ax.set_yticks([])
ax.scatter(trajectory[:, 0], trajectory[:, 1], s=sizes, c=colors)
# Draw again but only important bits to overwrite over blues
sizes = [50] + ([0] * 15) + [50] + ([0] * 7) + [50]
ax.scatter(trajectory[:, 0], trajectory[:, 1], s=sizes, c=colors)
if example_i == 0:
# Add titles
ax.set_ylabel(titles[type_i], fontsize=20)
pyplot.tight_layout()
pyplot.subplots_adjust(wspace=0.03)
figure.savefig("figures/mouse_trajectories.pdf", bbox_inches="tight", pad_inches=0.0)
def plot_human_grading():
"""
Plot the opinion-scores of the recordings being hackers.
"""
ground_truth_data = json.load(open(os.path.join(HUMAN_GRADING_DIR, "ground_truth.json")))
ground_truth_aimbots = [x["aimbot-name"] for x in ground_truth_data]
ground_truth_aimbots = [x if x != "none" else None for x in ground_truth_aimbots]
aimbot_file_names_transposed = dict((v, k) for k, v in AIMBOT_FILE_NAMES.items())
ground_truth_aimbot_labels = [aimbot_file_names_transposed[x] for x in ground_truth_aimbots]
ground_truth_aimbot_labels = np.array(ground_truth_aimbot_labels)
# Load answers.
# Assume answers in same order as the ground-truth items.
# Also offset results to [0, 2].
experienced_judge_answers = []
fps_gamer_answers = []
for filepath in glob(os.path.join(HUMAN_GRADING_DIR, "answers", "experienced_judges", "*")):
experienced_judge_answers.append(np.loadtxt(filepath)[:, 1] - 1)
for filepath in glob(os.path.join(HUMAN_GRADING_DIR, "answers", "fps_gamers", "*")):
fps_gamer_answers.append(np.loadtxt(filepath)[:, 1] - 1)
# Average/std of the grading
experienced_judge_means = []
experienced_judge_stds = []
fps_gamer_means = []
fps_gamer_stds = []
aimbot_names = [
"None",
"GAN",
"Light",
"Strong",
]
aimbot_labels = [
aimbot_file_names_transposed[None],
aimbot_file_names_transposed["gan_group0"],
aimbot_file_names_transposed["ease_light"],
aimbot_file_names_transposed["ease_strong"],
]
# Matrix of percentages (aimbot_type, answer).
# Hard-coded three answers
experienced_judge_grading_ratios = np.zeros((len(aimbot_labels), 3))
fps_gamer_grading_ratios = np.zeros((len(aimbot_labels), 3))
# Get mean answers per aimbot.
# We might want to change this to showing proportions...
for aimbot_i, aimbot_label in enumerate(aimbot_labels):
# Mask for the answers for this specific aimbot
mask = ground_truth_aimbot_labels == aimbot_label
experienced_judge_label_answers = np.concatenate([
x[mask] for x in experienced_judge_answers
])
fps_gamer_label_answers = np.concatenate([
x[mask] for x in fps_gamer_answers
])
experienced_judge_means.append(experienced_judge_label_answers.mean())
experienced_judge_stds.append(experienced_judge_label_answers.std())
fps_gamer_means.append(fps_gamer_label_answers.mean())
fps_gamer_stds.append(fps_gamer_label_answers.std())
# Also store ratio of different gradings
for grade_i, grade in enumerate([0, 1, 2]):
experienced_judge_grading_ratios[aimbot_i, grade_i] = np.mean(
experienced_judge_label_answers == grade
)
fps_gamer_grading_ratios[aimbot_i, grade_i] = np.mean(
fps_gamer_label_answers == grade
)
print("Experienced judge ratios (y = grade, y = aimbot)")
print(experienced_judge_grading_ratios.T * 100)
print("\nFPS gamer ratios")
print(fps_gamer_grading_ratios.T * 100)
# Plot results
# Taking guidance from matplotlib tutorial
# https://matplotlib.org/3.1.1/gallery/lines_bars_and_markers/barchart.html#sphx-glr-gallery-lines-bars-and-markers-barchart-py
fig = pyplot.figure(figsize=[6.4 * 1.2, 4.8 * 1.2])
x_range = np.arange(len(aimbot_names))
width = 0.35
pyplot.bar(
x_range - width / 2,
experienced_judge_means,
width,
yerr=experienced_judge_stds,
label="Experienced\njudges"
)
pyplot.bar(
x_range + width / 2,
fps_gamer_means,
width,
yerr=fps_gamer_stds,
label="FPS players"
)
ax = pyplot.gca()
ax.set_yticks([0, 1, 2])
ax.set_yticklabels(("Not\nSuspicious", "Suspicious", "Cheating"))
ax.set_xticks(x_range)
ax.set_xticklabels(aimbot_names)
ax.tick_params(**TICK_PARAMS_KWARGS)
pyplot.legend(loc="upper left", **LEGEND_KWARGS)
pyplot.grid(axis="y", alpha=0.2)
pyplot.tight_layout()
pyplot.savefig("figures/human_grading.pdf")
def print_dataset_statistics():
"""
Print out statistics of our datasets (how many participants, how much data,
how many features etc etc).
NOTE: This assumes that we have ran all classification etc. code to produce
train-test splits and whatnot.
"""
from classification import get_player_id
# This file exists after running GAN-classification stuff
TRAIN_TEST_SPLIT_FILE = "gan_classification_results/train_test_split.pkl"
HEURISTIC_FEATURES_DIR = "features"
GAN_FEATURES_DIR = "gan_features"
training_ids = None
testing_ids = None
with open(TRAIN_TEST_SPLIT_FILE, "rb") as f:
split_data = pickle.load(f)
training_ids = split_data["training_ids"]
testing_ids = split_data["testing_ids"]
print("Total number of IDs: {} for training, {} for testing".format(len(training_ids), len(testing_ids)))
data_collections = ["heuristic", "gan"]
data_feature_dirs = [HEURISTIC_FEATURES_DIR, GAN_FEATURES_DIR]
for data_collection, data_feature_dir in zip (data_collections, data_feature_dirs):
print("Results for collection '{}'".format(data_collection))
feature_files = glob(os.path.join(data_feature_dir, "*"))
train_feature_sizes = []
test_feature_sizes = []
train_aimbot_feature_sizes = {}
test_aimbot_feature_sizes = {}
train_participants = set()
test_participants = set()
for feature_file in feature_files:
player_id = get_player_id(feature_file)
data = np.load(feature_file)
num_features = len(data["features"])
# Aimbot is same over all samples
aimbot_type = data["aimbot_class"][0]
if player_id in training_ids:
# Sanity check
if player_id in testing_ids:
raise RuntimeError("A player id exists both in testing and training set!")
train_feature_sizes.append(num_features)
train_participants.add(player_id)
train_aimbot_feature_sizes[aimbot_type] = train_aimbot_feature_sizes.get(aimbot_type, []) + [num_features]
elif player_id in testing_ids:
test_feature_sizes.append(num_features)
test_participants.add(player_id)