-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_util.py
107 lines (87 loc) · 4.29 KB
/
train_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#
# train_util.py
# Different utilities for training data and splitting
#
import os
import pickle
import glob
import random
import math
from argparse import ArgumentParser
import shutil
def split_eval_data(unparsed_args):
"""
Take train_test_split file from classification.py,
split the eval set into different groups and copy
files under a new directory.
Used to create different training sets for GANs.
"""
parser = ArgumentParser("Split recording files of eval-set players into different groups")
parser.add_argument("recording_dir", type=str, help="Directory where recordings reside.")
parser.add_argument("train_eval_split", type=str, help="Path to train_eval split file from classification.py.")
parser.add_argument("output", type=str, help="Directory where different groups are created.")
parser.add_argument("--num-sets", type=int, default=2, help="Number of groups to create.")
parser.add_argument("--num-remove-ids", type=int, default=1, help="Number of ids to remove before split.")
args = parser.parse_args(unparsed_args)
split = pickle.load(open(args.train_eval_split, "rb"))
eval_ids = list(split["testing_ids"])
random.shuffle(eval_ids)
# Remove any ids if we want to do so
eval_ids = eval_ids[:-args.num_remove_ids]
recording_files = glob.glob(os.path.join(args.recording_dir, "*"))
# Split evaluation IDs to groups of --num-sets
items_per_group = len(eval_ids) / args.num_sets
assert int(items_per_group) == items_per_group, "Could not make an even split with {} eval ids".format(len(eval_ids))
items_per_group = int(items_per_group)
random.shuffle(eval_ids)
eval_groups = [eval_ids[i:i + items_per_group] for i in range(0, len(eval_ids), items_per_group)]
# Go over groups, create output directories
# and put recordings there
for i, eval_group in enumerate(eval_groups):
output_dir = os.path.join(args.output, "group{}".format(i))
os.makedirs(output_dir)
for recording_file_path in recording_files:
for eval_id in eval_group:
if eval_id in recording_file_path:
destination_file = os.path.join(output_dir, os.path.basename(recording_file_path))
shutil.copy(recording_file_path, destination_file)
def update_train_test_split_with_gan(unparsed_args):
"""
Take existing train-test split file, and bunch of GAN-aimbot features.
Split the new data into train-test split and append them into the
train-test split file.
"""
parser = ArgumentParser("Update train-test split with GAN-aimbot data")
parser.add_argument("features_dir", type=str, help="Directory where features reside.")
parser.add_argument("train_eval_split", type=str, help="Path to train_eval split file from classification.py.")
parser.add_argument("output", type=str, help="Path where updated train-test split should be stored.")
parser.add_argument("--eval-ratio", type=float, default=0.45, help="Amount of data to keep for evaluation")
args = parser.parse_args(unparsed_args)
data_files = glob.glob(os.path.join(args.features_dir, "*"))
ids = []
for data_file in data_files:
filename_split = os.path.basename(data_file).split("_")
# Timestamp + hardware id
unique_id = filename_split[0] + "_" + filename_split[1]
ids.append(unique_id)
ids = set(ids)
testing_ids = set(random.sample(ids, math.ceil(len(ids) * args.eval_ratio)))
training_ids = ids - testing_ids
if args.train_eval_split != "none":
original_split = pickle.load(open(args.train_eval_split, "rb"))
else:
original_split = {"training_ids": set(), "testing_ids": set()}
original_split["training_ids"].update(training_ids)
original_split["testing_ids"].update(testing_ids)
with open(args.output, "wb") as f:
pickle.dump(original_split, f)
AVAILABLE_OPERATIONS = {
"split-eval-data": split_eval_data,
"update-split": update_train_test_split_with_gan,
}
if __name__ == '__main__':
parser = ArgumentParser("Different utils for training")
parser.add_argument("operation", choices=list(AVAILABLE_OPERATIONS.keys()), help="Operation to run")
args, unparsed_args = parser.parse_known_args()
operation_fn = AVAILABLE_OPERATIONS[args.operation]
operation_fn(unparsed_args)