forked from lkesteloot/turbopascal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMachine.js
703 lines (635 loc) · 24.8 KB
/
Machine.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
// Virtual p-machine (pseudo-machine) for bytecode.
'use strict';
if (typeof define !== 'function') { var define = require('amdefine')(module) };
define(["./inst", "./PascalError", "./utils"], function (inst, PascalError, utils) {
var Machine = function (bytecode, keyboard, ansi) {
this.bytecode = bytecode;
this.keyboard = keyboard;
this.ansi = ansi; // optional
// Time that the program was started, in ms since epoch.
this.startTime = 0;
// Data store. Used for the stack, which grows up from address 0.
this.dstore = new Array(65536);
// Program counter. Points into the istore of the bytecode.
this.pc = 0;
// Stack Pointer. Points into the dstore. The specifications for the
// p-machine say that SP points to the top-most item on the stack (the
// item most recently pushed), but here we point one past that. I'm too
// used to the latter convention and it would cause too many bugs for
// me to switch. Besides, other docs imply that the p-machine used my
// convention anyway, so I can't be sure.
this.sp = 0;
// Mark Pointer. Points into the dstore. Points to the bottom of the
// stack frame.
this.mp = 0;
// New Pointer. Points into the dstore. Points to the bottom of the heap,
// the lowest address within the heap.
this.np = 0;
// Extreme Pointer. Points to the highest stack address used by the
// currently-executing procedure. This is an optimization so that
// we only need to check in one place (when EP is increased) whether
// we've crashed into the New Pointer. We don't use this.
this.ep = 0;
// The state of the machine (STATE_...).
this.state = Machine.STATE_STOPPED;
// Debug callback. Can be called with a string that should be displayed to
// the user.
this.debugCallback = null;
// Finish callback. Called when the program terminates, either by running off
// the end of the program's begin/end block, or by calling halt. The callback
// is passed the number of seconds that the program ran.
this.finishCallback = null;
// Callback that standard output is sent to. This is called once per
// line of output, and the line is the only parameter.
this.outputCallback = null;
// Callback that gets a line of input from the user. It is called with
// a function that will be called with the line of input.
this.inputCallback = null;
// The number of ms that the program is expecting us to delay now.
this.pendingDelay = 0;
// Control object for native functions to manipulate this machine.
var self = this;
this.control = {
// Stop the machine.
stop: function () {
self.stopProgram();
},
// Suspend the machine (stop processing instructions).
suspend: function () {
self.state = Machine.STATE_SUSPENDED;
},
// Resume the machine (un-suspend).
resume: function () {
self.resume();
},
// Wait "ms" milliseconds.
delay: function (ms) {
self.pendingDelay = ms;
},
// Write the line to the output.
writeln: function (line) {
if (self.outputCallback !== null) {
self.outputCallback(line);
}
},
write: function (line) {
if (self.outchCallback !== null) {
self.outchCallback(line);
}
},
// Read a line from the user. The parameter is a function that
// Read a line from the user. The parameter is a function that
// will be called with the line. The machine must first be suspended.
readln: function (callback) {
if (self.inputCallback !== null) {
self.inputCallback(callback);
} else {
callback("no input");
}
},
// Read a value from memory.
readDstore: function (address) {
return self.dstore[address];
},
// Write a value to memory.
writeDstore: function (address, value) {
self.dstore[address] = value;
},
// Push a value onto the stack.
push: function (value) {
self._push(value);
},
// Allocate some memory from the heap.
malloc: function (size) {
return self._malloc(size);
},
// Free some memory from the heap.
free: function (p) {
return self._free(p);
},
// Check whether a key has been pressed.
keyPressed: function () {
if (self.keyboard) {
return self.keyboard.keyPressed();
} else {
return false;
}
},
// Read a key from the keyboard, or 0 for none.
readKey: function () {
if (self.keyboard) {
return self.keyboard.readKey();
} else {
return 0;
}
},
ansi: function() {
return self.ansi
}
};
};
// Various machine states.
Machine.STATE_STOPPED = 0;
Machine.STATE_RUNNING = 1;
Machine.STATE_SUSPENDED = 2;
// Run the bytecode.
Machine.prototype.run = function () {
// Reset the machine.
this._reset();
// Start the machine.
this.startTime = new Date().getTime();
this.resume();
};
// Continue running the program.
Machine.prototype.resume = function () {
// Run the program.
this.state = Machine.STATE_RUNNING;
this._dumpState();
// Define a function that will run a finite number of instructions,
// then temporarily return control to the browser for display update
// and input processing.
var self = this;
var stepAndTimeout = function () {
self.step(100000);
// If we're still running, schedule another brief run.
if (self.state === Machine.STATE_RUNNING) {
var delay = self.pendingDelay;
self.pendingDelay = 0;
setTimeout(stepAndTimeout, delay);
}
};
// Kick it off.
stepAndTimeout();
};
// Step "count" instructions. Does nothing if the program is stopped.
Machine.prototype.step = function (count) {
for (var i = 0; i < count && this.state === Machine.STATE_RUNNING &&
this.pendingDelay === 0; i++) {
this.stepOnce();
}
};
// Step one instruction. The machine *must* be running.
Machine.prototype.stepOnce = function () {
try {
this._executeInstruction();
} catch (e) {
if (e instanceof PascalError) {
console.log(e.getMessage());
}
console.log(e.stack);
console.log(this._getState());
this.stopProgram();
}
this._dumpState();
};
// Set a callback for debugging. The callback is called with a string that should
// be displayed to the user.
Machine.prototype.setDebugCallback = function (debugCallback) {
this.debugCallback = debugCallback;
};
// Set a callback for when the program ends. The callback is called with a number for
// the number of seconds that the program ran.
Machine.prototype.setFinishCallback = function (finishCallback) {
this.finishCallback = finishCallback;
};
// Set a callback for standard output. The callback is called with a string to
// write.
Machine.prototype.setOutputCallback = function (outputCallback) {
this.outputCallback = outputCallback;
};
Machine.prototype.setOutChCallback = function (outputCallback) {
this.outchCallback = outputCallback;
};
// Set a callback for standard input. The callback is called with a function
// that takes the line that was entered.
Machine.prototype.setInputCallback = function (inputCallback) {
this.inputCallback = inputCallback;
};
// Dump the state of the machine to the debug callback.
Machine.prototype._dumpState = function () {
if (this.debugCallback != null) {
this.debugCallback(this._getState());
}
};
// Generate a string which is a human-readable version of the machine state.
Machine.prototype._getState = function () {
// Clip off stack display since it can be very large with arrays.
var maxStack = 20;
// Skip typed constants.
var startStack = this.bytecode.typedConstants.length;
var clipStack = Math.max(startStack, this.sp - maxStack);
var stack = JSON.stringify(this.dstore.slice(clipStack, this.sp));
if (clipStack > startStack) {
// Trim stack.
stack = stack[0] + "...," + stack.slice(1, stack.length);
}
// Clip off heap display since it can be very large with arrays.
var maxHeap = 20;
var heapSize = this.dstore.length - this.np;
var heapDisplay = Math.min(maxHeap, heapSize);
var heap = JSON.stringify(this.dstore.slice(
this.dstore.length - heapDisplay, this.dstore.length));
if (heapDisplay != heapSize) {
// Trim heap.
heap = heap[0] + "...," + heap.slice(1, heap.length);
}
var state = [
"pc = " + utils.rightAlign(this.pc, 4),
utils.leftAlign(inst.disassemble(this.bytecode.istore[this.pc]), 11),
/// "sp = " + utils.rightAlign(this.sp, 3),
"mp = " + utils.rightAlign(this.mp, 3),
"stack = " + utils.leftAlign(stack, 40),
"heap = " + heap
];
return state.join(" ");
}
// Push a value onto the stack.
Machine.prototype._push = function (value) {
// Sanity check.
if (value === null || value === undefined) {
throw new PascalError(null, "can't push " + value);
}
this.dstore[this.sp++] = value;
};
// Pop a value off the stack.
Machine.prototype._pop = function () {
--this.sp;
var value = this.dstore[this.sp];
// Set it to undefined so we can find bugs more easily.
this.dstore[this.sp] = undefined;
return value;
};
// Reset the machines state.
Machine.prototype._reset = function () {
// Copy the typed constants into the dstore.
for (var i = 0; i < this.bytecode.typedConstants.length; i++) {
this.dstore[i] = this.bytecode.typedConstants[i];
}
// The bytecode has a specific start address (the main block of the program).
this.pc = this.bytecode.startAddress;
this.sp = this.bytecode.typedConstants.length;
this.mp = 0;
this.np = this.dstore.length;
this.ep = 0;
this.state = Machine.STATE_STOPPED;
};
// Get the static link off the mark.
Machine.prototype._getStaticLink = function (mp) {
// The static link is the second entry in the mark.
return this.dstore[mp + 1];
};
// Verifies that the data address is valid, meaning that it's in the
// stack or the heap. Throws if not.
Machine.prototype._checkDataAddress = function (address) {
if (address >= this.sp && address < this.np) {
throw new PascalError(null, "invalid data address (" +
this.sp + " <= " + address + " < " + this.np + ")");
}
};
// If the program is running, stop it and called the finish callback.
Machine.prototype.stopProgram = function () {
if (this.state !== Machine.STATE_STOPPED) {
this.state = Machine.STATE_STOPPED;
if (this.finishCallback !== null) {
this.finishCallback((new Date().getTime() - this.startTime)/1000);
}
}
};
// Execute the next instruction.
Machine.prototype._executeInstruction = function () {
// Get this instruction.
var pc = this.pc;
var i = this.bytecode.istore[pc];
// Advance the PC right away. Various instructions can then modify it.
this.pc++;
var opcode = inst.getOpcode(i);
var operand1 = inst.getOperand1(i);
var operand2 = inst.getOperand2(i);
switch (opcode) {
case inst.CUP:
// Call User Procedure. By now SP already points past the mark
// and the parameters. So we set the new MP by backing off all
// those. Opcode1 is the number of parameters passed in.
this.mp = this.sp - operand1 - inst.MARK_SIZE;
// Store the return address.
this.dstore[this.mp + 4] = this.pc;
// Jump to the procedure.
this.pc = operand2;
break;
case inst.CSP:
// Call System Procedure. We look up the index into the Native object
// and call it.
var nativeProcedure = this.bytecode.native.get(operand2);
// Pop parameters.
var parameters = [];
for (var i = 0; i < operand1; i++) {
// They are pushed on the stack first to last, so we
// unshift them (push them on the front) so they end up in
// the right order.
parameters.unshift(this._pop());
}
// Push the control object that the native function can use to
// control this machine.
parameters.unshift(this.control);
// Call the built-in function.
var returnValue = nativeProcedure.fn.apply(null, parameters);
// See if we're still running. The function might have stopped
// or suspended us.
if (this.state === Machine.STATE_RUNNING) {
// Push result if we're a function.
if (!nativeProcedure.returnType.isSimpleType(inst.P)) {
this._push(returnValue);
}
}
break;
case inst.ENT:
// Entry. Set SP or EP to MP + operand2, which is the sum of
// the mark size, the parameters, and all local variables. If
// we're setting SP, then we're making room for local variables
// and preparing the SP to do computation.
var address = this.mp + operand2;
if (operand1 === 0) {
// Clear the local variable area.
for (var i = this.sp; i < address; i++) {
this.dstore[i] = 0;
}
this.sp = address;
} else {
this.ep = address;
}
break;
case inst.MST:
// Follow static links "operand1" times.
var sl = this.mp;
for (var i = 0; i < operand1; i++) {
sl = this._getStaticLink(sl);
}
// Mark Stack.
this._push(0); // RV, set by called function.
this._push(sl); // SL
this._push(this.mp); // DL
this._push(this.ep); // EP
this._push(0); // RA, set by CUP.
break;
case inst.RTN:
// Return.
var oldMp = this.mp;
this.mp = this.dstore[oldMp + 2];
this.ep = this.dstore[oldMp + 3];
this.pc = this.dstore[oldMp + 4];
if (operand1 === inst.P) {
// Procedure, pop off the return value.
this.sp = oldMp;
} else {
// Function, leave the return value on the stack.
this.sp = oldMp + 1;
}
break;
case inst.EQU:
// Equal To.
var op2 = this._pop();
var op1 = this._pop();
this._push(op1 === op2);
break;
case inst.NEQ:
// Not Equal To.
var op2 = this._pop();
var op1 = this._pop();
this._push(op1 !== op2);
break;
case inst.GRT:
// Greater Than.
var op2 = this._pop();
var op1 = this._pop();
this._push(op1 > op2);
break;
case inst.GEQ:
// Greater Than Or Equal To.
var op2 = this._pop();
var op1 = this._pop();
this._push(op1 >= op2);
break;
case inst.LES:
// Less Than.
var op2 = this._pop();
var op1 = this._pop();
this._push(op1 < op2);
break;
case inst.LEQ:
// Less Than Or Equal To.
var op2 = this._pop();
var op1 = this._pop();
this._push(op1 <= op2);
break;
case inst.ADI:
case inst.ADR:
// Add integer/real.
var op2 = this._pop();
var op1 = this._pop();
this._push(op1 + op2);
break;
case inst.SBI:
case inst.SBR:
// Subtract integer/real.
var op2 = this._pop();
var op1 = this._pop();
this._push(op1 - op2);
break;
case inst.NGI:
case inst.NGR:
// Negate.
this._push(-this._pop());
break;
case inst.MPI:
case inst.MPR:
// Multiply integer/real.
var op2 = this._pop();
var op1 = this._pop();
this._push(op1 * op2);
break;
case inst.DVI:
// Divide integer.
var op2 = this._pop();
var op1 = this._pop();
if (op2 === 0) {
throw new PascalError(null, "divide by zero");
}
this._push(utils.trunc(op1 / op2));
break;
case inst.MOD:
// Modulo.
var op2 = this._pop();
var op1 = this._pop();
if (op2 === 0) {
throw new PascalError(null, "modulo by zero");
}
this._push(op1 % op2);
break;
// case inst.ABI:
// case inst.SQI:
case inst.INC:
// Increment.
this._push(this._pop() + 1);
break;
case inst.DEC:
// Decrement.
this._push(this._pop() - 1);
break;
case inst.DVR:
// Divide real.
var op2 = this._pop();
var op1 = this._pop();
if (op2 === 0) {
throw new PascalError(null, "divide by zero");
}
this._push(op1 / op2);
break;
// case inst.ABR:
// case inst.SQR:
case inst.IOR:
// Inclusive OR.
var op2 = this._pop();
var op1 = this._pop();
this._push(op1 || op2);
break;
case inst.AND:
// AND
var op2 = this._pop();
var op1 = this._pop();
this._push(op1 && op2);
break;
// case inst.XOR:
case inst.NOT:
this._push(!this._pop());
break;
// case inst.INN:
// case inst.UNI:
// case inst.INT:
// case inst.DIF:
// case inst.CMP:
// case inst.SGS:
case inst.UJP:
this.pc = operand2;
break;
case inst.XJP:
this.pc = this._pop();
break;
case inst.FJP:
if (!this._pop()) {
this.pc = operand2;
}
break;
case inst.TJP:
if (this._pop()) {
this.pc = operand2;
}
break;
case inst.FLT:
// Cast Integer to Real.
// Nothing to do, we don't distinguish between integers and real.
break;
// case inst.FLO:
// case inst.TRC:
// case inst.RND:
// case inst.CHR:
// case inst.ORD:
case inst.STP:
// Stop.
this.stopProgram();
break;
case inst.LDA:
// Load Address. Pushes the address of a variable.
var address = this._computeAddress(operand1, operand2);
this._push(address);
break;
case inst.LDC:
// Load Constant.
if (operand1 === inst.I || operand1 === inst.R ||
operand1 === inst.S || operand1 === inst.A) {
// Look up the constant in the constant pool.
this._push(this.bytecode.constants[operand2]);
} else if (operand1 === inst.B) {
// Booleans are stored in operand2.
this._push(!!operand2);
} else if (operand1 === inst.C) {
// Characters are stored in operand2.
this._push(operand2);
} else {
throw new PascalError(null, "can't push constant of type " +
inst.typeCodeToName(operand1));
}
break;
case inst.LDI:
// Load Indirect.
var address = this._pop();
this._checkDataAddress(address);
this._push(this.dstore[address]);
break;
case inst.LVA:
case inst.LVB:
case inst.LVC:
case inst.LVI:
case inst.LVR:
// Load Value.
var address = this._computeAddress(operand1, operand2);
this._checkDataAddress(address);
this._push(this.dstore[address]);
break;
// case inst.LVS:
case inst.STI:
// Store Indirect.
var value = this._pop();
var address = this._pop();
this._checkDataAddress(address);
this.dstore[address] = value;
break;
case inst.IXA:
// Indexed Address. a = a + index*stride
var address = this._pop();
var index = this._pop();
address += index*operand2;
this._push(address);
break;
default:
throw new PascalError(null, "don't know how to execute instruction " +
inst.opcodeToName[opcode]);
}
};
// Given a level and an offset, returns the address in the dstore. The level is
// the number of static links to dereference.
Machine.prototype._computeAddress = function (level, offset) {
var mp = this.mp;
// Follow static link "level" times.
for (var i = 0; i < level; i++) {
mp = this._getStaticLink(mp);
}
return mp + offset;
};
// Allocate "size" words on the heap and return the new address. Throws if no
// more heap is available.
Machine.prototype._malloc = function (size) {
// Make room for the object.
this.np -= size;
var address = this.np;
// Blank out new allocation.
for (var i = 0; i < size; i++) {
this.dstore[address + i] = 0;
}
// Store size of allocation one word before the object.
this.np--;
this.dstore[this.np] = size;
return address;
};
// Free the block on the heap pointed to by p.
Machine.prototype._free = function (p) {
// Get the size. We wrote it in the word before p.
var size = this.dstore[p - 1];
if (p === this.np + 1) {
// This block is at the bottom of the heap. Just reclaim the memory.
this.np += size + 1;
} else {
// Internal node. Not handled.
}
};
return Machine;
});