forked from snes9xgit/snes9x
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sa1.cpp
978 lines (800 loc) · 23.4 KB
/
sa1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
/*****************************************************************************\
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
This file is licensed under the Snes9x License.
For further information, consult the LICENSE file in the root directory.
\*****************************************************************************/
#include "snes9x.h"
#include "memmap.h"
uint8 SA1OpenBus;
static void S9xSA1SetBWRAMMemMap (uint8);
static void S9xSetSA1MemMap (uint32, uint8);
static void S9xSA1CharConv2 (void);
static void S9xSA1DMA (void);
static void S9xSA1ReadVariableLengthData (bool8, bool8);
void S9xSA1Init (void)
{
SA1.Cycles = 0;
SA1.PrevCycles = 0;
SA1.Flags = 0;
SA1.WaitingForInterrupt = FALSE;
memset(&Memory.FillRAM[0x2200], 0, 0x200);
Memory.FillRAM[0x2200] = 0x20;
Memory.FillRAM[0x2220] = 0x00;
Memory.FillRAM[0x2221] = 0x01;
Memory.FillRAM[0x2222] = 0x02;
Memory.FillRAM[0x2223] = 0x03;
Memory.FillRAM[0x2228] = 0x0f;
SA1.in_char_dma = FALSE;
SA1.TimerIRQLastState = FALSE;
SA1.HTimerIRQPos = 0;
SA1.VTimerIRQPos = 0;
SA1.HCounter = 0;
SA1.VCounter = 0;
SA1.PrevHCounter = 0;
SA1.arithmetic_op = 0;
SA1.op1 = 0;
SA1.op2 = 0;
SA1.sum = 0;
SA1.overflow = FALSE;
SA1.VirtualBitmapFormat = 4;
SA1.variable_bit_pos = 0;
SA1Registers.PBPC = 0;
SA1Registers.PB = 0;
SA1Registers.PCw = 0;
SA1Registers.D.W = 0;
SA1Registers.DB = 0;
SA1Registers.SH = 1;
SA1Registers.SL = 0xFF;
SA1Registers.XH = 0;
SA1Registers.YH = 0;
SA1Registers.P.W = 0;
SA1.ShiftedPB = 0;
SA1.ShiftedDB = 0;
SA1SetFlags(MemoryFlag | IndexFlag | IRQ | Emulation);
SA1ClearFlags(Decimal);
SA1.MemSpeed = ONE_CYCLE;
SA1.MemSpeedx2 = ONE_CYCLE * 2;
SA1.S9xOpcodes = S9xSA1OpcodesM1X1;
SA1.S9xOpLengths = S9xOpLengthsM1X1;
S9xSA1SetPCBase(SA1Registers.PBPC);
S9xSA1UnpackStatus();
S9xSA1FixCycles();
SA1.BWRAM = Memory.SRAM;
CPU.IRQExternal = FALSE;
}
static void S9xSA1SetBWRAMMemMap (uint8 val)
{
if (val & 0x80)
{
for (int c = 0; c < 0x400; c += 16)
{
SA1.Map[c + 6] = SA1.Map[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2;
SA1.Map[c + 7] = SA1.Map[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2;
SA1.WriteMap[c + 6] = SA1.WriteMap[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2;
SA1.WriteMap[c + 7] = SA1.WriteMap[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2;
}
SA1.BWRAM = Memory.SRAM + (val & 0x7f) * 0x2000 / 4;
}
else
{
for (int c = 0; c < 0x400; c += 16)
{
SA1.Map[c + 6] = SA1.Map[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM;
SA1.Map[c + 7] = SA1.Map[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM;
SA1.WriteMap[c + 6] = SA1.WriteMap[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM;
SA1.WriteMap[c + 7] = SA1.WriteMap[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM;
}
SA1.BWRAM = Memory.SRAM + (val & 0x1f) * 0x2000;
}
}
void S9xSA1PostLoadState (void)
{
SA1.ShiftedPB = (uint32) SA1Registers.PB << 16;
SA1.ShiftedDB = (uint32) SA1Registers.DB << 16;
S9xSA1SetPCBase(SA1Registers.PBPC);
S9xSA1UnpackStatus();
S9xSA1FixCycles();
SA1.VirtualBitmapFormat = (Memory.FillRAM[0x223f] & 0x80) ? 2 : 4;
Memory.BWRAM = Memory.SRAM + (Memory.FillRAM[0x2224] & 0x1f) * 0x2000;
S9xSA1SetBWRAMMemMap(Memory.FillRAM[0x2225]);
S9xSetSA1(Memory.FillRAM[0x2220], 0x2220);
S9xSetSA1(Memory.FillRAM[0x2221], 0x2221);
S9xSetSA1(Memory.FillRAM[0x2222], 0x2222);
S9xSetSA1(Memory.FillRAM[0x2223], 0x2223);
}
static void S9xSetSA1MemMap (uint32 which1, uint8 map)
{
int start = which1 * 0x100 + 0xc00;
int start2 = which1 * 0x200;
if (which1 >= 2)
start2 += 0x400;
for (int c = 0; c < 0x100; c += 16)
{
uint8 *block;
if (Multi.cartType != 5)
block = &Memory.ROM[(map & 7) * 0x100000 + (c << 12)];
else
{
if ((map & 7) < 4)
block = Memory.ROM + Multi.cartOffsetA + ((map & 7) * 0x100000 + (c << 12));
else
block = Memory.ROM + Multi.cartOffsetB + (((map & 7) - 4) * 0x100000 + (c << 12));
}
for (int i = c; i < c + 16; i++)
Memory.Map[start + i] = SA1.Map[start + i] = block;
}
for (int c = 0; c < 0x200; c += 16)
{
// conversion to int is needed here - map is promoted but which1 is not
int32 offset;
uint8 *block;
if (Multi.cartType != 5)
{
offset = (((map & 0x80) ? map : which1) & 7) * 0x100000 + (c << 11) - 0x8000;
block = &Memory.ROM[offset];
}
else
{
if ((map & 7) < 4)
{
offset = (((map & 0x80) ? map : which1) & 7) * 0x100000 + (c << 11) - 0x8000;
block = Memory.ROM + Multi.cartOffsetA + offset;
}
else
{
offset = (((map & 0x80) ? (map - 4) : which1) & 7) * 0x100000 + (c << 11) - 0x8000;
block = Memory.ROM + Multi.cartOffsetB + offset;
}
}
for (int i = c + 8; i < c + 16; i++)
Memory.Map[start2 + i] = SA1.Map[start2 + i] = block;
}
}
uint8 S9xGetSA1 (uint32 address)
{
switch (address)
{
case 0x2300: // S-CPU flag
return ((Memory.FillRAM[0x2209] & 0x5f) | (Memory.FillRAM[0x2300] & 0xa0));
case 0x2301: // SA-1 flag
return ((Memory.FillRAM[0x2200] & 0x0f) | (Memory.FillRAM[0x2301] & 0xf0));
case 0x2302: // H counter (L)
SA1.HTimerIRQPos = SA1.HCounter / ONE_DOT_CYCLE;
SA1.VTimerIRQPos = SA1.VCounter;
return ((uint8) SA1.HTimerIRQPos);
case 0x2303: // H counter (H)
return ((uint8) (SA1.HTimerIRQPos >> 8));
case 0x2304: // V counter (L)
return ((uint8) SA1.VTimerIRQPos);
case 0x2305: // V counter (H)
return ((uint8) (SA1.VTimerIRQPos >> 8));
case 0x2306: // arithmetic result (LLL)
return ((uint8) SA1.sum);
case 0x2307: // arithmetic result (LLH)
return ((uint8) (SA1.sum >> 8));
case 0x2308: // arithmetic result (LHL)
return ((uint8) (SA1.sum >> 16));
case 0x2309: // arithmetic result (LLH)
return ((uint8) (SA1.sum >> 24));
case 0x230a: // arithmetic result (HLL)
return ((uint8) (SA1.sum >> 32));
case 0x230b: // arithmetic overflow
return (SA1.overflow ? 0x80 : 0);
case 0x230c: // variable-length data read port (L)
return (Memory.FillRAM[0x230c]);
case 0x230d: // variable-length data read port (H)
{
uint8 byte = Memory.FillRAM[0x230d];
if (Memory.FillRAM[0x2258] & 0x80)
S9xSA1ReadVariableLengthData(TRUE, FALSE);
return (byte);
}
case 0x230e: // version code register
return (0x23);
default:
break;
}
return (Memory.FillRAM[address]);
}
void S9xSetSA1 (uint8 byte, uint32 address)
{
switch (address)
{
case 0x2200: // SA-1 control
#ifdef DEBUGGER
if (byte & 0x60)
printf("SA-1 sleep\n");
#endif
// SA-1 reset
if (!(byte & 0x80) && (Memory.FillRAM[0x2200] & 0x20))
{
#ifdef DEBUGGER
printf("SA-1 reset\n");
#endif
SA1Registers.PBPC = 0;
SA1Registers.PB = 0;
SA1Registers.PCw = Memory.FillRAM[0x2203] | (Memory.FillRAM[0x2204] << 8);
S9xSA1SetPCBase(SA1Registers.PBPC);
}
// SA-1 IRQ control
if (byte & 0x80)
{
Memory.FillRAM[0x2301] |= 0x80;
if (Memory.FillRAM[0x220a] & 0x80)
Memory.FillRAM[0x220b] &= ~0x80;
}
// SA-1 NMI control
if (byte & 0x10)
{
Memory.FillRAM[0x2301] |= 0x10;
if (Memory.FillRAM[0x220a] & 0x10)
Memory.FillRAM[0x220b] &= ~0x10;
}
break;
case 0x2201: // S-CPU interrupt enable
// S-CPU IRQ enable
if (((byte ^ Memory.FillRAM[0x2201]) & 0x80) && (Memory.FillRAM[0x2300] & byte & 0x80))
{
Memory.FillRAM[0x2202] &= ~0x80;
CPU.IRQExternal = TRUE;
}
// S-CPU CHDMA IRQ enable
if (((byte ^ Memory.FillRAM[0x2201]) & 0x20) && (Memory.FillRAM[0x2300] & byte & 0x20))
{
Memory.FillRAM[0x2202] &= ~0x20;
CPU.IRQExternal = TRUE;
}
break;
case 0x2202: // S-CPU interrupt clear
// S-CPU IRQ clear
if (byte & 0x80)
Memory.FillRAM[0x2300] &= ~0x80;
// S-CPU CHDMA IRQ clear
if (byte & 0x20)
Memory.FillRAM[0x2300] &= ~0x20;
if (!(Memory.FillRAM[0x2300] & 0xa0))
CPU.IRQExternal = FALSE;
break;
case 0x2203: // SA-1 reset vector (L)
case 0x2204: // SA-1 reset vector (H)
case 0x2205: // SA-1 NMI vector (L)
case 0x2206: // SA-1 NMI vector (H)
case 0x2207: // SA-1 IRQ vector (L)
case 0x2208: // SA-1 IRQ vector (H)
break;
case 0x2209: // S-CPU control
// 0x40: S-CPU IRQ overwrite
// 0x20: S-CPU NMI overwrite
// S-CPU IRQ control
if (byte & 0x80)
{
Memory.FillRAM[0x2300] |= 0x80;
if (Memory.FillRAM[0x2201] & 0x80)
{
Memory.FillRAM[0x2202] &= ~0x80;
CPU.IRQExternal = TRUE;
}
}
break;
case 0x220a: // SA-1 interrupt enable
// SA-1 IRQ enable
if (((byte ^ Memory.FillRAM[0x220a]) & 0x80) && (Memory.FillRAM[0x2301] & byte & 0x80))
Memory.FillRAM[0x220b] &= ~0x80;
// SA-1 timer IRQ enable
if (((byte ^ Memory.FillRAM[0x220a]) & 0x40) && (Memory.FillRAM[0x2301] & byte & 0x40))
Memory.FillRAM[0x220b] &= ~0x40;
// SA-1 DMA IRQ enable
if (((byte ^ Memory.FillRAM[0x220a]) & 0x20) && (Memory.FillRAM[0x2301] & byte & 0x20))
Memory.FillRAM[0x220b] &= ~0x20;
// SA-1 NMI enable
if (((byte ^ Memory.FillRAM[0x220a]) & 0x10) && (Memory.FillRAM[0x2301] & byte & 0x10))
Memory.FillRAM[0x220b] &= ~0x10;
break;
case 0x220b: // SA-1 interrupt clear
// SA-1 IRQ clear
if (byte & 0x80)
Memory.FillRAM[0x2301] &= ~0x80;
// SA-1 timer IRQ clear
if (byte & 0x40)
Memory.FillRAM[0x2301] &= ~0x40;
// SA-1 DMA IRQ clear
if (byte & 0x20)
Memory.FillRAM[0x2301] &= ~0x20;
// SA-1 NMI clear
if (byte & 0x10)
Memory.FillRAM[0x2301] &= ~0x10;
break;
case 0x220c: // S-CPU NMI vector (L)
case 0x220d: // S-CPU NMI vector (H)
case 0x220e: // S-CPU IRQ vector (L)
case 0x220f: // S-CPU IRQ vector (H)
break;
case 0x2210: // SA-1 timer control
// 0x80: mode (linear / HV)
// 0x02: V timer enable
// 0x01: H timer enable
#ifdef DEBUGGER
printf("SA-1 timer control write:%02x\n", byte);
#endif
break;
case 0x2211: // SA-1 timer reset
SA1.HCounter = 0;
SA1.VCounter = 0;
break;
case 0x2212: // SA-1 H-timer (L)
SA1.HTimerIRQPos = byte | (Memory.FillRAM[0x2213] << 8);
break;
case 0x2213: // SA-1 H-timer (H)
SA1.HTimerIRQPos = (byte << 8) | Memory.FillRAM[0x2212];
break;
case 0x2214: // SA-1 V-timer (L)
SA1.VTimerIRQPos = byte | (Memory.FillRAM[0x2215] << 8);
break;
case 0x2215: // SA-1 V-timer (H)
SA1.VTimerIRQPos = (byte << 8) | Memory.FillRAM[0x2214];
break;
case 0x2220: // MMC bank C
case 0x2221: // MMC bank D
case 0x2222: // MMC bank E
case 0x2223: // MMC bank F
S9xSetSA1MemMap(address - 0x2220, byte);
break;
case 0x2224: // S-CPU BW-RAM mapping
Memory.BWRAM = Memory.SRAM + (byte & 0x1f) * 0x2000;
break;
case 0x2225: // SA-1 BW-RAM mapping
if (byte != Memory.FillRAM[0x2225])
S9xSA1SetBWRAMMemMap(byte);
break;
case 0x2226: // S-CPU BW-RAM write enable
case 0x2227: // SA-1 BW-RAM write enable
case 0x2228: // BW-RAM write-protected area
case 0x2229: // S-CPU I-RAM write protection
case 0x222a: // SA-1 I-RAM write protection
break;
case 0x2230: // DMA control
// 0x80: enable
// 0x40: priority (DMA / SA-1)
// 0x20: character conversion / normal
// 0x10: BW-RAM -> I-RAM / SA-1 -> I-RAM
// 0x04: destinatin (BW-RAM / I-RAM)
// 0x03: source
break;
case 0x2231: // character conversion DMA parameters
// 0x80: CHDEND (complete / incomplete)
// 0x03: color mode
// (byte >> 2) & 7: virtual VRAM width
if (byte & 0x80)
SA1.in_char_dma = FALSE;
break;
case 0x2232: // DMA source start address (LL)
case 0x2233: // DMA source start address (LH)
case 0x2234: // DMA source start address (HL)
break;
case 0x2235: // DMA destination start address (LL)
break;
case 0x2236: // DMA destination start address (LH)
Memory.FillRAM[0x2236] = byte;
if ((Memory.FillRAM[0x2230] & 0xa4) == 0x80) // Normal DMA to I-RAM
S9xSA1DMA();
else
if ((Memory.FillRAM[0x2230] & 0xb0) == 0xb0) // CC1
{
SA1.in_char_dma = TRUE;
Memory.FillRAM[0x2300] |= 0x20;
if (Memory.FillRAM[0x2201] & 0x20)
{
Memory.FillRAM[0x2202] &= ~0x20;
CPU.IRQExternal = TRUE;
}
}
break;
case 0x2237: // DMA destination start address (HL)
Memory.FillRAM[0x2237] = byte;
if ((Memory.FillRAM[0x2230] & 0xa4) == 0x84) // Normal DMA to BW-RAM
S9xSA1DMA();
break;
case 0x2238: // DMA terminal counter (L)
case 0x2239: // DMA terminal counter (H)
break;
case 0x223f: // BW-RAM bitmap format
SA1.VirtualBitmapFormat = (byte & 0x80) ? 2 : 4;
break;
case 0x2240: // bitmap register 0
case 0x2241: // bitmap register 1
case 0x2242: // bitmap register 2
case 0x2243: // bitmap register 3
case 0x2244: // bitmap register 4
case 0x2245: // bitmap register 5
case 0x2246: // bitmap register 6
case 0x2247: // bitmap register 7
case 0x2248: // bitmap register 8
case 0x2249: // bitmap register 9
case 0x224a: // bitmap register A
case 0x224b: // bitmap register B
case 0x224c: // bitmap register C
case 0x224d: // bitmap register D
case 0x224e: // bitmap register E
break;
case 0x224f: // bitmap register F
Memory.FillRAM[0x224f] = byte;
if ((Memory.FillRAM[0x2230] & 0xb0) == 0xa0) // CC2
{
memmove(&Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000] + SA1.in_char_dma * 16, &Memory.FillRAM[0x2240], 16);
SA1.in_char_dma = (SA1.in_char_dma + 1) & 7;
if ((SA1.in_char_dma & 3) == 0)
S9xSA1CharConv2();
}
break;
case 0x2250: // arithmetic control
if (byte & 2)
SA1.sum = 0;
SA1.arithmetic_op = byte & 3;
break;
case 0x2251: // multiplicand / dividend (L)
SA1.op1 = (SA1.op1 & 0xff00) | byte;
break;
case 0x2252: // multiplicand / dividend (H)
SA1.op1 = (SA1.op1 & 0x00ff) | (byte << 8);
break;
case 0x2253: // multiplier / divisor (L)
SA1.op2 = (SA1.op2 & 0xff00) | byte;
break;
case 0x2254: // multiplier / divisor (H)
SA1.op2 = (SA1.op2 & 0x00ff) | (byte << 8);
switch (SA1.arithmetic_op)
{
case 0: // signed multiplication
SA1.sum = (int16) SA1.op1 * (int16) SA1.op2;
SA1.op2 = 0;
break;
case 1: // unsigned division
if (SA1.op2 == 0)
SA1.sum = 0;
else
{
int16 dividend = (int16) SA1.op1;
uint16 divisor = (uint16) SA1.op2;
uint16 remainder = (dividend >= 0) ? dividend % divisor : (dividend % divisor) + divisor;
uint16 quotient = (dividend - remainder) / divisor;
SA1.sum = (remainder << 16) | quotient;
}
SA1.op1 = 0;
SA1.op2 = 0;
break;
case 2: // cumulative sum
default:
SA1.sum += (int16) SA1.op1 * (int16) SA1.op2;
SA1.overflow = (SA1.sum >= (1ULL << 40));
SA1.sum &= (1ULL << 40) - 1;
SA1.op2 = 0;
break;
}
break;
case 0x2258: // variable bit-field length / auto inc / start
Memory.FillRAM[0x2258] = byte;
S9xSA1ReadVariableLengthData(TRUE, FALSE);
return;
case 0x2259: // variable bit-field start address (LL)
case 0x225a: // variable bit-field start address (LH)
case 0x225b: // variable bit-field start address (HL)
Memory.FillRAM[address] = byte;
// XXX: ???
SA1.variable_bit_pos = 0;
S9xSA1ReadVariableLengthData(FALSE, TRUE);
return;
default:
break;
}
if (address >= 0x2200 && address <= 0x22ff)
Memory.FillRAM[address] = byte;
}
static void S9xSA1CharConv2 (void)
{
uint32 dest = Memory.FillRAM[0x2235] | (Memory.FillRAM[0x2236] << 8);
uint32 offset = (SA1.in_char_dma & 7) ? 0 : 1;
int depth = (Memory.FillRAM[0x2231] & 3) == 0 ? 8 : (Memory.FillRAM[0x2231] & 3) == 1 ? 4 : 2;
int bytes_per_char = 8 * depth;
uint8 *p = &Memory.FillRAM[0x3000] + (dest & 0x7ff) + offset * bytes_per_char;
uint8 *q = &Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000] + offset * 64;
switch (depth)
{
case 2:
for (int l = 0; l < 8; l++, q += 8)
{
for (int b = 0; b < 8; b++)
{
uint8 r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
}
p += 2;
}
break;
case 4:
for (int l = 0; l < 8; l++, q += 8)
{
for (int b = 0; b < 8; b++)
{
uint8 r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
*(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1);
*(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1);
}
p += 2;
}
break;
case 8:
for (int l = 0; l < 8; l++, q += 8)
{
for (int b = 0; b < 8; b++)
{
uint8 r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
*(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1);
*(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1);
*(p + 32) = (*(p + 32) << 1) | ((r >> 4) & 1);
*(p + 33) = (*(p + 33) << 1) | ((r >> 5) & 1);
*(p + 48) = (*(p + 48) << 1) | ((r >> 6) & 1);
*(p + 49) = (*(p + 49) << 1) | ((r >> 7) & 1);
}
p += 2;
}
break;
}
}
static void S9xSA1DMA (void)
{
uint32 src = Memory.FillRAM[0x2232] | (Memory.FillRAM[0x2233] << 8) | (Memory.FillRAM[0x2234] << 16);
uint32 dst = Memory.FillRAM[0x2235] | (Memory.FillRAM[0x2236] << 8) | (Memory.FillRAM[0x2237] << 16);
uint32 len = Memory.FillRAM[0x2238] | (Memory.FillRAM[0x2239] << 8);
uint8 *s, *d;
switch (Memory.FillRAM[0x2230] & 3)
{
case 0: // ROM
s = SA1.Map[((src & 0xffffff) >> MEMMAP_SHIFT)];
if (s >= (uint8 *) CMemory::MAP_LAST)
s += (src & 0xffff);
else
s = Memory.ROM + (src & 0xffff);
break;
case 1: // BW-RAM
src &= Memory.SRAMMask;
len &= Memory.SRAMMask;
s = Memory.SRAM + src;
break;
default:
case 2:
src &= 0x3ff;
len &= 0x3ff;
s = &Memory.FillRAM[0x3000] + src;
break;
}
if (Memory.FillRAM[0x2230] & 4)
{
dst &= Memory.SRAMMask;
len &= Memory.SRAMMask;
d = Memory.SRAM + dst;
}
else
{
dst &= 0x3ff;
len &= 0x3ff;
d = &Memory.FillRAM[0x3000] + dst;
}
memmove(d, s, len);
// SA-1 DMA IRQ control
Memory.FillRAM[0x2301] |= 0x20;
if (Memory.FillRAM[0x220a] & 0x20)
Memory.FillRAM[0x220b] &= ~0x20;
}
static void S9xSA1ReadVariableLengthData (bool8 inc, bool8 no_shift)
{
uint32 addr = Memory.FillRAM[0x2259] | (Memory.FillRAM[0x225a] << 8) | (Memory.FillRAM[0x225b] << 16);
uint8 shift = Memory.FillRAM[0x2258] & 15;
if (no_shift)
shift = 0;
else
if (shift == 0)
shift = 16;
uint8 s = shift + SA1.variable_bit_pos;
if (s >= 16)
{
addr += (s >> 4) << 1;
s &= 15;
}
uint32 data = S9xSA1GetWord(addr) | (S9xSA1GetWord(addr + 2) << 16);
data >>= s;
Memory.FillRAM[0x230c] = (uint8) data;
Memory.FillRAM[0x230d] = (uint8) (data >> 8);
if (inc)
{
SA1.variable_bit_pos = (SA1.variable_bit_pos + shift) & 15;
Memory.FillRAM[0x2259] = (uint8) addr;
Memory.FillRAM[0x225a] = (uint8) (addr >> 8);
Memory.FillRAM[0x225b] = (uint8) (addr >> 16);
}
}
uint8 S9xSA1GetByte (uint32 address)
{
uint8 *GetAddress = SA1.Map[(address & 0xffffff) >> MEMMAP_SHIFT];
if (GetAddress >= (uint8 *)CMemory::MAP_LAST)
{
SA1.Cycles += SA1.MemSpeed;
return (*(GetAddress + (address & 0xffff)));
}
switch ((pint) GetAddress)
{
case CMemory::MAP_PPU:
SA1.Cycles += ONE_CYCLE;
return (S9xGetSA1(address & 0xffff));
case CMemory::MAP_LOROM_SRAM:
case CMemory::MAP_HIROM_SRAM:
case CMemory::MAP_SA1RAM:
SA1.Cycles += ONE_CYCLE * 2;
return (*(Memory.SRAM + (address & 0x3ffff)));
case CMemory::MAP_BWRAM:
SA1.Cycles += ONE_CYCLE * 2;
return (*(SA1.BWRAM + (address & 0x1fff)));
case CMemory::MAP_BWRAM_BITMAP:
SA1.Cycles += ONE_CYCLE * 2;
address -= 0x600000;
if (SA1.VirtualBitmapFormat == 2)
return ((Memory.SRAM[(address >> 2) & 0x3ffff] >> ((address & 3) << 1)) & 3);
else
return ((Memory.SRAM[(address >> 1) & 0x3ffff] >> ((address & 1) << 2)) & 15);
case CMemory::MAP_BWRAM_BITMAP2:
SA1.Cycles += ONE_CYCLE * 2;
address = (address & 0xffff) - 0x6000;
if (SA1.VirtualBitmapFormat == 2)
return ((SA1.BWRAM[(address >> 2) & 0x3ffff] >> ((address & 3) << 1)) & 3);
else
return ((SA1.BWRAM[(address >> 1) & 0x3ffff] >> ((address & 1) << 2)) & 15);
default:
SA1.Cycles += ONE_CYCLE;
return (SA1OpenBus);
}
}
uint16 S9xSA1GetWord (uint32 address, s9xwrap_t w)
{
PC_t a;
SA1OpenBus = S9xSA1GetByte(address);
switch (w)
{
case WRAP_PAGE:
a.xPBPC = address;
a.B.xPCl++;
return (SA1OpenBus | (S9xSA1GetByte(a.xPBPC) << 8));
case WRAP_BANK:
a.xPBPC = address;
a.W.xPC++;
return (SA1OpenBus | (S9xSA1GetByte(a.xPBPC) << 8));
case WRAP_NONE:
default:
return (SA1OpenBus | (S9xSA1GetByte(address + 1) << 8));
}
}
void S9xSA1SetByte (uint8 byte, uint32 address)
{
uint8 *SetAddress = SA1.WriteMap[(address & 0xffffff) >> MEMMAP_SHIFT];
if (SetAddress >= (uint8 *) CMemory::MAP_LAST)
{
*(SetAddress + (address & 0xffff)) = byte;
return;
}
switch ((pint) SetAddress)
{
case CMemory::MAP_PPU:
S9xSetSA1(byte, address & 0xffff);
return;
case CMemory::MAP_LOROM_SRAM:
case CMemory::MAP_HIROM_SRAM:
case CMemory::MAP_SA1RAM:
*(Memory.SRAM + (address & 0x3ffff)) = byte;
return;
case CMemory::MAP_BWRAM:
*(SA1.BWRAM + (address & 0x1fff)) = byte;
return;
case CMemory::MAP_BWRAM_BITMAP:
address -= 0x600000;
if (SA1.VirtualBitmapFormat == 2)
{
uint8 *ptr = &Memory.SRAM[(address >> 2) & 0x3ffff];
*ptr &= ~(3 << ((address & 3) << 1));
*ptr |= (byte & 3) << ((address & 3) << 1);
}
else
{
uint8 *ptr = &Memory.SRAM[(address >> 1) & 0x3ffff];
*ptr &= ~(15 << ((address & 1) << 2));
*ptr |= (byte & 15) << ((address & 1) << 2);
}
return;
case CMemory::MAP_BWRAM_BITMAP2:
address = (address & 0xffff) - 0x6000;
if (SA1.VirtualBitmapFormat == 2)
{
uint8 *ptr = &SA1.BWRAM[(address >> 2) & 0x3ffff];
*ptr &= ~(3 << ((address & 3) << 1));
*ptr |= (byte & 3) << ((address & 3) << 1);
}
else
{
uint8 *ptr = &SA1.BWRAM[(address >> 1) & 0x3ffff];
*ptr &= ~(15 << ((address & 1) << 2));
*ptr |= (byte & 15) << ((address & 1) << 2);
}
return;
default:
return;
}
}
void S9xSA1SetWord (uint16 Word, uint32 address, enum s9xwrap_t w, enum s9xwriteorder_t o)
{
PC_t a;
if (!o)
S9xSA1SetByte((uint8) Word, address);
switch (w)
{
case WRAP_PAGE:
a.xPBPC = address;
a.B.xPCl++;
S9xSA1SetByte(Word >> 8, a.xPBPC);
break;
case WRAP_BANK:
a.xPBPC = address;
a.W.xPC++;
S9xSA1SetByte(Word >> 8, a.xPBPC);
break;
case WRAP_NONE:
default:
S9xSA1SetByte(Word >> 8, address + 1);
break;
}
if (o)
S9xSA1SetByte((uint8) Word, address);
}
void S9xSA1SetPCBase (uint32 address)
{
SA1Registers.PBPC = address & 0xffffff;
SA1.ShiftedPB = address & 0xff0000;
// FIXME
SA1.MemSpeed = ONE_CYCLE;
if ((address & 0xc00000) == 0x400000 || (address & 0x40e000) == 0x6000)
{
SA1.MemSpeed = TWO_CYCLES;
}
SA1.MemSpeedx2 = SA1.MemSpeed << 1;
uint8 *GetAddress = SA1.Map[(address & 0xffffff) >> MEMMAP_SHIFT];
if (GetAddress >= (uint8 *) CMemory::MAP_LAST)
{
SA1.PCBase = GetAddress;
return;
}
switch ((pint) GetAddress)
{
case CMemory::MAP_LOROM_SRAM:
if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK)
SA1.PCBase = NULL;
else
SA1.PCBase = (Memory.SRAM + ((((address & 0xff0000) >> 1) | (address & 0x7fff)) & Memory.SRAMMask)) - (address & 0xffff);
return;
case CMemory::MAP_HIROM_SRAM:
if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK)
SA1.PCBase = NULL;
else
SA1.PCBase = (Memory.SRAM + (((address & 0x7fff) - 0x6000 + ((address & 0xf0000) >> 3)) & Memory.SRAMMask)) - (address & 0xffff);
return;
case CMemory::MAP_BWRAM:
SA1.PCBase = SA1.BWRAM - 0x6000 - (address & 0x8000);
return;
case CMemory::MAP_SA1RAM:
SA1.PCBase = Memory.SRAM;
return;
default:
SA1.PCBase = NULL;
return;
}
}