-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreset_ALGO2.py
114 lines (97 loc) · 5.52 KB
/
reset_ALGO2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
import random
import math
class system1():
def __init__(self, K, T, TaskTypes, t_interval, d_max, d_min, W, i ):
rho = 10 * pow(10, -3)
Omega = 16
self.t_interval = t_interval
self.t_deadline_max = t_interval
self.t_deadline_min = t_interval/2
self.E_harv_max = 0.1* rho * Omega * self.t_interval
self.B_max = 1 * rho * Omega * self.t_interval
self.K = K
self.W=W
f_c = 2.4 * pow(10, 9)
speed_of_light = 3 * pow(10, 8)
lam = speed_of_light / f_c
self.bias = (lam / (4 * np.pi)) ** 2
self.d_max = d_max
self.d_min = d_min
self.PL_min = self.bias * pow(self.d_max, -3)
self.PL_max = self.bias * pow(self.d_min, -3)
self.T =T
self.i = i
self.TaskTypes = TaskTypes
np.random.seed(self.i)
self.initial_channel_PL = self.PL_min + np.random.uniform(0, 1, size=(self.K, 1)) * (self.PL_max - self.PL_min)
self.initial_distances_from_PL = pow(self.initial_channel_PL / self.bias, -(1 / 3))
np.random.seed(self.i)
self.initial_battery = np.random.uniform(0, 1, size=(1, self.K)) * (0.1 * self.B_max)
pass
def create(self):
np.random.seed(self.i)
h = np.zeros((self.K, self.T + 1))
distance = np.zeros((self.K, self.T + 1))
np.random.seed(self.i)
#Rayleigh_normalization=np.ones((self.K, self.T + 1))
Rayleigh_normalization = abs(
(1 / np.sqrt(2)) * (np.random.normal(size=(self.K, self.T + 1)) + np.random.normal(size=(self.K, self.T + 1)) * 1j))
distance[:, 0] = np.transpose(self.initial_distances_from_PL)
for t in range(1, self.T + 1):
currentSensorDistances = (distance[:, t - 1])
np.random.seed(self.i)
random.seed(self.i)
nextSensorDistances = currentSensorDistances + np.transpose(
random.randint(-1, 1) * np.random.uniform(0, 1, self.K) * 0.2776)
nextSensorDistances = np.clip(nextSensorDistances, a_min=self.d_min, a_max=self.d_max)
distance[:, t] = nextSensorDistances
PathLoss = self.bias * np.power(distance, -3)
h = np.multiply(Rayleigh_normalization, np.sqrt(PathLoss))
average_channel_gain = (h.mean(axis=1).mean()) ** 2
avg_SNR_db = 5
avg_SNR_linear = pow(10, avg_SNR_db / 10)
average_channel_coeff_per_sensor = h.mean(axis=1)
C = np.zeros(self.T + 1)
t_sense_distribution_ideal = np.zeros(self.TaskTypes)
t_sense_distribution = np.zeros((self.K, self.TaskTypes, self.T + 1))
for yy in range(1, self.TaskTypes):
t_sense_distribution_ideal[yy] = 2 * yy * pow(10, -3)
np.random.seed(self.i)
t_sense_distribution[:, yy, :] = np.random.exponential(t_sense_distribution_ideal[yy], size=(self.K, self.T + 1))
t_sense_distribution_ideal[0] = t_sense_distribution_ideal[1]
t_sense_distribution[:, 0, :] = t_sense_distribution[:, 1, :]
p_sense_distribution = np.zeros(self.TaskTypes)
for yy in range(1, self.TaskTypes):
p_sense_distribution[yy] = 2 * (yy) * pow(10, -3)
p_sense_distribution[0] = p_sense_distribution[1]
E_sense_distribution = np.zeros((self.K, self.TaskTypes, self.T + 1))
for t in range(0, self.T + 1):
E_sense_distribution[:, :, t] = np.multiply(t_sense_distribution[:, :, t], p_sense_distribution)
throughput_distribution = np.zeros(self.TaskTypes)
for yy in range(1, self.TaskTypes):
throughput_distribution[yy] = 10 * (yy ** 2) * 1024
throughput_distribution[0] = throughput_distribution[1]
initial_battery_state=self.initial_battery
np.random.seed(self.i)
required_sensors_per_task_distribution = np.random.randint(1, self.K+1, size=self.T + 1)
#required_sensors_per_task_distribution=np.ones(self.T+1)
normalized_req_sensors_per_task = required_sensors_per_task_distribution / self.K
task_types_distribution = np.random.randint(0, self.TaskTypes , self.T + 1)
normalized_throughput_distribution = throughput_distribution[task_types_distribution] / max(
throughput_distribution)
normalized_t_sense_distribution = t_sense_distribution_ideal[task_types_distribution] / self.t_interval
np.random.seed(self.i)
task_deadline_distribution = self.t_deadline_min + np.random.uniform(0, 1, self.T + 1) * (self.t_deadline_max - self.t_deadline_min)
#task_deadline_distribution=0.2*np.ones(self.T+1)
for t in range(0, self.T + 1):
if task_types_distribution[t] == 0:
task_deadline_distribution[t] = 0
normalized_deadline_distribution = 1 - (task_deadline_distribution / self.t_interval)
np.random.seed(self.i)
E_harv = np.random.uniform(0, self.E_harv_max, size=(self.K, self.T+1))
throughput_distribution = throughput_distribution.reshape((1, self.TaskTypes))
avg_SNR_db = 5
avg_SNR_linear = pow(10, avg_SNR_db / 10)
average_channel_coeff_per_sensor = h.mean(axis=1)
return h, t_sense_distribution, E_sense_distribution, p_sense_distribution, throughput_distribution, required_sensors_per_task_distribution, E_harv, task_deadline_distribution, task_types_distribution, normalized_req_sensors_per_task, normalized_deadline_distribution, normalized_throughput_distribution, initial_battery_state, t_sense_distribution_ideal, average_channel_coeff_per_sensor, average_channel_gain, avg_SNR_linear