forked from apache/arrow-rs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib.rs
162 lines (158 loc) · 7.4 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! A native Rust implementation of [Apache Arrow](https://arrow.apache.org), a cross-language
//! development platform for in-memory data.
//!
//! ### DataType
//!
//! Every [`Array`](array::Array) in this crate has an associated [`DataType`](datatypes::DataType),
//! that specifies how its data is layed in memory and represented.
//! Thus, a central enum of this crate is [`DataType`](datatypes::DataType), that contains the set of valid
//! DataTypes in the specification. For example, [`DataType::Utf8`](datatypes::DataType::Utf8).
//!
//! ## Array
//!
//! The central trait of this package is the dynamically-typed [`Array`](array::Array) that
//! represents a fixed-sized, immutable, Send + Sync Array of nullable elements. An example of such an array is [`UInt32Array`](array::UInt32Array).
//! One way to think about an arrow [`Array`](array::Array) is a `Arc<[Option<T>; len]>` where T can be anything ranging from an integer to a string, or even
//! another [`Array`](array::Array).
//!
//! [`Arrays`](array::Array) have [`len()`](array::Array::len), [`data_type()`](array::Array::data_type), and the nullability of each of its elements,
//! can be obtained via [`is_null(index)`](array::Array::is_null). To downcast an [`Array`](array::Array) to a specific implementation, you can use
//!
//! ```rust
//! use arrow::array::{Array, UInt32Array};
//! let array = UInt32Array::from(vec![Some(1), None, Some(3)]);
//! assert_eq!(array.len(), 3);
//! assert_eq!(array.value(0), 1);
//! assert_eq!(array.is_null(1), true);
//! ```
//!
//! To make the array dynamically typed, we wrap it in an [`Arc`](std::sync::Arc):
//!
//! ```rust
//! # use std::sync::Arc;
//! use arrow::datatypes::DataType;
//! use arrow::array::{UInt32Array, ArrayRef};
//! # let array = UInt32Array::from(vec![Some(1), None, Some(3)]);
//! let array: ArrayRef = Arc::new(array);
//! assert_eq!(array.len(), 3);
//! // array.value() is not available in the dynamically-typed version
//! assert_eq!(array.is_null(1), true);
//! assert_eq!(array.data_type(), &DataType::UInt32);
//! ```
//!
//! to downcast, use `as_any()`:
//!
//! ```rust
//! # use std::sync::Arc;
//! # use arrow::array::{UInt32Array, ArrayRef};
//! # let array = UInt32Array::from(vec![Some(1), None, Some(3)]);
//! # let array: ArrayRef = Arc::new(array);
//! let array = array.as_any().downcast_ref::<UInt32Array>().unwrap();
//! assert_eq!(array.value(0), 1);
//! ```
//!
//! ## Memory and Buffers
//!
//! Data in [`Array`](array::Array) is stored in [`ArrayData`](array::ArrayData), that in turn
//! is a collection of other [`ArrayData`](array::ArrayData) and [`Buffers`](buffer::Buffer).
//! [`Buffers`](buffer::Buffer) is the central struct that array implementations use keep allocated memory and pointers.
//! The [`MutableBuffer`](buffer::MutableBuffer) is the mutable counter-part of[`Buffer`](buffer::Buffer).
//! These are the lowest abstractions of this crate, and are used throughout the crate to
//! efficiently allocate, write, read and deallocate memory.
//!
//! ## Field, Schema and RecordBatch
//!
//! [`Field`](datatypes::Field) is a struct that contains an array's metadata (datatype and whether its values
//! can be null), and a name. [`Schema`](datatypes::Schema) is a vector of fields with optional metadata.
//! Together, they form the basis of a schematic representation of a group of [`Arrays`](array::Array).
//!
//! In fact, [`RecordBatch`](record_batch::RecordBatch) is a struct with a [`Schema`](datatypes::Schema) and a vector of
//! [`Array`](array::Array)s, all with the same `len`. A record batch is the highest order struct that this crate currently offers
//! and is broadly used to represent a table where each column in an `Array`.
//!
//! ## Compute
//!
//! This crate offers many operations (called kernels) to operate on `Array`s, that you can find at [compute::kernels].
//! It has both vertical and horizontal operations, and some of them have an SIMD implementation.
//!
//! ## Status
//!
//! This crate has most of the implementation of the arrow specification. Specifically, it supports the following types:
//!
//! * All arrow primitive types, such as [`Int32Array`](array::UInt8Array), [`BooleanArray`](array::BooleanArray) and [`Float64Array`](array::Float64Array).
//! * All arrow variable length types, such as [`StringArray`](array::StringArray) and [`BinaryArray`](array::BinaryArray)
//! * All composite types such as [`StructArray`](array::StructArray) and [`ListArray`](array::ListArray)
//! * Dictionary types [`DictionaryArray`](array::DictionaryArray)
//!
//! This crate also implements many common vertical operations:
//! * all mathematical binary operators, such as [`subtract`](compute::kernels::arithmetic::subtract)
//! * all boolean binary operators such as [`equality`](compute::kernels::comparison::eq)
//! * [`cast`](compute::kernels::cast::cast)
//! * [`filter`](compute::kernels::filter::filter)
//! * [`take`](compute::kernels::take::take) and [`limit`](compute::kernels::limit::limit)
//! * [`sort`](compute::kernels::sort::sort)
//! * some string operators such as [`substring`](compute::kernels::substring::substring) and [`length`](compute::kernels::length::length)
//!
//! as well as some horizontal operations, such as
//!
//! * [`min`](compute::kernels::aggregate::min) and [`max`](compute::kernels::aggregate::max)
//! * [`sum`](compute::kernels::aggregate::sum)
//!
//! Finally, this crate implements some readers and writers to different formats:
//!
//! * json: [reader](json::reader::Reader)
//! * csv: [reader](csv::reader::Reader) and [writer](csv::writer::Writer)
//! * ipc: [reader](ipc::reader::StreamReader) and [writer](ipc::writer::FileWriter)
//!
//! The parquet implementation is on a [separate crate](https://crates.io/crates/parquet)
#![cfg_attr(feature = "avx512", feature(stdsimd))]
#![cfg_attr(feature = "avx512", feature(repr_simd))]
#![cfg_attr(feature = "avx512", feature(avx512_target_feature))]
#![allow(dead_code)]
#![allow(non_camel_case_types)]
#![deny(clippy::redundant_clone)]
#![allow(
// introduced to ignore lint errors when upgrading from 2020-04-22 to 2020-11-14
clippy::float_equality_without_abs,
clippy::type_complexity,
// upper_case_acronyms lint was introduced in Rust 1.51.
// It is triggered in the ffi module, and ipc::gen, which we have no control over
clippy::upper_case_acronyms,
clippy::vec_init_then_push
)]
#![allow(bare_trait_objects)]
#![warn(missing_debug_implementations)]
pub mod alloc;
mod arch;
pub mod array;
pub mod bitmap;
pub mod buffer;
mod bytes;
pub mod compute;
pub mod csv;
pub mod datatypes;
pub mod error;
pub mod ffi;
pub mod ipc;
pub mod json;
pub mod record_batch;
pub mod temporal_conversions;
pub mod tensor;
pub mod util;
mod zz_memory_check;