-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_utils.py
165 lines (143 loc) · 6.06 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import torch
import numpy as np
import re
import os
from transformers import BertTokenizer, BertForSequenceClassification
class BertMovie(nn.Module):
def __init__(self, output_dim=46, device="cuda"):
super().__init__()
self.tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
self.bert = BertForSequenceClassification.from_pretrained(
'bert-large-uncased', num_labels=output_dim)
self.device = device
def forward(self, x):
_, raw_text = x
input_ids, attention, segment = self.prepare_data(raw_text)
outputs = self.bert(input_ids, attention_mask=attention, token_type_ids=segment)
return outputs[0]
def prepare_data(self, raw_text):
data = []
for text in raw_text:
text = "[CLS] " + text + " [SEP]"
tokenized_text = self.tokenizer.tokenize(text)
data.append(tokenized_text)
longest = max([len(i) for i in data])
indices = []
attention_masks = []
segment_ids = []
for text in data:
attention_mask = [1] * len(text) + [0] * (longest - len(text))
text = text + ["[PAD]"] * (longest - len(text))
segment_id = [1] * len(text)
text_index = self.tokenizer.convert_tokens_to_ids(text)
indices.append(text_index)
attention_masks.append(attention_mask)
segment_ids.append(segment_id)
return (torch.tensor(indices).to(self.device),
torch.tensor(attention_masks).to(self.device),
torch.tensor(segment_ids).to(self.device))
class BaseModel(nn.Module):
def __init__(self, pretrained_emb=False,
emb_dim=300, output_dim=46, vocab_size=2000):
super().__init__()
if pretrained_emb:
emb_matrix = torch.load("./data/emb_matrix_ft.pt")
self.embedding = nn.Embedding.from_pretrained(emb_matrix,
freeze=False)
else:
self.embedding = nn.Embedding(vocab_size, emb_dim)
self.final_layer = nn.Linear(emb_dim, output_dim)
def forward(self, x):
seq, raw_text = x
emb = self.embedding(seq).sum(dim=0) # sum of word embedding
preds = self.final_layer(emb)
return preds
class GRU(nn.Module):
def __init__(self, ft=True, device="cuda", path='data',
hidden_unit=200, num_layer=1,
emb_dim=300, output_dim=46, vocab_size=2000,
bi=True):
super().__init__()
if ft:
print("use fasttext pretained embedding")
emb_matrix = torch.load(os.path.join(path, "emb_matrix_ft.pt"))
self.embedding = nn.Embedding.from_pretrained(emb_matrix,
freeze=False)
else:
print("use random initialized embedding")
self.embedding = nn.Embedding(vocab_size, emb_dim)
self.gru = nn.GRU(emb_dim, hidden_unit, num_layers=num_layer, bidirectional=bi)
self.hidden_unit = hidden_unit
self.device = device
self.bi = bi
self.num_layer=num_layer
if self.bi:
self.h0_bi = 2
else:
self.h0_bi = 1
self.final_layer1 = nn.Linear(self.h0_bi * hidden_unit, output_dim)
def forward(self, x):
seq, raw_text = x
x_emb, x_ngram = seq
batch_size = len(raw_text)
# emb shape: sequence_length, batch_size, emb_dim
emb = self.embedding(x_emb)
h0 = torch.rand((self.h0_bi*self.num_layer,batch_size,self.hidden_unit),
requires_grad=True)
h0 = (h0 - 0.5)/self.hidden_unit
if self.device == "cuda":
h0 = h0.cuda()
self.gru.flatten_parameters()
output, h = self.gru(emb, h0)
preds = self.final_layer1(output[-1, :, :])
return preds
class BaseModelNGram(nn.Module):
"""add label features"""
def __init__(self, ngram=1, device="cuda", path="data",
hidden_dim=400, output_dim=46):
super().__init__()
input_dim = 0
for i in range(ngram):
input_dim += len(np.load(os.path.join(path, "{}grams.npy".format(i+1))))
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, output_dim)
self.device = device
self.output_dim = output_dim
self.batchnorm1 = nn.BatchNorm1d(hidden_dim)
def forward(self, x):
(x_emb, x_ngram), raw_text = x
hidden = F.relu(self.batchnorm1(self.fc1(x_ngram)))
preds = self.fc3(hidden)
return preds
class MultiLayerMLP(nn.Module):
def __init__(self, pretrained_emb=False, path="data",
emb_dim=300, hidden_dim=100,
output_dim=46, vocab_size=2043,
num_middle_layer=3, p_dropout=0.2):
super().__init__()
if pretrained_emb:
print("use fasttext pretained embedding")
emb_matrix = torch.load(os.path.join(path, "emb_matrix_ft.pt"))
self.embedding = nn.Embedding.from_pretrained(emb_matrix, freeze=False)
else:
self.embedding = nn.Embedding(vocab_size, emb_dim)
self.first_layer = nn.Linear(emb_dim, hidden_dim)
self.middle_layers = []
for _ in range(num_middle_layer):
self.middle_layers.append(nn.Linear(hidden_dim, hidden_dim))
self.middle_layers = nn.ModuleList(self.middle_layers)
self.final_layer = nn.Linear(hidden_dim, output_dim)
self.batchnorm1 = nn.BatchNorm1d(hidden_dim)
self.batchnorm2 = nn.BatchNorm1d(hidden_dim)
def forward(self, seq):
(emb, ngram), extra = seq
emb = self.embedding(emb).sum(dim=0) # sum of word embedding
hidden = F.relu(self.batchnorm1(self.first_layer(emb)))
for i, middle_layer in enumerate(self.middle_layers):
hidden = F.relu(self.batchnorm2(middle_layer(hidden)))
preds = self.final_layer(hidden)
return preds