-
Notifications
You must be signed in to change notification settings - Fork 314
/
Copy pathCBOW.py
90 lines (76 loc) · 3.07 KB
/
CBOW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# [Efficient Estimation of Word Representations in Vector Space](https://arxiv.org/pdf/1301.3781.pdf)
from tensorflow import keras
import tensorflow as tf
from utils import process_w2v_data # this refers to utils.py in my [repo](https://github.com/MorvanZhou/NLP-Tutorials/)
from visual import show_w2v_word_embedding # this refers to visual.py in my [repo](https://github.com/MorvanZhou/NLP-Tutorials/)
corpus = [
# numbers
"5 2 4 8 6 2 3 6 4",
"4 8 5 6 9 5 5 6",
"1 1 5 2 3 3 8",
"3 6 9 6 8 7 4 6 3",
"8 9 9 6 1 4 3 4",
"1 0 2 0 2 1 3 3 3 3 3",
"9 3 3 0 1 4 7 8",
"9 9 8 5 6 7 1 2 3 0 1 0",
# alphabets, expecting that 9 is close to letters
"a t g q e h 9 u f",
"e q y u o i p s",
"q o 9 p l k j o k k o p",
"h g y i u t t a e q",
"i k d q r e 9 e a d",
"o p d g 9 s a f g a",
"i u y g h k l a s w",
"o l u y a o g f s",
"o p i u y g d a s j d l",
"u k i l o 9 l j s",
"y g i s h k j l f r f",
"i o h n 9 9 d 9 f a 9",
]
class CBOW(keras.Model):
def __init__(self, v_dim, emb_dim):
super().__init__()
self.v_dim = v_dim
self.embeddings = keras.layers.Embedding(
input_dim=v_dim, output_dim=emb_dim, # [n_vocab, emb_dim]
embeddings_initializer=keras.initializers.RandomNormal(0., 0.1),
)
# noise-contrastive estimation
self.nce_w = self.add_weight(
name="nce_w", shape=[v_dim, emb_dim],
initializer=keras.initializers.TruncatedNormal(0., 0.1)) # [n_vocab, emb_dim]
self.nce_b = self.add_weight(
name="nce_b", shape=(v_dim,),
initializer=keras.initializers.Constant(0.1)) # [n_vocab, ]
self.opt = keras.optimizers.Adam(0.01)
def call(self, x, training=None, mask=None):
# x.shape = [n, skip_window*2]
o = self.embeddings(x) # [n, skip_window*2, emb_dim]
o = tf.reduce_mean(o, axis=1) # [n, emb_dim]
return o
# negative sampling: take one positive label and num_sampled negative labels to compute the loss
# in order to reduce the computation of full softmax
def loss(self, x, y, training=None):
embedded = self.call(x, training)
return tf.reduce_mean(
tf.nn.nce_loss(
weights=self.nce_w, biases=self.nce_b, labels=tf.expand_dims(y, axis=1),
inputs=embedded, num_sampled=5, num_classes=self.v_dim))
def step(self, x, y):
with tf.GradientTape() as tape:
loss = self.loss(x, y, True)
grads = tape.gradient(loss, self.trainable_variables)
self.opt.apply_gradients(zip(grads, self.trainable_variables))
return loss.numpy()
def train(model, data):
for t in range(2500):
bx, by = data.sample(8)
loss = model.step(bx, by)
if t % 200 == 0:
print("step: {} | loss: {}".format(t, loss))
if __name__ == "__main__":
d = process_w2v_data(corpus, skip_window=2, method="cbow")
m = CBOW(d.num_word, 2)
train(m, d)
# plotting
show_w2v_word_embedding(m, d, "./visual/results/cbow.png")