-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy path__init__.py
398 lines (343 loc) · 17.6 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import logging
import os
import re
from itertools import chain
from pathlib import Path
import cv2
import imutils
import numpy as np
import pandas as pd
import source.funciones as funciones
from source.entities.person import Person
from source.entities.person_frames import PersonMovement
from source.funciones import read_labels_txt
FORMAT = "%(asctime)s - %(levelname)s: %(message)s"
logging.basicConfig(format=FORMAT)
logger = logging.getLogger(__name__)
formatter = logging.Formatter(FORMAT)
logger.setLevel(logging.INFO)
class DataProcessor:
"""Class used to process data to generate training examples. Has the recquired functions
to read a video from a directory and extract the frames. Once a labels file is provided
with the valid frames for each video, the frame groups are made and training data is generated
and written in a file for later usage.
Returns:
DataProcessor:
"""
def __init__(self, model_path=None, input_dim=(257, 257), threshold=0.5, rescale=(1, 1), backbone='resnet',
output_stride=None):
"""Constructor for the DataProcessor class.
Args:
model_path (str, optional): Path for the TFLite Posenet file. If None and by default is
searched in the root/models folder of the repository
input_dim (tuple, optional): Input dimension for the previously specified model. Defaults to (257, 257).
threshold (float, optional): Confidence threshold for considering a body joint valid. Defaults to 0.5.
rescale (tuple, optional): Rescaling factor in the output. Defaults to (1,1).
"""
if model_path is None:
if backbone == 'resnet':
MODEL_PATH = Path(__file__).parents[2].joinpath('models/resnet_stride16/model-stride16.json')
else:
MODEL_PATH = Path(__file__).parents[2].joinpath(
"models/posenet_mobilenet_v1_100_257x257_multi_kpt_stripped.tflite")
else:
MODEL_PATH = model_path
if backbone == 'resnet':
assert output_stride is not None, 'A value for output_stride must be provided when using resnet as backbone'
dimensions = (200, 256)
self.model, graph = funciones.load_model_resnet(str(MODEL_PATH)) # Actually a session.
self.input_details, self.output_details = funciones.get_tensors_graph(graph)
self.prepare_frame = funciones.prepare_frame_resnet
self.input_dim = [(int(x) // output_stride) * output_stride + 1 for x in dimensions]
self.get_model_output = funciones.get_model_output_resnet
else:
self.model, self.input_details, self.output_details = funciones.load_model_mobilenet(str(MODEL_PATH))
self.prepare_frame = funciones.prepare_frame_mobilenet
self.input_dim = input_dim
self.get_model_output = funciones.get_model_output_mobilenet
self.threshold = threshold
self.rescale = rescale
self.output_stride = output_stride
@staticmethod
def process_video(filename, input_path=None, output_path=None, output_shape=(257, 257), fps_reduce=2, angle=0):
"""Process a video from the resources folder and saves all the frames
inside a folder with the name of the video
FILENAME_frame_X.jpg
Args:
filename (str): Name of the video inside resources
output_shape (tuple, optional): Size of the output images. Defaults to (256,256).
fps_reduce (int, optional): Take one image out of #fps_reduce.
Defaults to 2.
angle (int): Angle that the video images should be rotated.
"""
if output_path is None:
OUTPUT_PATH = Path(__file__).parents[2].joinpath("resources/{}".format(filename))
else:
OUTPUT_PATH = Path(output_path).joinpath("/{}".format(filename))
if input_path is None:
INPUT_PATH = Path(__file__).parents[2].joinpath("resources/{}".format(filename + ".mp4"))
else:
INPUT_PATH = Path(output_path).joinpath("/{}".format(filename + ".mp4"))
try:
os.mkdir(OUTPUT_PATH)
except:
os.system("rm -r {}".format(OUTPUT_PATH))
os.mkdir(OUTPUT_PATH)
# Read video
video = cv2.VideoCapture(str(INPUT_PATH))
count = 0
logger.debug("Started reading frames.")
while video.isOpened():
logger.debug(
"Reading frame {}/{} from file {}".format(count + 1, video.get(cv2.CAP_PROP_FRAME_COUNT), filename))
# Frame reading, reshaping and saving
_, frame = video.read()
frame = cv2.resize(frame, output_shape)
# if DataProcessor.check_rotation("./resources/{}".format(filename)) is not None:
frame = imutils.rotate(frame, angle)
if count % fps_reduce == 0:
cv2.imwrite(
str(OUTPUT_PATH.joinpath("{}_frame_{}.jpg".format(filename.split(".")[0], count // fps_reduce))),
frame)
count = count + 1
if cv2.waitKey(10) & 0xFF == ord('q'):
break
if video.get(cv2.CAP_PROP_POS_FRAMES) == video.get(cv2.CAP_PROP_FRAME_COUNT):
# If the number of captured frames is equal to the total number of frames,
break
logger.debug("Stop reading files.")
video.release()
def training_file_writer(self, labels_path=None, output_file=None, append=False, n=5, times_v=10):
"""This function is the main function inside DataProcessor file. It runs the whole pipeline, in this order:
- Gets actions and frame intervals from the labels file
- Processes the frame intervals, keeping only the valid ones.
- Groups the frames in groups of n
- Coordinates are calculated from those groups
- The coordinates are added to the output file in .csv format
Args:
labels_path (str, optional): Absolute path of the labels file. If none is taken from
action-detection/resources.
output_file (str, optional): Absolute path of the output csv file. If none is saved into
action-detection/resources/training_data.csv.
append (bool, optional): If True, the calculated coordinates are ADDED to the file
if it's not empty. Defaults to False.
n (int, optional): Number of frames to obtain coordinates from. Defaults to 5.
times_v (int, optional): Times point speed is introduced into coordinates. Defaults to 10.
Returns:
pandas.DataFrame: DataFrame containing the obtained coordinates and the ones in output_file
if append = True
"""
if labels_path is None:
labels_path = Path(__file__).parents[2].joinpath("resources/{}".format("labels.txt"))
else:
labels_path = Path(labels_path)
if output_file is None:
output_file = Path(__file__).parents[2].joinpath("resources/{}".format("training_data.csv"))
else:
output_file = Path(output_file)
# Obtain the dictionary of coordinates
coordinates_dict = self.get_coordinates(str(labels_path), n=n, times_v=times_v)
try:
if append:
df_initial = pd.read_csv(str(output_file))
df_list = [df_initial]
else:
df_list = []
except:
if append:
logger.warning("Append is set to true but the reading gave an exception")
df_list = []
for video in coordinates_dict:
if len(coordinates_dict[video]) == 0:
continue
else:
array = np.vstack(coordinates_dict[video])
df = pd.DataFrame(array)
action = video.split("_")[0]
df["action"] = [action] * len(coordinates_dict[video])
df_list.append(df)
logger.info(df_list)
cols_model_orig = [int(x) for x in list(df_list[-1].columns) if str(x).isnumeric()]
cols_model_target = [str(x) for x in cols_model_orig if str(x).isnumeric()]
mapper = {}
for orig, target in zip(cols_model_orig, cols_model_target):
mapper[orig] = target
df_list = [df_iter.rename(mapper, axis='columns') for df_iter in df_list]
logger.info("Concatenating {} DataFrames before writing.".format(len(df_list)))
df = pd.concat(df_list, axis=0, ignore_index=True)
df.to_csv(str(output_file), index=False, header=False)
return df
def get_coordinates(self, labels_path=None, n=5, times_v=10):
"""This functions is a wrapper that makes this steps:
- Gets actions and frame intervals from the labels file
- Processes the frame intervals, keeping only the valid ones.
- Groups the frames in groups of n
- Coordinates are calculated from those groups
Args:
labels_path (str, optional): Absolute for the labels file. If none, it is searched inside
action-recognition/resources
n (int, optional): Lenght of the frame list to process. Defaults to 5.
times_v (int, optional): Times speeds of the points is introduced as coordinate. Defaults to 10.
Returns:
dict: Dictionary that contains for each video in the labels file the coordinates after running the
frame selection pipeline.
"""
logger.info("Calculating coordinates from labels_path {}".format(labels_path))
if labels_path is None:
labels_path = Path(__file__).parents[2].joinpath("resources/{}".format("labels.txt"))
else:
labels_path = Path(labels_path)
actions = DataProcessor.find_actions(labels_path)
frame_groups = self.get_frame_groups(actions, labels_path, n)
coordinates_dict = {}
for video in frame_groups:
logger.debug("Calculating coordinates for video {}".format(video))
for group in frame_groups[video]:
if len(group) == 0:
continue
else:
if video not in coordinates_dict:
coordinates_dict[video] = []
persons = [element[1] for element in group]
coordinates = PersonMovement(persons, times_v,
joints_remove=(13, 14, 15, 16),
model='NN').coords.flatten()
logger.info("Tamaño de las coordenadas: {}".format(coordinates.shape))
coordinates_dict[video].append(coordinates)
return coordinates_dict
def process_frame(self, image_path):
"""Receives a frame path and returns the person associated
Args:
image_path (str): String containig the path of an image
Returns:
Person: Person associated to that frame.
"""
logger.debug("Processing frame {}".format(image_path.split("/")[-1]))
frame = cv2.imread(image_path)
frame = self.prepare_frame(frame, self.input_dim)
output_data, offset_data = self.get_model_output(self.model, frame, self.input_details, self.output_details)
return Person(output_data, offset_data, self.rescale, self.threshold, output_stride=self.output_stride)
def process_live_frame(self, frame):
"""Receives a frame path and returns the person associated
Args:
Returns:
Person: Person associated to that frame.
"""
logger.debug("Processing frame passed to the function (live).")
frame = self.prepare_frame(frame, self.input_dim)
output_data, offset_data = self.get_model_output(self.model, frame, self.input_details, self.output_details)
return Person(output_data, offset_data, self.rescale, self.threshold, output_stride=self.output_stride)
def get_frame_groups(self, actions, labels_path, n=5):
"""From a labels path, a list of actions and a number of frames per
training data row gets all posible groups of frames to process.
Args:
labels_path (str): Path to the labels.txt file
actions (list): Actions to process
n (int, optional): Size of the list of people needed. Defaults to 5.
Returns:
[type]: [description]
"""
logger.info("Getting frame groups for labels in {}".format(labels_path))
frame_groups = {}
self.people_dict = {}
labels = read_labels_txt(str(labels_path), actions)
for label in labels:
logger.debug("Getting grame groups for label {}".format(label))
# Groups of frames longer than n
valid_frame_intervals = [group for group in labels[label] if group[1] - group[0] >= n - 1]
# Transform each interval in a list of valid persons
frame_person_list = [self.get_valid_persons(label, interval, n) for interval in valid_frame_intervals]
# Get groups of n contiguous persons
valid_persons_groups = [self.valid_groups(lst, n) for lst in frame_person_list]
filter_nones = [element for element in valid_persons_groups if element is not None]
# Complete dictionary
frame_groups[label] = filter_nones
# There is an undesired extra level in the lists generated. We remove it
frame_groups_definitive = {}
logging.info("Cleaning frame groups.")
for video in frame_groups:
frame_groups_definitive[video] = list(chain.from_iterable(frame_groups[video]))
return frame_groups_definitive
def get_valid_persons(self, fle, interval, n):
logger.debug("Getting valid persons from file {}, interval {}".format(fle, interval))
persons_list = self.frame_interval_to_people_list(fle, interval)
# Now we return all the persons in the interval. Valids will be filtered
# Into consideration the position in the frame.
return persons_list
def frame_interval_to_people_list(self, fle, interval, images_path=None):
"""From an interval [start, end] of frames from video, returns a list
of tuples (index, person(i_Frame)).
Args:
file (str): folder containing frames
interval (list): start and end of the interval
Returns:
list: List of Persons calculated from images
"""
logger.debug("Calculating people list from interval {} in file {}".format(interval, fle))
if images_path is None:
PATH = Path(__file__).parents[2].joinpath("resources/{}".format(fle))
else:
PATH = Path(images_path).joinpath("/{}".format(fle))
return [[i, self.process_frame(str(PATH) + "/{}_frame_{}.jpg".format(fle, i))] \
for i in range(interval[0], interval[1] + 1)]
def valid_groups(self, lst, n):
"""Given a list of persons, returns the valid lists of contiguous persons
(frames)
Args:
n (int): Size of the desired lists of persons
lst (list): List of lists [int, Person]
"""
valid, result, aux = 0, [], []
if lst is not None:
for index, i in enumerate(lst):
# if it's not the first frame --> Infer keypoints
# If is the first frame and the frame is valid
if valid == 0 and i[1].is_valid_first():
# New group
aux.append(i)
valid += 1
# If it's not the first and frames are contiguous
elif valid > 0 and i[0] - aux[valid - 1][0] == 1:
# If this frame does not complete a group then append to aux
if valid < n - 1 and i[1].is_valid_other():
i[1].infer_lc_keypoints(lst[index - 1][1])
# Value is valid
aux.append(i)
valid += 1
# If this frame completes a group append the resutl
elif valid == n - 1 and i[1].is_valid_other():
i[1].infer_lc_keypoints(lst[index - 1][1])
# Group is now complete
aux.append(i)
result.append(aux)
aux = []
valid = 0
# If frames were contiguous, the frame was not valid as other, it becomes first frame if
# valid as first frame
elif i[1].is_valid_first():
aux = [i]
valid = 1
# If the next frame is not valid_other and neither does valid_first, we will start
# from scratch
else:
aux = []
valid = 0
# If frames wew not contiguous and this frame is valid as first, we try that
elif valid > 0 and i[0] - aux[valid - 1][0] != 1 and i[1].is_valid_first():
aux = [i]
valid = 1
# In any other case, we will start from scratch
else:
aux = []
valid = 0
return result
else:
return None
@staticmethod
def find_actions(file):
actions = set()
regex = r"[a-z]+"
for line in open(str(file)):
for match in re.finditer(regex, line):
actions.add(match.group())
return list(actions)