forked from obendidi/Tracking-with-darkflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
31 lines (26 loc) · 1.64 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from darkflow.darkflow.defaults import argHandler #Import the default arguments
import os
from darkflow.darkflow.net.build import TFNet
FLAGS = argHandler()
FLAGS.setDefaults()
FLAGS.demo = "camera" # video file to use, or if camera just put "camera"
FLAGS.model = "darkflow/cfg/yolo.cfg" # tensorflow model
FLAGS.load = "darkflow/bin/yolo.weights" # tensorflow weights
# FLAGS.pbLoad = "tiny-yolo-voc-traffic.pb" # tensorflow model
# FLAGS.metaLoad = "tiny-yolo-voc-traffic.meta" # tensorflow weights
FLAGS.threshold = 0.7 # threshold of decetion confidance (detection if confidance > threshold )
FLAGS.gpu = 0.8 #how much of the GPU to use (between 0 and 1) 0 means use cpu
FLAGS.track = False # wheither to activate tracking or not
FLAGS.trackObj = ['Bicyclist','Pedestrian','Skateboarder','Cart','Car','Bus'] # the object to be tracked
#FLAGS.trackObj = ["person"]
FLAGS.saveVideo = True #whether to save the video or not
FLAGS.BK_MOG = True # activate background substraction using cv2 MOG substraction,
#to help in worst case scenarion when YOLO cannor predict(able to detect mouvement, it's not ideal but well)
# helps only when number of detection < 3, as it is still better than no detection.
FLAGS.tracker = "sort" # wich algorithm to use for tracking deep_sort/sort (NOTE : deep_sort only trained for people detection )
FLAGS.skip = 0 # how many frames to skipp between each detection to speed up the network
FLAGS.csv = False #whether to write csv file or not(only when tracking is set to True)
FLAGS.display = True # display the tracking or not
tfnet = TFNet(FLAGS)
tfnet.camera()
exit('Demo stopped, exit.')