diff --git a/.github/workflows/generate-html.yml b/.github/workflows/generate-html.yml
index 5f50de2..b2c8938 100644
--- a/.github/workflows/generate-html.yml
+++ b/.github/workflows/generate-html.yml
@@ -15,13 +15,12 @@ jobs:
permissions:
contents: write
pull-requests: write
+ issues: write
steps:
- uses: actions/checkout@v3
with:
- ref: ${{ github.event.pull_request.head.ref }}
- repository: ${{ github.event.pull_request.head.repo.full_name }}
- token: ${{ secrets.GITHUB_TOKEN }}
+ ref: main
- name: Set up Python
uses: actions/setup-python@v4
@@ -37,18 +36,40 @@ jobs:
run: |
python src/generate.py awesome_3dgs_papers.yaml index.html
- - name: Commit changes
- if: github.event_name == 'pull_request'
+ - name: Create Update Branch and Commit Changes
run: |
+ # Configure git
git config --local user.email "41898282+github-actions[bot]@users.noreply.github.com"
git config --local user.name "github-actions[bot]"
+
+ # Create or update the branch
+ git checkout -B update-html
+
+ # Stage and commit changes
git add index.html
- git diff --staged --quiet || (git commit -m "Auto-generate index.html" && git push)
+ if git diff --staged --quiet; then
+ echo "No changes to commit"
+ exit 0
+ fi
+
+ # Commit and force push to update-html branch
+ git commit -m "Auto-generate index.html"
+ git push -f origin update-html
- - name: Direct Push to Main
- if: github.event_name == 'push'
+ - name: Create Pull Request
+ env:
+ GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
- git config --local user.email "41898282+github-actions[bot]@users.noreply.github.com"
- git config --local user.name "github-actions[bot]"
- git add index.html
- git diff --staged --quiet || (git commit -m "Auto-generate index.html" && git push)
+ # Check if PR already exists
+ pr_exists=$(gh pr list --head update-html --base main --json number --jq 'length')
+
+ if [ "$pr_exists" = "0" ]; then
+ # Create PR if it doesn't exist
+ gh pr create \
+ --title "Update generated HTML" \
+ --body "This is an automatically maintained PR that keeps the generated HTML in sync with YAML changes." \
+ --base main \
+ --head update-html || echo "Failed to create PR, may already exist"
+ else
+ echo "PR already exists, skipping creation"
+ fi
diff --git a/assets/thumbnails/liang2024wonderland.jpg b/assets/thumbnails/liang2024wonderland.jpg
new file mode 100644
index 0000000..811ae49
Binary files /dev/null and b/assets/thumbnails/liang2024wonderland.jpg differ
diff --git a/awesome_3dgs_papers.yaml b/awesome_3dgs_papers.yaml
index 1f3d623..55bc1f4 100644
--- a/awesome_3dgs_papers.yaml
+++ b/awesome_3dgs_papers.yaml
@@ -859,6 +859,42 @@
- Project
thumbnail: assets/thumbnails/taubner2024cap4d.jpg
publication_date: '2024-12-16T18:58:51+00:00'
+- id: liang2024wonderland
+ title: 'Wonderland: Navigating 3D Scenes from a Single Image'
+ authors: Hanwen Liang, Junli Cao, Vidit Goel, Guocheng Qian, Sergei Korolev, Demetri
+ Terzopoulos, Konstantinos N. Plataniotis, Sergey Tulyakov, Jian Ren
+ year: '2024'
+ abstract: 'This paper addresses a challenging question: How can we efficiently create
+ high-quality, wide-scope 3D scenes from a single arbitrary image? Existing methods
+ face several constraints, such as requiring multi-view data, time-consuming per-scene
+ optimization, low visual quality in backgrounds, and distorted reconstructions
+ in unseen areas. We propose a novel pipeline to overcome these limitations. Specifically,
+ we introduce a large-scale reconstruction model that uses latents from a video
+ diffusion model to predict 3D Gaussian Splattings for the scenes in a feed-forward
+ manner. The video diffusion model is designed to create videos precisely following
+ specified camera trajectories, allowing it to generate compressed video latents
+ that contain multi-view information while maintaining 3D consistency. We train
+ the 3D reconstruction model to operate on the video latent space with a progressive
+ training strategy, enabling the efficient generation of high-quality, wide-scope,
+ and generic 3D scenes. Extensive evaluations across various datasets demonstrate
+ that our model significantly outperforms existing methods for single-view 3D scene
+ generation, particularly with out-of-domain images. For the first time, we demonstrate
+ that a 3D reconstruction model can be effectively built upon the latent space
+ of a diffusion model to realize efficient 3D scene generation.
+
+ '
+ project_page: https://snap-research.github.io/wonderland/
+ paper: https://arxiv.org/pdf/2412.12091v1.pdf
+ code: null
+ video: null
+ tags:
+ - Feed-Forward
+ - Project
+ - Sparse
+ - World Generation
+ thumbnail: assets/thumbnails/liang2024wonderland.jpg
+ publication_date: '2024-12-16T18:58:17+00:00'
+ date_source: arxiv
- id: tang2024gaf
title: 'GAF: Gaussian Avatar Reconstruction from Monocular Videos via Multi-view
Diffusion'