diff --git a/.github/workflows/generate-html.yml b/.github/workflows/generate-html.yml index 5f50de2..b2c8938 100644 --- a/.github/workflows/generate-html.yml +++ b/.github/workflows/generate-html.yml @@ -15,13 +15,12 @@ jobs: permissions: contents: write pull-requests: write + issues: write steps: - uses: actions/checkout@v3 with: - ref: ${{ github.event.pull_request.head.ref }} - repository: ${{ github.event.pull_request.head.repo.full_name }} - token: ${{ secrets.GITHUB_TOKEN }} + ref: main - name: Set up Python uses: actions/setup-python@v4 @@ -37,18 +36,40 @@ jobs: run: | python src/generate.py awesome_3dgs_papers.yaml index.html - - name: Commit changes - if: github.event_name == 'pull_request' + - name: Create Update Branch and Commit Changes run: | + # Configure git git config --local user.email "41898282+github-actions[bot]@users.noreply.github.com" git config --local user.name "github-actions[bot]" + + # Create or update the branch + git checkout -B update-html + + # Stage and commit changes git add index.html - git diff --staged --quiet || (git commit -m "Auto-generate index.html" && git push) + if git diff --staged --quiet; then + echo "No changes to commit" + exit 0 + fi + + # Commit and force push to update-html branch + git commit -m "Auto-generate index.html" + git push -f origin update-html - - name: Direct Push to Main - if: github.event_name == 'push' + - name: Create Pull Request + env: + GH_TOKEN: ${{ secrets.GITHUB_TOKEN }} run: | - git config --local user.email "41898282+github-actions[bot]@users.noreply.github.com" - git config --local user.name "github-actions[bot]" - git add index.html - git diff --staged --quiet || (git commit -m "Auto-generate index.html" && git push) + # Check if PR already exists + pr_exists=$(gh pr list --head update-html --base main --json number --jq 'length') + + if [ "$pr_exists" = "0" ]; then + # Create PR if it doesn't exist + gh pr create \ + --title "Update generated HTML" \ + --body "This is an automatically maintained PR that keeps the generated HTML in sync with YAML changes." \ + --base main \ + --head update-html || echo "Failed to create PR, may already exist" + else + echo "PR already exists, skipping creation" + fi diff --git a/assets/thumbnails/liang2024wonderland.jpg b/assets/thumbnails/liang2024wonderland.jpg new file mode 100644 index 0000000..811ae49 Binary files /dev/null and b/assets/thumbnails/liang2024wonderland.jpg differ diff --git a/awesome_3dgs_papers.yaml b/awesome_3dgs_papers.yaml index 1f3d623..55bc1f4 100644 --- a/awesome_3dgs_papers.yaml +++ b/awesome_3dgs_papers.yaml @@ -859,6 +859,42 @@ - Project thumbnail: assets/thumbnails/taubner2024cap4d.jpg publication_date: '2024-12-16T18:58:51+00:00' +- id: liang2024wonderland + title: 'Wonderland: Navigating 3D Scenes from a Single Image' + authors: Hanwen Liang, Junli Cao, Vidit Goel, Guocheng Qian, Sergei Korolev, Demetri + Terzopoulos, Konstantinos N. Plataniotis, Sergey Tulyakov, Jian Ren + year: '2024' + abstract: 'This paper addresses a challenging question: How can we efficiently create + high-quality, wide-scope 3D scenes from a single arbitrary image? Existing methods + face several constraints, such as requiring multi-view data, time-consuming per-scene + optimization, low visual quality in backgrounds, and distorted reconstructions + in unseen areas. We propose a novel pipeline to overcome these limitations. Specifically, + we introduce a large-scale reconstruction model that uses latents from a video + diffusion model to predict 3D Gaussian Splattings for the scenes in a feed-forward + manner. The video diffusion model is designed to create videos precisely following + specified camera trajectories, allowing it to generate compressed video latents + that contain multi-view information while maintaining 3D consistency. We train + the 3D reconstruction model to operate on the video latent space with a progressive + training strategy, enabling the efficient generation of high-quality, wide-scope, + and generic 3D scenes. Extensive evaluations across various datasets demonstrate + that our model significantly outperforms existing methods for single-view 3D scene + generation, particularly with out-of-domain images. For the first time, we demonstrate + that a 3D reconstruction model can be effectively built upon the latent space + of a diffusion model to realize efficient 3D scene generation. + + ' + project_page: https://snap-research.github.io/wonderland/ + paper: https://arxiv.org/pdf/2412.12091v1.pdf + code: null + video: null + tags: + - Feed-Forward + - Project + - Sparse + - World Generation + thumbnail: assets/thumbnails/liang2024wonderland.jpg + publication_date: '2024-12-16T18:58:17+00:00' + date_source: arxiv - id: tang2024gaf title: 'GAF: Gaussian Avatar Reconstruction from Monocular Videos via Multi-view Diffusion'