-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.c
235 lines (211 loc) · 5.27 KB
/
test.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include "neuron.h"
#include "randtool.h"
#include "mnist_file.h"
// test simple neuron
void test1()
{
double t=1;
NEURON *N;
N = NEURON_New(1,0);
double a[LEN] = {1,2,3};
double *x[LEN];
double w[LEN] = {1,1,1};
double b = 1;
x[0]=&a[0];
x[1]=&a[1];
x[2]=&a[2];
NEURON_Init(N,x,w,3,b,sigmoid,sigmoid_p);
NEURON_Calc(N);
printf("%lf %lf\n",N->z,N->a);
return;
}
// test uniform random generator
void test2()
{
double a[10000];
int i,j,n;
double EX=0;
n=8000;
for (i=0;i<n;i++)
{
a[i]=rand_uniform(-1000,1000);
EX+=a[i];
}
EX/=n;
printf("EX=%lf\n",EX);
int s[10];
memset(s,0,sizeof(s));
for (i=0;i<n;i++)
s[(int)abs(a[i]/50)]++;
for (i=0;i<10;i++)
printf("s[%d]=%d ",i,s[i]);
printf("\n");
return;
}
// test layer
void test3()
{
// LAYER *L0,*L1,*L2,*L3,*LA[10];
// double Input[LEN],Output[LEN];
// int num[]={3,5,3},num0,num_layer;
// int i,j,k;
// int iter_n; // 迭代次数
// GRADIANT *grad;
// num_layer=sizeof(num)/sizeof(int);
// // input layer L0
// num0=num[0];
// for (i=0;i<num0;i++)
// {
// Input[i]=rand_uniform(-5,10);
// Output[i] = rand_uniform(0,15);
// }
// // Input[0]=Input[1]=Input[2]=1;
// // Output[0]=Output[1]=Output[2]=2;
// i=0;
// LA[i] = LAYER_New(i,num[i]);
// LAYER_Init(LA[i],NULL,num[i],NULL,NULL,NULL);
// LAYER_SetInput(LA[i],Input,num0);
// // layer Li
// for (i=1;i<num_layer;i++)
// {
// LA[i]=LAYER_New(i,num[i]);
// LAYER_Init(LA[i],LA[i-1],num[i],NULL,tanh,tanh_p);
// LAYER_Connect(LA[i-1],LA[i]);
// }
// //------finish: initialization------
// Forward(LA[1]);
// ShowLayer(LA[0]);
// iter_n = 10;
// grad = malloc(sizeof(GRADIANT));
// memset(grad,0,sizeof(GRADIANT));
// for (int i = 0; i < iter_n; i++)
// {
// BackPropagation(LA,num_layer,Output,MSE,grad);
// Forward(LA[1]);
// }
// free(grad);
return;
}
double Training_dataset_Accuracy(mnist_dataset_t *dataset, NETWORK *net)
{
double input[LEN];
int result;
double corr = 0, acc;
int j,k;
for (j=0; j<(int)dataset->size; j++)
{
result=dataset->labels[j];
for (k=0;k<MNIST_IMAGE_SIZE;k++)
input[k]=dataset->images[j].pixels[k];
corr+=NETWORK_Calculate_Accuracy(net, input, MNIST_IMAGE_SIZE, result);
}
acc = corr / (double)dataset->size;
return acc;
}
// test load data and test train
#define STEPS 10
#define BATCH_SIZE 64
void test4()
{
const char * train_images_file = "data\\train-images.idx3-ubyte";
const char * train_labels_file = "data\\train-labels.idx1-ubyte";
const char * test_images_file = "data\\t10k-images.idx3-ubyte";
const char * test_labels_file = "data\\t10k-labels.idx1-ubyte";
mnist_dataset_t * train_dataset, * test_dataset, * restruct_dataset;
mnist_dataset_t batch;
double loss, total_loss;
int i, j, k, batches, result, step;
/**
* 95% 784*128*64*10
* 90% 784* 10
* 90% 784*512*512*10
*
* */
NETWORK *net;
double rate = 0.5;
int layer_size[]={28*28, 128, 128, 10},num_l;
double input[LEN];
ADAM_PARA para;
GRADIANT *grad;
int corr;
double acc;
double stop_predict = 1.0;
num_l = sizeof(layer_size)/sizeof(int);
// init network
net = NETWORK_New();
NETWORK_Init(net, layer_size, num_l);
// init gradiant
grad = GRADIANT_New();
ADAM_PARA_Init(¶);
// Read the datasets from the files
train_dataset = mnist_get_dataset(train_images_file, train_labels_file);
test_dataset = mnist_get_dataset(test_images_file, test_labels_file);
// Calculate how many batches (so we know when to wrap around)
batches = train_dataset->size / BATCH_SIZE;
for (step=0; step<STEPS; step++)
{
// Mix the training data
k = train_dataset->size;
for (i=0;i<k;i++)
{
j = rand() % k;
mnist_image_t t1;
uint8_t t2;
t1 = train_dataset->images[i];
t2 = train_dataset->labels[i];
train_dataset->images[i]=train_dataset->images[j];
train_dataset->labels[i]=train_dataset->labels[j];
train_dataset->images[j]=t1;
train_dataset->labels[j]=t2;
}
total_loss = 0;
for (i=0; i<batches; i++)
{
// Initialise a new batch
mnist_batch(train_dataset, &batch, BATCH_SIZE, i % batches);
/* * * * * * * * * * * * * *
* TODO: batch-normalization
* * * * * * * * * * * * * **/
loss = 0;
memset(grad,0,sizeof(GRADIANT));
for (j=0; j<(int)batch.size; j++)
{
result = batch.labels[j];
for (k=0;k<MNIST_IMAGE_SIZE;k++)
input[k]=batch.images[j].pixels[k];
loss += NETWORK_Training_OneStep(net,input, MNIST_IMAGE_SIZE, result, grad);
}
loss/=(double)batch.size;
total_loss+=loss;
NETWORK_Update_Gradiant(net, grad, batch.size, ¶);
}
total_loss = total_loss / (double)batches;
acc = Training_dataset_Accuracy(train_dataset, net);
printf("Step %02d, Loss = %.4lf, accuracy in training set = %.4lf\%\n", step, total_loss, acc*100);
acc = Training_dataset_Accuracy(test_dataset, net);
printf("ACC in test set = %.4lf\%\n", acc*100);
}
free(grad);
// Cleanup
mnist_free_dataset(train_dataset);
mnist_free_dataset(test_dataset);
return;
}
typedef void (*PF)(void);
void TEST()
{
PF T[]={
// test1,
// test2,
// test3,
test4,
};
int i,n=sizeof(T)/sizeof(PF);
for (i=0;i<n;i++)
T[i]();
return;
}