forked from drsudhanshupanda/Software
-
Notifications
You must be signed in to change notification settings - Fork 0
/
UnsupIsoCluster.py
179 lines (161 loc) · 6.42 KB
/
UnsupIsoCluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import arcpy
import os
import math
import multiprocessing
import time
from arcpy import env
from arcpy.sa import *
############################ Configuration: ##############################
# Specify scratch workspace
scratchws = r"c:\temp\bldgshadowtest" # MUST be a folder, not a geodatabase!
# Specify output field name for the original FID
origfidfield = "ORIG_FID"
# Specify the number of processors (CPU cores) to use (0 to use all available)
cores = 0
# Specify per-process feature count limit, tune for optimal
# performance/memory utilization (0 for input row count divided by cores)
procfeaturelimit = 0
# TIP: Set 'cores' to 1 and 'procfeaturelimit' to 0 to avoid partitioning and
# multiprocessing completely
################################################################################
def message(msg, severity=0):
print msg
try:
for string in msg.split('\n'):
if severity == 0:
arcpy.AddMessage(string)
elif severity == 1:
arcpy.AddWarning(string)
elif severity == 2:
arcpy.AddError(string)
except:
pass
def getOidRanges(inputFC, oidfield, count):
oidranges = []
if procfeaturelimit > 0:
message("Partitioning row ID ranges ...")
rows = arcpy.SearchCursor(inputFC, "", "", oidfield, "%s A" % oidfield)
minoid = -1
maxoid = -1
for r, row in enumerate(rows):
interval = r % procfeaturelimit
if minoid < 0 and (interval == 0 or r == count - 1):
minoid = row.getValue(oidfield)
if maxoid < 0 and (interval == procfeaturelimit - 1 or r == count - 1):
maxoid = row.getValue(oidfield)
if minoid >= 0 and maxoid >= 0:
oidranges.append([minoid, maxoid])
minoid = -1
maxoid = -1
del row, rows
return oidranges
# Set outputs to be overwritten just in case; each subprocess gets its own environment settings
env.overwriteOutput=True
# Set workspace
env.workspace = r"C://system"
# Set local variables
inRaster = "jekylmask"
classes = 7
minMembers = 30
sampInterval = 10
Output_signature_file = "hghressig.gsg"
# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")
# Execute IsoCluster
outUnsupervised = IsoClusterUnsupervisedClassification(inRaster, classes, minMembers, sampInterval, Output_signature_file)
outUnsupervised.save("hghresunsup01.tif")
# Clean up the in-memory workspace
arcpy.Delete_management("in_memory")
##if __name__ == "__main__":
## arcpy.env.overwriteOutput=True
##
## # Read in parameters
## inputFC = arcpy.GetParameterAsText(0)
## outputFC = arcpy.GetParameterAsText(1)
## heightfield = arcpy.GetParameterAsText(2) #Must be in the same units as the coordinate system!
## azimuth = math.radians(float(arcpy.GetParameterAsText(3))) #Must be in degrees
## altitude = math.radians(float(arcpy.GetParameterAsText(4))) #Must be in degrees
##
## # Get field names
## desc = arcpy.Describe(inputFC)
## shapefield = desc.shapeFieldName
## oidfield = desc.oidFieldName
##
## count = int(arcpy.GetCount_management(inputFC).getOutput(0))
## message("Total features to process: %d" % count)
##
## #Export output spatial reference to string so it can be pickled by multiprocessing
## if arcpy.env.outputCoordinateSystem:
## outputSR = arcpy.env.outputCoordinateSystem.exportToString()
## elif desc.spatialReference:
## outputSR = desc.spatialReference.exportToString()
## else:
## outputSR = ""
##
## # Configure partitioning
## if cores == 0:
## cores = multiprocessing.cpu_count()
## if cores > 1 and procfeaturelimit == 0:
## procfeaturelimit = int(math.ceil(float(count)/float(cores)))
##
## # Start timing
## start = time.clock()
##
## # Partition row ID ranges by the per-process feature limit
## oidranges = getOidRanges(inputFC, oidfield, count)
##
## if len(oidranges) > 0: # Use multiprocessing
## message("Computing shadow polygons; using multiprocessing (%d processes, %d jobs of %d maximum features each) ..." % (cores, len(oidranges), procfeaturelimit))
##
## # Create a Pool of subprocesses
## pool = multiprocessing.Pool(cores)
## jobs = []
##
## # Get the appropriately delmited field name for the OID field
## oidfielddelimited = arcpy.AddFieldDelimiters(inputFC, oidfield)
##
## # Ensure the scratch workspace folder exists
## if not os.path.exists(scratchws):
## os.mkdir(scratchws)
##
## for o, oidrange in enumerate(oidranges):
## # Build path to temporary output feature class (dissolved shadow polygons)
## # Named e.g. <scratchws>\dissolvedshadows0000.shp
## tmpoutput = os.path.join(scratchws, "%s%04d.shp" % ("dissolvedshadows", o))
##
## # Build a where clause for the given OID range
## whereclause = "%s >= %d AND %s <= %d" % (oidfielddelimited, oidrange[0], oidfielddelimited, oidrange[1])
##
## # Add the job to the multiprocessing pool asynchronously
## jobs.append(pool.apply_async(computeShadows, (inputFC, tmpoutput, oidfield, shapefield, heightfield, azimuth, altitude, outputSR, whereclause)))
##
## # Clean up worker pool; waits for all jobs to finish
## pool.close()
## pool.join()
##
## # Get the resulting outputs (paths to successfully computed dissolved shadow polygons)
## results = [job.get() for job in jobs]
##
## try:
## # Merge the temporary outputs
## message("Merging temporary outputs into output feature class %s ..." % outputFC)
## arcpy.Merge_management(results, outputFC)
## finally:
## # Clean up temporary data
## message("Deleting temporary data ...")
## for result in results:
## message("Deleting %s" % result)
## try:
## arcpy.Delete_management(result)
## except:
## pass
## else: # Use a single process
## message("Computing shadow polygons; using single processing ...")
## computeShadows(inputFC, outputFC, oidfield, shapefield, heightfield, azimuth, altitude, outputSR)
##
## # Stop timing and report duration
## end = time.clock()
## duration = end - start
## hours, remainder = divmod(duration, 3600)
## minutes, seconds = divmod(remainder, 60)
## message("Completed in %d:%d:%f" % (hours, minutes, seconds))