-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathreproduce.py
97 lines (86 loc) · 4.28 KB
/
reproduce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#-*-coding:utf-8-*-
import torch
import numpy as np
import random
import time
import os
from util.processdataall import dataPreprocess, vocab, globalVocab
from util.makedata import build_pretrain_embedding, buildDataperBatch
from util.evaluate import evaluate
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
import gc
from model.sama import sama
from tqdm import tqdm
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
# remove GPU cache
torch.backends.cudnn.deterministic = True
setup_seed(2)
time_above = 0
def parse_args():
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter, conflict_handler="resolve")
parser.add_argument("--file_dir", type=str, default="/home/rleating/datasets/SAMA")
parser.add_argument("--test", type=str, default="test.pt")
parser.add_argument("--vocab", type=str, default="vocab.pt")
parser.add_argument("--model_dir", help="the model dir", type=str, default="./trained_model")
parser.add_argument("--result_dir", help="the result dir", type=str, default="./results/reproduction")
parser.add_argument("--pretrain_tgt_embedding", type=str, default="pretrained_w2v")
parser.add_argument("--pretrain_src_embedding", type=str, default="pretrained_w2v")
parser.add_argument("--ifGPU", help="whether use gpu", type=bool, default=True)
parser.add_argument("--encoder_bidirectional", type=bool, default=True)
parser.add_argument("--encoder_layer", type=int, default=1)
parser.add_argument("--max_decoder_len", type=int, default=150)
parser.add_argument("--dropout", help="dropout rate", type=float, default=0.3)
parser.add_argument("--learning_rate", type=float, default=0.001)
parser.add_argument("--epoch", type=int, default=30)
parser.add_argument("--batch", type=int, default=5)
parser.add_argument("--device", type=int, default=0)
parser.add_argument("--src_embedding_dim", type=int, default=100)
parser.add_argument("--tgt_embedding_dim", type=int, default=100)
parser.add_argument("--src_encoder", type=str, default="LSTM")
parser.add_argument("--src_decoder", type=str, default="LSTM")
parser.add_argument("--tgt_encoder", type=str, default="LSTM")
parser.add_argument("--tgt_decoder", type=str, default="LSTM")
parser.add_argument("--src_encoder_hidden_dim", type=int, default=400)
parser.add_argument("--generatealpha", type=float, default=1.4)
parser.add_argument("--topicGenLamda", type=float, default=0.005)
parser.add_argument("--max_skill_len", type=int, default=30)
parser.add_argument("--skill_len", type=int, default=500)
parser.add_argument("--device", type=int, default=0)
args = parser.parse_args()
return args
if __name__ == "__main__":
# read config
data = parse_args()
if not os.path.exists(data.result_dir):
os.makedirs(data.result_dir)
# load vocb
vocab_dir = os.path.join(data.file_dir, data.vocab)
data.gVocab = torch.load(vocab_dir)
# load data
test = os.path.join(data.file_dir, data.test)
data.test_dataset = torch.load(test)
# load pretrain embedding
pretrain_src_path = os.path.join(data.file_dir, data.pretrain_src_embedding)
data.pretrain_src_embedding, data.src_embedding_dim, ukn_src_count = build_pretrain_embedding(
pretrain_src_path, data.gVocab, "src")
src_embedding = torch.tensor(data.pretrain_src_embedding)
print("src unknown words: " + str(ukn_src_count))
pretrain_tgt_path = os.path.join(data.file_dir, data.pretrain_tgt_embedding)
data.pretrain_tgt_embedding, data.tgt_embedding_dim, ukn_tgt_count = build_pretrain_embedding(
pretrain_tgt_path, data.gVocab, "tgt")
tgt_embedding = torch.tensor(data.pretrain_tgt_embedding)
print("tgt unknown words: " + str(ukn_tgt_count))
# build model
model = sama(data)
model.load_state_dict(torch.load(os.path.join(data.model_dir, "trainedmodel")))
param_count = 0 # counting the parameters
for param in model.parameters():
param_count += param.view(-1).size()[0]
print('total number of parameters of complete model: %d\n' % param_count)
BLUE_score_1, BLUE_score_2, BLUE_score_3, BLEU4 = evaluate(
data, model, data.result_dir + "/" + "generation.txt")
gc.collect()