Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Neither train nor eval work in completion.py inside v0.5.4 container #593

Open
Divelix opened this issue May 30, 2024 · 0 comments
Open

Comments

@Divelix
Copy link

Divelix commented May 30, 2024

It seems that code in completion.py is outdated, because I can't run train or eval inside container.

To Reproduce:
Docker image: pytorch/pytorch:2.1.0-cuda11.8-cudnn8-devel
ME installation:

RUN git clone --recursive "https://github.com/NVIDIA/MinkowskiEngine"
RUN cd MinkowskiEngine; python setup.py install --force_cuda --blas=openblas

ME version: 0.5.4
Run command (inside MinkowsiEngine dir):

python -m examples.completion --eval

Expected behavior: just run without errors.

Eval error:

Traceback (most recent call last):
  File "/opt/conda/lib/python3.10/runpy.py", line 196, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "/opt/conda/lib/python3.10/runpy.py", line 86, in _run_code
    exec(code, run_globals)
  File "/home/user/MinkowskiEngine/examples/completion.py", line 668, in <module>
    net.load_state_dict(checkpoint["state_dict"])
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2152, in load_state_dict
    raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for CompletionNet:
        Missing key(s) in state_dict: "enc_block_s1.0.kernel", "enc_block_s1.1.bn.weight", "enc_block_s1.1.bn.bias", "enc_block_s1.1.bn.running_mean", "enc_block_s1.1.bn.running_var", "enc_block_s1s2.0.kernel", "enc_block_s1s2.1.bn.weight", "enc_block_s1s2.1.bn.bias", "enc_block_s1s2.1.bn.running_mean", "enc_block_s1s2.1.bn.running_var", "enc_block_s1s2.3.kernel", "enc_block_s1s2.4.bn.weight", "enc_block_s1s2.4.bn.bias", "enc_block_s1s2.4.bn.running_mean", "enc_block_s1s2.4.bn.running_var", "enc_block_s2s4.0.kernel", "enc_block_s2s4.1.bn.weight", "enc_block_s2s4.1.bn.bias", "enc_block_s2s4.1.bn.running_mean", "enc_block_s2s4.1.bn.running_var", "enc_block_s2s4.3.kernel", "enc_block_s2s4.4.bn.weight", "enc_block_s2s4.4.bn.bias", "enc_block_s2s4.4.bn.running_mean", "enc_block_s2s4.4.bn.running_var", "enc_block_s4s8.0.kernel", "enc_block_s4s8.1.bn.weight", "enc_block_s4s8.1.bn.bias", "enc_block_s4s8.1.bn.running_mean", "enc_block_s4s8.1.bn.running_var", "enc_block_s4s8.3.kernel", "enc_block_s4s8.4.bn.weight", "enc_block_s4s8.4.bn.bias", "enc_block_s4s8.4.bn.running_mean", "enc_block_s4s8.4.bn.running_var", "enc_block_s8s16.0.kernel", "enc_block_s8s16.1.bn.weight", "enc_block_s8s16.1.bn.bias", "enc_block_s8s16.1.bn.running_mean", "enc_block_s8s16.1.bn.running_var", "enc_block_s8s16.3.kernel", "enc_block_s8s16.4.bn.weight", "enc_block_s8s16.4.bn.bias", "enc_block_s8s16.4.bn.running_mean", "enc_block_s8s16.4.bn.running_var", "enc_block_s16s32.0.kernel", "enc_block_s16s32.1.bn.weight", "enc_block_s16s32.1.bn.bias", "enc_block_s16s32.1.bn.running_mean", "enc_block_s16s32.1.bn.running_var", "enc_block_s16s32.3.kernel", "enc_block_s16s32.4.bn.weight", "enc_block_s16s32.4.bn.bias", "enc_block_s16s32.4.bn.running_mean", "enc_block_s16s32.4.bn.running_var", "enc_block_s32s64.0.kernel", "enc_block_s32s64.1.bn.weight", "enc_block_s32s64.1.bn.bias", "enc_block_s32s64.1.bn.running_mean", "enc_block_s32s64.1.bn.running_var", "enc_block_s32s64.3.kernel", "enc_block_s32s64.4.bn.weight", "enc_block_s32s64.4.bn.bias", "enc_block_s32s64.4.bn.running_mean", "enc_block_s32s64.4.bn.running_var", "dec_block_s64s32.0.kernel", "dec_block_s64s32.1.bn.weight", "dec_block_s64s32.1.bn.bias", "dec_block_s64s32.1.bn.running_mean", "dec_block_s64s32.1.bn.running_var", "dec_block_s64s32.3.kernel", "dec_block_s64s32.4.bn.weight", "dec_block_s64s32.4.bn.bias", "dec_block_s64s32.4.bn.running_mean", "dec_block_s64s32.4.bn.running_var", "dec_s32_cls.kernel", "dec_s32_cls.bias", "dec_block_s32s16.0.kernel", "dec_block_s32s16.1.bn.weight", "dec_block_s32s16.1.bn.bias", "dec_block_s32s16.1.bn.running_mean", "dec_block_s32s16.1.bn.running_var", "dec_block_s32s16.3.kernel", "dec_block_s32s16.4.bn.weight", "dec_block_s32s16.4.bn.bias", "dec_block_s32s16.4.bn.running_mean", "dec_block_s32s16.4.bn.running_var", "dec_s16_cls.kernel", "dec_s16_cls.bias", "dec_block_s16s8.0.kernel", "dec_block_s16s8.1.bn.weight", "dec_block_s16s8.1.bn.bias", "dec_block_s16s8.1.bn.running_mean", "dec_block_s16s8.1.bn.running_var", "dec_block_s16s8.3.kernel", "dec_block_s16s8.4.bn.weight", "dec_block_s16s8.4.bn.bias", "dec_block_s16s8.4.bn.running_mean", "dec_block_s16s8.4.bn.running_var", "dec_s8_cls.kernel", "dec_s8_cls.bias", "dec_block_s8s4.0.kernel", "dec_block_s8s4.1.bn.weight", "dec_block_s8s4.1.bn.bias", "dec_block_s8s4.1.bn.running_mean", "dec_block_s8s4.1.bn.running_var", "dec_block_s8s4.3.kernel", "dec_block_s8s4.4.bn.weight", "dec_block_s8s4.4.bn.bias", "dec_block_s8s4.4.bn.running_mean", "dec_block_s8s4.4.bn.running_var", "dec_s4_cls.kernel", "dec_s4_cls.bias", "dec_block_s4s2.0.kernel", "dec_block_s4s2.1.bn.weight", "dec_block_s4s2.1.bn.bias", "dec_block_s4s2.1.bn.running_mean", "dec_block_s4s2.1.bn.running_var", "dec_block_s4s2.3.kernel", "dec_block_s4s2.4.bn.weight", "dec_block_s4s2.4.bn.bias", "dec_block_s4s2.4.bn.running_mean", "dec_block_s4s2.4.bn.running_var", "dec_s2_cls.kernel", "dec_s2_cls.bias", "dec_block_s2s1.0.kernel", "dec_block_s2s1.1.bn.weight", "dec_block_s2s1.1.bn.bias", "dec_block_s2s1.1.bn.running_mean", "dec_block_s2s1.1.bn.running_var", "dec_block_s2s1.3.kernel", "dec_block_s2s1.4.bn.weight", "dec_block_s2s1.4.bn.bias", "dec_block_s2s1.4.bn.running_mean", "dec_block_s2s1.4.bn.running_var", "dec_s1_cls.kernel", "dec_s1_cls.bias". 
        Unexpected key(s) in state_dict: "block1.0.kernel", "block1.1.bn.weight", "block1.1.bn.bias", "block1.1.bn.running_mean", "block1.1.bn.running_var", "block1.1.bn.num_batches_tracked", "block1.3.kernel", "block1.4.bn.weight", "block1.4.bn.bias", "block1.4.bn.running_mean", "block1.4.bn.running_var", "block1.4.bn.num_batches_tracked", "block1.6.kernel", "block1.7.bn.weight", "block1.7.bn.bias", "block1.7.bn.running_mean", "block1.7.bn.running_var", "block1.7.bn.num_batches_tracked", "block1.9.kernel", "block1.10.bn.weight", "block1.10.bn.bias", "block1.10.bn.running_mean", "block1.10.bn.running_var", "block1.10.bn.num_batches_tracked", "block1_cls.kernel", "block1_cls.bias", "block2.0.kernel", "block2.1.bn.weight", "block2.1.bn.bias", "block2.1.bn.running_mean", "block2.1.bn.running_var", "block2.1.bn.num_batches_tracked", "block2.3.kernel", "block2.4.bn.weight", "block2.4.bn.bias", "block2.4.bn.running_mean", "block2.4.bn.running_var", "block2.4.bn.num_batches_tracked", "block2_cls.kernel", "block2_cls.bias", "block3.0.kernel", "block3.1.bn.weight", "block3.1.bn.bias", "block3.1.bn.running_mean", "block3.1.bn.running_var", "block3.1.bn.num_batches_tracked", "block3.3.kernel", "block3.4.bn.weight", "block3.4.bn.bias", "block3.4.bn.running_mean", "block3.4.bn.running_var", "block3.4.bn.num_batches_tracked", "block3_cls.kernel", "block3_cls.bias", "block4.0.kernel", "block4.1.bn.weight", "block4.1.bn.bias", "block4.1.bn.running_mean", "block4.1.bn.running_var", "block4.1.bn.num_batches_tracked", "block4.3.kernel", "block4.4.bn.weight", "block4.4.bn.bias", "block4.4.bn.running_mean", "block4.4.bn.running_var", "block4.4.bn.num_batches_tracked", "block4_cls.kernel", "block4_cls.bias", "block5.0.kernel", "block5.1.bn.weight", "block5.1.bn.bias", "block5.1.bn.running_mean", "block5.1.bn.running_var", "block5.1.bn.num_batches_tracked", "block5.3.kernel", "block5.4.bn.weight", "block5.4.bn.bias", "block5.4.bn.running_mean", "block5.4.bn.running_var", "block5.4.bn.num_batches_tracked", "block5_cls.kernel", "block5_cls.bias", "block6.0.kernel", "block6.1.bn.weight", "block6.1.bn.bias", "block6.1.bn.running_mean", "block6.1.bn.running_var", "block6.1.bn.num_batches_tracked", "block6.3.kernel", "block6.4.bn.weight", "block6.4.bn.bias", "block6.4.bn.running_mean", "block6.4.bn.running_var", "block6.4.bn.num_batches_tracked", "block6_cls.kernel", "block6_cls.bias". 

Train error:

Traceback (most recent call last):
  File "/opt/conda/lib/python3.10/runpy.py", line 196, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "/opt/conda/lib/python3.10/runpy.py", line 86, in _run_code
    exec(code, run_globals)
  File "/home/user/MinkowskiEngine/examples/completion.py", line 658, in <module>
    train(net, dataloader, device, config)
  File "/home/user/MinkowskiEngine/examples/completion.py", line 534, in train
    data_dict = train_iter.next()
AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute 'next'
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant