-
Notifications
You must be signed in to change notification settings - Fork 176
/
Copy pathinference.py
132 lines (111 loc) · 4.8 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
###############################################################################
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
###############################################################################
import matplotlib
matplotlib.use("Agg")
import matplotlib.pylab as plt
import os
import argparse
import json
import sys
import numpy as np
import torch
from flowtron import Flowtron
from torch.utils.data import DataLoader
from data import Data
from train import update_params
sys.path.insert(0, "tacotron2")
sys.path.insert(0, "tacotron2/waveglow")
from glow import WaveGlow
from scipy.io.wavfile import write
def infer(flowtron_path, waveglow_path, output_dir, text, speaker_id, n_frames,
sigma, gate_threshold, seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# load waveglow
waveglow = torch.load(waveglow_path)['model'].cuda().eval()
waveglow.cuda().half()
for k in waveglow.convinv:
k.float()
waveglow.eval()
# load flowtron
model = Flowtron(**model_config).cuda()
state_dict = torch.load(flowtron_path, map_location='cpu')['state_dict']
model.load_state_dict(state_dict)
model.eval()
print("Loaded checkpoint '{}')" .format(flowtron_path))
ignore_keys = ['training_files', 'validation_files']
trainset = Data(
data_config['training_files'],
**dict((k, v) for k, v in data_config.items() if k not in ignore_keys))
speaker_vecs = trainset.get_speaker_id(speaker_id).cuda()
text = trainset.get_text(text).cuda()
speaker_vecs = speaker_vecs[None]
text = text[None]
with torch.no_grad():
residual = torch.cuda.FloatTensor(1, 80, n_frames).normal_() * sigma
mels, attentions = model.infer(
residual, speaker_vecs, text, gate_threshold=gate_threshold)
for k in range(len(attentions)):
attention = torch.cat(attentions[k]).cpu().numpy()
fig, axes = plt.subplots(1, 2, figsize=(16, 4))
axes[0].imshow(mels[0].cpu().numpy(), origin='bottom', aspect='auto')
axes[1].imshow(attention[:, 0].transpose(), origin='bottom', aspect='auto')
fig.savefig(os.path.join(output_dir, 'sid{}_sigma{}_attnlayer{}.png'.format(speaker_id, sigma, k)))
plt.close("all")
with torch.no_grad():
audio = waveglow.infer(mels.half(), sigma=0.8).float()
audio = audio.cpu().numpy()[0]
# normalize audio for now
audio = audio / np.abs(audio).max()
print(audio.shape)
write(os.path.join(output_dir, 'sid{}_sigma{}.wav'.format(speaker_id, sigma)),
data_config['sampling_rate'], audio)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str,
help='JSON file for configuration')
parser.add_argument('-p', '--params', nargs='+', default=[])
parser.add_argument('-f', '--flowtron_path',
help='Path to flowtron state dict', type=str)
parser.add_argument('-w', '--waveglow_path',
help='Path to waveglow state dict', type=str)
parser.add_argument('-t', '--text', help='Text to synthesize', type=str)
parser.add_argument('-i', '--id', help='Speaker id', type=int)
parser.add_argument('-n', '--n_frames', help='Number of frames',
default=400, type=int)
parser.add_argument('-o', "--output_dir", default="results/")
parser.add_argument("-s", "--sigma", default=0.5, type=float)
parser.add_argument("-g", "--gate", default=0.5, type=float)
parser.add_argument("--seed", default=1234, type=int)
args = parser.parse_args()
# Parse configs. Globals nicer in this case
with open(args.config) as f:
data = f.read()
global config
config = json.loads(data)
update_params(config, args.params)
data_config = config["data_config"]
global model_config
model_config = config["model_config"]
# Make directory if it doesn't exist
if not os.path.isdir(args.output_dir):
os.makedirs(args.output_dir)
os.chmod(args.output_dir, 0o775)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
infer(args.flowtron_path, args.waveglow_path, args.output_dir, args.text,
args.id, args.n_frames, args.sigma, args.gate, args.seed)