Skip to content

Latest commit

 

History

History
108 lines (78 loc) · 4.39 KB

CHANGELOG.md

File metadata and controls

108 lines (78 loc) · 4.39 KB

NVIDIA ODTK change log

Version 0.2.6 -- 2021-08-11

Added

  • --with-apex option to odtk train and odtk infer.
    • This parameter allows you to switch to NVIDIA APEX AMP and DistributedDataParallel.
  • Adding validation stats to TensorBoard.

Changed

  • Pytorch Docker container 21.09 from 20.06
  • Added training and inference support for PyTorch native AMP, and torch.nn.parallel.DistributedDataParallel (default).
  • Switched the Pytorch Model and Data Memory Format to Channels Last. (see Memory Format Tutorial)
  • Bug fixes:
    • Workaround for 'No detections!' during vlidation added. (see #52663)
    • Freeze unused parameters from torchvision models from autograd gradient calculations.
    • Make tensorboard writer exclusive to the master process to prevent race conditions.
  • Renamed instances of retinanet to odtk (folder, C++ namepsaces, etc.)

Version 0.2.5 -- 2020-06-27

Added

  • --dynamic-batch-opts option to odtk export.
    • This parameter allows you to provide TensorRT Optimiation Profile batch sizes for engine export (min, opt, max).

Changed

Version 0.2.4 -- 2020-04-20

Added

  • --anchor-ious option to odtk train.
    • This parameter allows you to adjust the background and foreground anchor IoU threshold. The default values are [0.4, 0.5].
    • Example --anchor-ious 0.3 0.5. This would mean that any anchor with an IoU of less than 0.3 is assigned to background, and that any anchor with an IoU of greater than 0.5 is assigned to the foreground object, which is atmost one.

Version 0.2.3 -- 2020-04-14

Added

  • MobileNetV2FPN backbone

Version 0.2.2 -- 2020-04-01

Added

  • Rotated bounding box detections models can now be exported to ONNX and TensorRT using odtk export model.pth model.plan --rotated-bbox
  • The --rotated-bbox flag is automatically applied when running odtk infer or odtk export on a model trained with ODTK version 0.2.2 or later.

Changed

  • Improvements to the rotated IoU calculations.

Limitations

  • The C++ API cannot currently infer rotated bounding box models.

Version 0.2.1 -- 2020-03-18

Added

  • The DALI dataloader (flag --with-dali) now supports image augmentation using:
    • --augment-brightness : Randomly adjusts brightness of image
    • --augment-contrast : Randomly adjusts contrast of image
    • --augment-hue : Randomly adjusts hue of image
    • --augment-saturation : Randomly adjusts saturation of image

Changed

  • The code in box.py for generating anchors has been improved.

Version 0.2.0 -- 2020-03-13

Version 0.2.0 introduces rotated detections.

Added

  • train arguments:
    • --rotated-bbox: Trains a model is predict rotated bounding boxes [x, y, w, h, theta] instead of axis aligned boxes [x, y, w, h].
  • infer arguments:
    • --rotated-bbox: Infer a rotated model.

Changed

The project has reverted to the name Object Detection Toolkit (ODTK), to better reflect the multi-network nature of the repo.

  • retinanet has been replaced with odtk. All subcommands remain the same.

Limitations

  • Models trained using the --rotated-bbox flag cannot be exported to ONNX or a TensorRT Engine.
  • PyTorch raises two warnings which can be ignored:

Warning 1: NCCL watchdog

[E ProcessGroupNCCL.cpp:284] NCCL watchdog thread terminated

Warning 2: Save state warning

/opt/conda/lib/python3.6/site-packages/torch/optim/lr_scheduler.py:201: UserWarning: Please also save or load the state of the optimzer when saving or loading the scheduler.
  warnings.warn(SAVE_STATE_WARNING, UserWarning)

Version 0.1.1 -- 2020-03-06

Added

  • train arguments
    • --augment-rotate: Randomly rotates the training images by 0°, 90°, 180° or 270°.
    • --augment-brightness : Randomly adjusts brightness of image
    • --augment-contrast : Randomly adjusts contrast of image
    • --augment-hue : Randomly adjusts hue of image
    • --augment-saturation : Randomly adjusts saturation of image
    • --regularization-l2 : Sets the L2 regularization of the optimizer.