-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackup.py
222 lines (178 loc) · 6.5 KB
/
backup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python
from __future__ import division
from __future__ import print_function
from six.moves import xrange
from multiprocessing import Process, Pipe
import requests
import uuid
import numpy as np
import tornado.httpserver
import tornado.websocket
import tornado.ioloop
import tornado.web
import secrets
###############################################################################
### Audio preprocessing-- chunking for words and phrases/sentences ###
###############################################################################
# Threshold parameters
WORD_FRAME_THRESHOLD = 1500
SENTENCE_FRAME_THRESHOLD = 12000
SILENCE_AVR_THRESHOLD = 50
OVERALL_THRESHOLD = 100
MIN_LEN = 3000
word_buffer = np.array([])
def chunk_word(bits):
"""Accumulate sounds from input stream until enough silence is detected."""
global word_buffer
word_buffer = np.append(word_buffer, bits)
abs_buffer = np.absolute(word_buffer)
# Keep accumulating if not enough silence has been detected
if len(word_buffer) <= WORD_FRAME_THRESHOLD:
return np.array([])
# If enough silence, clear the buffer
last_timespan = abs_buffer[-WORD_FRAME_THRESHOLD:]
if np.average(last_timespan) < SILENCE_AVR_THRESHOLD:
# If there is enough sound, return it
if np.average(abs_buffer) >= OVERALL_THRESHOLD and len(abs_buffer) >= MIN_LEN:
result = word_buffer
word_buffer = np.array([])
return result
word_buffer = np.array([])
return np.array([])
sentence_buffer = np.array([])
def chunk_sentence(bits):
"""Accumulate sounds from input stream until enough silence is detected."""
global sentence_buffer
sentence_buffer = np.append(sentence_buffer, bits)
abs_buffer = np.absolute(sentence_buffer)
# Keep accumulating if not enough silence has been detected
if len(sentence_buffer) <= SENTENCE_FRAME_THRESHOLD:
return False
# If enough silence, clear the buffer
last_timespan = abs_buffer[-SENTENCE_FRAME_THRESHOLD:]
if np.average(last_timespan) < SILENCE_AVR_THRESHOLD:
# If there is enough sound, return it
if np.average(abs_buffer) >= OVERALL_THRESHOLD:
result = sentence_buffer
sentence_buffer = np.array([])
return True
sentence_buffer = np.array([])
return False
###############################################################################
### Speech recognition and synthesis using Nuance API ###
###############################################################################
SR_URL = "https://dictation.nuancemobility.net:443/NMDPAsrCmdServlet/dictation"
TTS_URL = "https://tts.nuancemobility.net:443/NMDPTTSCmdServlet/tts"
LANG_CODES = {
'arabic': 'ara-XWW',
'english': 'eng-USA',
}
PARAMS = {
'arabic': {
'appId': secrets.appId_arabic,
'appKey': secrets.appKey_arabic,
'id': uuid.uuid4(),
'voice': 'Laila',
},
'english': {
'appId': secrets.appId_english,
'appKey': secrets.appKey_english,
'id': uuid.uuid4(),
'voice': 'Zoe',
},
}
def speech_to_text(char_connection):
while True:
audio = char_connection.recv()
headers = {
'Content-Type': 'audio/x-wav;codec=pcm;bit=16;rate=16000',
'Accept': 'text/plain;charset=utf-8',
'Accept-Topic': 'Dictation',
'X-Dictation-NBestListSize': '1',
}
results = []
for language in ('english', 'arabic'):
headers.update({
'Accept-Language': LANG_CODES[language],
'Content-Length': len(audio),
})
r = requests.post(asr_url,
params=PARAMS[language], headers=headers, data=audio).text
# Return an empty string if the server returned an error
if r.startswith('<html>'):
r = ''
results.append(r.text)
# TODO: how to send results to method?
print(results)
char_connection.send(results)
def text_to_speech(char_connection):
while True:
text, language = char_connection.recv()
headers = {
'Content-Type': 'text/plain;charset=utf-8',
'Accept': 'audio/x-wav;codec=pcm;bit=16;rate=16000',
}
r = requests.post(TTS_URL,
params=PARAMS[language], headers=headers, data=text)
char_connection.send(r.content)
###############################################################################
### Web application ###
###############################################################################
class WSHandler(tornado.websocket.WebSocketHandler):
"""Handler for the phone call web socket."""
connections = []
def check_origin(self, origin):
return True
def open(self):
# Add the connection to the list of connections
self.connections.append(self)
def on_message(self, message):
# Check if message is binary or text
if type(message) == str:
# Read little-endian encoded sound
bits = np.fromstring(message, dtype='<i2')
# Chunk the read bits
word_chunks = chunk_word(bits).astype('<i2')
sentence_chunks = chunk_sentence(bits).astype('<i2')
if len(word_chunks) > 0:
# Echo the binary message back to where it came from
recording = word_chunks.tostring()
print("Sending request")
stt_parent.send(recording)
tts_parent.send(recording)
def on_close(self):
# Remove the connection from the list of connections
self.connections.remove(self)
class NCCOHandler(tornado.web.RequestHandler):
"""Main handler that instructs Nuance to connect to the web socket."""
def get(self):
print('GET:', self.request.body)
with open('ncco.json', 'r') as f:
ncco = f.read()
self.write(ncco)
self.set_header('Content-Type', 'application/json')
self.finish()
def post(self):
print('POST:', self.request.body)
self.finish()
# Router
application = tornado.web.Application([
(r'/socket', WSHandler),
(r'/', NCCOHandler),
])
###############################################################################
### Server startup ###
###############################################################################
if __name__ == '__main__':
# Create threads for async calls to Nuance
stt_parent, stt_child = Pipe()
stt_process = Process(target=speech_to_text, args=(stt_child,))
stt_process.start()
tts_parent, tts_child = Pipe()
tts_process = Process(target=text_to_speech, args=(tts_child,))
tts_process.start()
# Start Tornado
print("Starting server in port 3000")
http_server = tornado.httpserver.HTTPServer(application)
http_server.listen(3000)
tornado.ioloop.IOLoop.instance().start()