-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpredict_vgg16.py
58 lines (46 loc) · 1.85 KB
/
predict_vgg16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import imp
import librosa
import numpy as np
from keras.models import load_model
genres = {0: "metal", 1: "disco", 2: "classical", 3: "hiphop", 4: "jazz",
5: "country", 6: "pop", 7: "blues", 8: "reggae", 9: "rock"}
song_samples = 660000
def load_song(filepath):
y, sr = librosa.load(filepath)
y = y[:song_samples]
return y, sr
def splitsongs(X, window = 0.1, overlap = 0.5):
temp_X = []
xshape = X.shape[0]
chunk = int(xshape*window)
offset = int(chunk*(1.-overlap))
spsong = [X[i:i+chunk] for i in range(0, xshape - chunk + offset, offset)]
for s in spsong:
temp_X.append(s)
return np.array(temp_X)
def to_melspec(signals):
melspec = lambda x : librosa.feature.melspectrogram(x, n_fft=1024, hop_length=512)[:, :, np.newaxis]
spec_array = map(melspec, signals)
return np.array(list(spec_array))
def get_genre(path, debug=False):
model = load_model('./weights/genres_full_vgg16.h5')
y = load_song(path)[0]
predictions = []
spectro = []
signals = splitsongs(y)
spec_array = to_melspec(signals)
spectro.extend(spec_array)
spectro = np.array(spectro)
spectro = np.squeeze(np.stack((spectro,)*3,-1))
pr = np.array(model.predict(spectro))
predictions = np.argmax(pr, axis=1)
if debug:
print('Load audio:', path)
print("\nFull Predictions:")
for p in pr: print(list(p))
print("\nPredictions:\n{}".format(predictions))
print("Confidences:\n{}".format([round(x, 2) for x in np.amax(pr, axis=1)]))
print("\nOutput Predictions:\n{}\nPredicted class:".format(np.mean(pr, axis=0)))
return genres[np.bincount(predictions).argmax()] # list(np.mean(pr, axis=0))
if __name__ == '__main__':
print(get_genre('./audios/classical_music.mp3', True))