forked from emilianavt/OpenSeeFace
-
Notifications
You must be signed in to change notification settings - Fork 1
/
retinaface.py
149 lines (132 loc) · 4.86 KB
/
retinaface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import sys
import numpy as np
import cv2
import onnxruntime
import time
import queue
import threading
import json
import copy
def py_cpu_nms(dets, thresh):
""" Pure Python NMS baseline.
Copyright (c) 2015 Microsoft
Licensed under The MIT License
Written by Ross Girshick
"""
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def decode(loc, priors, variances):
data = (
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
priors[:, 2:] * np.exp(loc[:, 2:] * variances[1])
)
boxes = np.concatenate(data, 1)
boxes[:, :2] -= boxes[:, 2:] / 2
boxes[:, 2:] += boxes[:, :2]
return boxes
def worker_thread(rfd, frame):
results = rfd.detect_retina(frame, is_background=True)
rfd.results.put(results, False)
rfd.finished = True
rfd.running = False
class RetinaFaceDetector():
def __init__(self, model_path="models/retinaface_640x640_opt.onnx", json_path="models/priorbox_640x640.json", threads=4, min_conf=0.4, nms_threshold=0.4, top_k=1, res=(640, 640)):
options = onnxruntime.SessionOptions()
options.inter_op_num_threads = 1
options.intra_op_num_threads = threads
options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
options.log_severity_level = 3
self.session = onnxruntime.InferenceSession(model_path, sess_options=options)
self.res_w, self.res_h = res
with open(json_path, "r") as prior_file:
self.priorbox = np.array(json.loads(prior_file.read()))
self.min_conf = min_conf
self.nms_threshold = nms_threshold
self.top_k = top_k
self.finished = False
self.running = False
self.results = queue.Queue()
def detect_retina(self, frame, is_background=False):
h, w, _ = frame.shape
im = None
im = cv2.resize(frame, (self.res_w, self.res_h), interpolation=cv2.INTER_LINEAR)
resize_w = w / self.res_w
resize_w = 1 / resize_w
resize_h = h / self.res_h
resize_h = 1 / resize_h
im = np.float32(im)
scale = np.array((self.res_w / resize_w, self.res_h / resize_h, self.res_w / resize_w, self.res_h / resize_h))
im -= (104, 117, 123)
im = im.transpose(2, 0, 1)
im = np.expand_dims(im, 0)
output = self.session.run([], {"input0": im})
loc, conf = output[0][0], output[1][0]
boxes = decode(loc, self.priorbox, [0.1, 0.2])
boxes = boxes * scale
scores = conf[:, 1]
inds = np.where(scores > self.min_conf)[0]
boxes = boxes[inds]
scores = scores[inds]
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(dets, self.nms_threshold)
dets = dets[keep, :]
dets = dets[:self.top_k, 0:4]
dets[:, 2:4] = dets[:, 2:4] - dets[:, 0:2]
if True:#is_background:
upsize = dets[:, 2:4] * np.array([[0.15, 0.2]])
dets[:, 0:2] -= upsize
dets[:, 2:4] += upsize * 2
return list(map(tuple, dets))
def background_detect(self, frame):
if self.running or self.finished:
return
self.running = True
im = copy.copy(frame)
thread = threading.Thread(target=worker_thread, args=(self, im))
thread.start()
def get_results(self):
if self.finished:
results = []
try:
while True:
detection = self.results.get(False)
results.append(detection)
except:
"No error"
self.finished = False
return list(*results)
else:
return []
if __name__== "__main__":
retina = RetinaFaceDetector(top_k=40, min_conf=0.2)
im = cv2.imread(sys.argv[1], cv2.IMREAD_COLOR)
start = time.perf_counter()
faces = retina.detect_retina(im)
end = 1000 * (time.perf_counter() - start)
print(f"Runtime: {end:.3f}ms")
for (x,y,w,h) in faces:
im = cv2.rectangle(im, (int(x),int(y)), (int(x+w),int(y+w)), (0,0,255), 1)
cv2.imshow("Frame", im)
while cv2.waitKey(0) & 0xff != ord('q'):
""