forked from leehanchung/lora-instruct
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
387 lines (337 loc) · 12.4 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import os
import sys
import warnings
from dataclasses import dataclass, field
from typing import List, Optional, Tuple
import fire
import torch
from datasets import load_dataset
from dotenv import load_dotenv
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
# prepare_model_for_int8_training,
set_peft_model_state_dict,
)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
DataCollatorForSeq2Seq,
PreTrainedModel,
PreTrainedTokenizer,
Trainer,
TrainingArguments
)
from transformers.tokenization_utils_base import logger as tokenization_logger
from utils.prompter import Prompter
load_dotenv()
warnings.filterwarnings(
"ignore",
message=".*GPTNeoXTokenizerFast.*",
category=UserWarning,
module="transformers.tokenization_utils_base",
)
tokenization_logger.setLevel("ERROR")
torch.cuda.empty_cache()
@dataclass
class TrainConfig:
base_model: str
data_path: str = "yahma/alpaca-cleaned"
output_dir: str = "./lora-alpaca"
device_map: str = "auto"
batch_size: int = 128
micro_batch_size: int = 4
num_epochs: int = 3
learning_rate: float = 3e-4
cutoff_len: int = 256
val_set_size: int = 2000
lora_r: int = 8
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_target_modules: List[str] = field(
default_factory=lambda: ["query_key_value"]
)
train_on_inputs: bool = True
add_eos_token: bool = False
group_by_length: bool = False
resume_from_checkpoint: Optional[str] = None
prompt_template_name: str = "alpaca"
class TokenizerHelper:
def __init__(
self, prompter, tokenizer, train_on_inputs, cutoff_len, add_eos_token=True
):
self.prompter = prompter
self.tokenizer = tokenizer
self.train_on_inputs = train_on_inputs
self.add_eos_token = add_eos_token
self.cutoff_len = cutoff_len
def tokenize(self, prompt):
result = self.tokenizer(
prompt,
truncation=True,
max_length=self.cutoff_len,
# Set padding to 'max_length' instead of False for GPTNeoXTokenizerFast???
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != self.tokenizer.eos_token_id
and len(result["input_ids"]) < self.cutoff_len
and self.add_eos_token
):
result["input_ids"].append(self.tokenizer.eos_token_id)
result["attention_mask"].append(1)
return result
def generate_and_tokenize_prompt(self, data_point):
full_prompt = self.prompter.generate_prompt(
data_point["instruction"],
data_point["input"],
data_point["output"],
)
tokenized_full_prompt = self.tokenize(full_prompt)
if not self.train_on_inputs:
user_prompt = self.prompter.generate_prompt(
data_point["instruction"], data_point["input"]
)
tokenized_user_prompt = self.tokenize(user_prompt)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
if self.add_eos_token:
user_prompt_len -= 1
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["input_ids"][
user_prompt_len:
] # could be sped up, probably
else:
tokenized_full_prompt["labels"] = tokenized_full_prompt["input_ids"]
return tokenized_full_prompt
def setup_model(config: TrainConfig) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
model = AutoModelForCausalLM.from_pretrained(
config.base_model,
trust_remote_code=True,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=config.device_map,
quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model)
# LoRA configuration
lora_config = LoraConfig(
r=config.lora_r,
lora_alpha=config.lora_alpha,
target_modules=config.lora_target_modules,
lora_dropout=config.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
return model, tokenizer
def load_data(config: TrainConfig) -> Tuple:
"""TODO: Not working yet.
Args:
config (TrainConfig): _description_
Returns:
Tuple: _description_
"""
# Load the dataset
dataset = load_dataset(config.dataset_name)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
# Data collator
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, mlm=False)
# Split the dataset into train, validation and (optionally) test sets
train_dataset = tokenized_dataset["train"]
val_dataset = tokenized_dataset["validation"]
if "test" in tokenized_dataset:
test_dataset = tokenized_dataset["test"]
else:
test_dataset = None
return train_dataset, val_dataset, test_dataset, data_collator
def train(
# model/data params
base_model: str = "", # the only required argument
data_path: str = "yahma/alpaca-cleaned",
output_dir: str = "./lora-alpaca",
# training hyperparams
batch_size: int = 128,
micro_batch_size: int = 4,
num_epochs: int = 3,
learning_rate: float = 3e-4,
cutoff_len: int = 256,
val_set_size: int = 2000,
# lora hyperparams
lora_r: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = ["query_key_value", "xxx"],
train_on_inputs: bool = True, # if False, masks out inputs in loss
add_eos_token: bool = False,
group_by_length: bool = False, # faster, but produces an odd training loss curve
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
prompt_template_name: str = "alpaca", # Prompt template to use, default to Alpaca
):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(
f"\n\n\nLoRA fine-tuning model with params:\n"
f"base_model: {base_model}\n"
f"data_path: {data_path}\n"
f"output_dir: {output_dir}\n"
f"batch_size: {batch_size}\n"
f"micro_batch_size: {micro_batch_size}\n"
f"num_epochs: {num_epochs}\n"
f"learning_rate: {learning_rate}\n"
f"cutoff_len: {cutoff_len}\n"
f"val_set_size: {val_set_size}\n"
f"lora_r: {lora_r}\n"
f"lora_alpha: {lora_alpha}\n"
f"lora_dropout: {lora_dropout}\n"
f"lora_target_modules: {lora_target_modules}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"add_eos_token: {add_eos_token}\n"
f"group_by_length: {group_by_length}\n"
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
f"prompt template: {prompt_template_name}\n"
)
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
gradient_accumulation_steps = batch_size // micro_batch_size
prompter = Prompter(prompt_template_name)
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
print(f"device map: {device_map}")
#
# Model loading
#
quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
model = AutoModelForCausalLM.from_pretrained(
# 'mosaicml/mpt-7b',
base_model,
trust_remote_code=True,
# base_model,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=device_map,
quantization_config=quantization_config,
# load_in_8bit_fp32_cpu_offload=True
)
tokenizer = AutoTokenizer.from_pretrained(base_model)
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
tokenizer.padding_side = "left" # Allow batched inference
#
# 8-bit training
#
# had to turn int8 training off for some reason. could it be the titan rtx?
# turned it on and kinda working now, but wtf?
# model = prepare_model_for_int8_training(model)
#
# LoRA
#
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
data = load_dataset("json", data_files=data_path)
else:
data = load_dataset(data_path)
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
resume_from_checkpoint = False # So the trainer won't try loading its state
# The two files above have a different name depending on how they were saved,
# but are actually the same.
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
print(f"Checkpoint {checkpoint_name} not found")
# Be more transparent about the % of trainable params.
model.print_trainable_parameters()
tokenizer_helper = TokenizerHelper(
prompter, tokenizer, train_on_inputs, cutoff_len, add_eos_token
)
if val_set_size > 0:
train_val = data["train"].train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = (
train_val["train"]
.shuffle()
.map(tokenizer_helper.generate_and_tokenize_prompt)
)
val_data = (
train_val["test"]
.shuffle()
.map(tokenizer_helper.generate_and_tokenize_prompt)
)
else:
train_data = (
data["train"].shuffle().map(tokenizer_helper.generate_and_tokenize_prompt)
)
val_data = None
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism
# when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
use_wandb = False
trainer = Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
fp16=True,
logging_steps=10,
optim="adamw_torch",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=200 if val_set_size > 0 else None,
save_steps=200,
output_dir=output_dir,
save_total_limit=3,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to="wandb" if use_wandb else None,
run_name=wandb_run_name if use_wandb else None,
),
data_collator=DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
model.save_pretrained(output_dir)
print("\n If there's a warning about missing keys above, please disregard :)")
if __name__ == "__main__":
fire.Fire(train)