-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathneuralNet.c
88 lines (69 loc) · 2.35 KB
/
neuralNet.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#include "matrixCalc.h"
#include "activation.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>
#include <time.h>
#include <math.h>
typedef struct initNeuralNet
{
int input_size;
int hidden_size;
int output_size;
float learning_rate;
matrix weight_i2h;
matrix weight_h2o;
}neuralNet;
neuralNet init(int input_size, int hidden_size, int output_size, float learning_rate){
neuralNet neuralNet;
neuralNet.input_size = input_size;
neuralNet.hidden_size = hidden_size;
neuralNet.output_size = output_size;
neuralNet.learning_rate = learning_rate;
neuralNet.weight_i2h = createNormalMatrix(hidden_size, input_size, 0, pow(hidden_size, -0.5));
neuralNet.weight_i2h = createNormalMatrix(hidden_size, input_size, 0, pow(output_size, -0.5));
return neuralNet;
}
neuralNet forward(neuralNet nn, double input_arr[], int input_arr_len, double target_arr[], int target_arr_len){
matrix input = createMatrix(input_arr_len, 1, input_arr);
matrix target = createMatrix(target_arr_len, 1, target_arr);
matrix in_hid = dot(nn.weight_i2h, input);
matrix i2h_active = sigmoid(in_hid);
matrix hid_out = dot(nn.weight_h2o, i2h_active);
matrix h2o_active = sigmoid(hid_out);
matrix out_err = minusMat(target, h2o_active);
matrix hid_err = dot(transpose(out_err), out_err);
matrix temp1 = multiply(hid_err, in_hid);
matrix temp2 = numMinus(1, i2h_active);
matrix temp3 = multiply(temp1, temp2);
nn.weight_i2h = dot(temp3, transpose(input));
temp1 = multiply(out_err, hid_out);
temp2 = numMinus(1, h2o_active);
temp3 = multiply(temp1, temp2);
nn.weight_h2o = dot(temp3, transpose(i2h_active));
return nn;
}
matrix eval(neuralNet nn, double input_arr[], int input_arr_len){
matrix input = createMatrix(input_arr_len, 1, input_arr);
matrix in_hid = dot(nn.weight_i2h, input);
matrix i2h_active = sigmoid(in_hid);
matrix hid_out = dot(nn.weight_h2o, i2h_active);
matrix h2o_active = sigmoid(hid_out);
return h2o_active;
}
int main(){
srand((unsigned) time(0));
char train_file[] = "";
char line[1000];
char *vals = NULL;
char *buffer = NULL;
FILE *train;
errno_t err;
err = fopen_s(&train, train_file, "r");
for (int i=0; i<100; i++){
fgets(line, 1000, train);
...
}
fclose(train);
}