-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit-correlation.py
269 lines (208 loc) · 9.41 KB
/
fit-correlation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as np
import matplotlib.pyplot as plt
from legendre_discretization import get_vn_squared, get_coups_sq, get_freqs
from common import (
correlation_func_sum,
_correlation_func_sum,
correlation_func_integral,
)
from scipy.optimize import LinearConstraint, minimize, Bounds
from fcmaes import bitecpp as biteopt
def lorentz(ω, g, gamma, omega0):
return g**2 * (
gamma / 2 / ((gamma / 2) ** 2 + (ω - omega0) ** 2)
- gamma / 2 / ((gamma / 2) ** 2 + (ω + omega0) ** 2)
)
# def lorentz(ω, g, delta, omega0):
# gamma = 2 * omega0 - delta
# return g**2 * (
# gamma / 2 / ((gamma / 2) ** 2 + (ω - omega0) ** 2)
# - gamma / 2 / ((gamma / 2) ** 2 + (ω + omega0) ** 2)
# )
def ohmic(omega, alpha, omega_c):
return alpha * omega ** 0.5 * np.exp(-omega / omega_c)
# define new lorentz function where gamma is 0.5*omega0
def lorentz_reduced(ω, g, omega0):
gamma = 0.5 * omega0
return g**2 * (
gamma / 2 / ((gamma / 2) ** 2 + (ω - omega0) ** 2)
- gamma / 2 / ((gamma / 2) ** 2 + (ω + omega0) ** 2)
)
def approx_func(omega, params):
g = params[::3]
gamma = params[1::3]
omega0 = params[2::3]
approx = lorentz(omega[:, np.newaxis], g, gamma, omega0).sum(axis=1)
return approx
def approx_func_reduced(omega, params):
g = params[::2]
omega0 = params[1::2]
approx = lorentz_reduced(omega[:, np.newaxis], g, omega0).sum(axis=1)
return approx
def corr_integral(ws, vs_squared, T, t_max):
return vs_squared * (
np.sin(ws * t_max) / np.tanh(ws / 2 / T) -
1j * (1 - np.cos(ws * t_max))
)
def corr_integral(ws, vs_squared, T, t_max):
# returns return vs_squared * (np.sin(ws*t_max) / np.tanh(ws/2/T) - 1j * (1-np.cos(ws*t_max)))
ws_t_max = ws * t_max
ws_2T = ws / (2 * T)
sin_term = np.sin(ws_t_max)
cos_term = np.cos(ws_t_max)
exp_term = np.exp(-ws_2T)
tanh_term = (1 - exp_term) / (1 + exp_term)
real_part = sin_term / tanh_term
imag_part = -1j * (1 - cos_term)
return vs_squared * (real_part + imag_part)
def objective_func_sd(params):
approx_vs_squared = get_coups_sq(lambda omega: approx_func(omega, params), freqs, weights)
diff = np.abs(target_vs_squared - approx_vs_squared)
diff /= np.power(np.abs(target_vs_squared), 1)
# divide by a gaussian centered at 1 with variance
# diff *= np.exp(-((freqs - 1) ** 2) / 4) * np.exp(-((freqs - 4.5) ** 2) / 4) * np.exp(-((freqs - 0.5) ** 2) / 4)
return diff.sum()
# def objective_func_corr(params):
# target_vs_squared = get_coups_sq(lambda omega: ohmic(
# omega, alpha, omega_c), freqs, weights)
# approx_vs_squared = get_coups_sq(lambda omega: approx_func(
# omega, params), freqs, weights)
# target_integral = corr_integral(freqs, target_vs_squared, T, t_max)
# approx_integral = corr_integral(freqs, approx_vs_squared, T, t_max)
# return np.abs(target_integral - approx_integral).sum()
def objective_func_corr(params):
approx_vs_squared = get_coups_sq(
lambda omega: approx_func(omega, params), freqs, weights
)
# Evaluate the target and approximate correlation functions on the time grid
# target_corr = np.zeros_like(t_grid, dtype=complex)
# approx_corr = np.zeros_like(t_grid, dtype=complex)
# for i, t in enumerate(t_grid):
approx_corr = _correlation_func_sum(freqs, approx_vs_squared)(t_grid, T)
# Calculate the absolute (or squared) difference between the correlation functions
diff = np.abs(target_corr - approx_corr)
# Integrate the absolute (or squared) difference
integral_diff = np.dot(diff, exp_t_grid)
return integral_diff
# Set the parameters
alpha = 0.1
omega_c = 10
n_grids = 1000
num_modes = 10
num_param = 2
freq_domain = (0, 2)
bounds = [(0, 100), (0, 20), (0, 20)] * num_modes
T = 0.5
t_max = 12
# Define a time grid for evaluating the correlation functions
t_grid = np.linspace(0, t_max, 1000)
inv_t_grid = np.exp(1 / (1 + t_grid))
exp_t_grid = np.exp(-5*t_grid)
# linear_constraint = ()
# objective_func = objective_func_corr
objective_func = objective_func_sd
# Define the grids in the frequency domain
freqs, weights = get_freqs(n_grids, freq_domain)
target_vs_squared = get_coups_sq(lambda omega: ohmic(omega, alpha, omega_c), freqs, weights)
target_corr = _correlation_func_sum(freqs, target_vs_squared)(t_grid, T)
# Define the optimization constraints
initial_params = np.array([1, 2, 10] * num_modes)
# Define the linear constraint matrix and vector
constraint_matrix = np.zeros((num_modes, 3 * num_modes))
for i in range(num_modes):
constraint_matrix[i, i * 3 + 1] = 1 # gamma
constraint_matrix[i, i * 3 + 2] = -0.5 # - 0.5 * omega0
linear_constraint = LinearConstraint(constraint_matrix, -np.inf, 0)
if num_param == 2:
bounds = np.array([(0, 100), (0, freq_domain[1]*1.5)] * num_modes)
bounds = Bounds(bounds[:, 0], bounds[:, 1])
initial_params = np.array([1, 5] * num_modes)
linear_constraint = ()
lorentz = lorentz_reduced
approx_func = approx_func_reduced
def objective_func_penalized(params, penalty_factor=1e4):
objective_value = objective_func(params)
# Calculate the constraint violation
constraint_violation = np.maximum(0, (constraint_matrix @ params)).sum()
penalty = penalty_factor * constraint_violation
penalized_objective_value = objective_value + penalty
return penalized_objective_value
if __name__ == "__main__":
# Optimize the parameters
minimizer_kwargs = {
"method": "SLSQP",
"bounds": bounds,
"constraints": linear_constraint,
}
# Optimize the parameters
from scipy.optimize import (dual_annealing, basinhopping, direct, differential_evolution, shgo, brute,)
n_iter = 0
def print_fun(x, f, accepted):
global n_iter
n_iter += 1
print(f"iter {n_iter} at minimum %.4f accepted %d" % (f, int(accepted)))
result = biteopt.minimize(objective_func, bounds, M=16)
# result = basinhopping(objective_func, initial_params, niter=1000, seed=None, T=10, stepsize=0.5, minimizer_kwargs=minimizer_kwargs, callback=print_fun)
# result = differential_evolution(objective_func, bounds, maxiter=2 * 10**4, popsize=20, mutation=(0.5, 1.5), tol=1e-6, atol=0, constraints=linear_constraint, updating="deferred", workers=-1)
# result = dual_annealing(objective_func_penalized, bounds)
# result = shgo(objective_func, bounds)
# result = direct(objective_func, bounds, maxiter=int(1e8), maxfun=int(1e8), eps=0.5, locally_biased=False)
# result = shgo(objective_func, bounds, workers=-1)
optimized_params = result.x
# Print the optimized parameters
print("Optimized parameters:\n", result)
for i in range(num_modes):
param = optimized_params[i * num_param: (i + 1) * num_param]
if num_param == 2:
print(f"Basis {i+1:02d}: g={param[0]:>8.4f}, omega0={param[1]:>8.4f}")
if num_param == 3:
print(
f"Basis {i+1:02d}: g={param[0]:>8.4f}, gamma={param[1]:>8.4f}, omega0={param[2]:>8.4f}, ratio={param[2]/param[1]:>8.4f}"
)
print(
f"Optimized Correlation Function Value: {objective_func_corr(optimized_params):.6f}")
print(
f"Optimized Spectral Density Value : {objective_func_sd(optimized_params):.6f}")
# Create subplots
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(18, 6))
# Plot the correlation functions
t_vals = np.linspace(0, 4, 1000)
target_corr = correlation_func_sum(lambda omega: ohmic(omega, alpha, omega_c), n_grids, freq_domain)
fitted_corr = correlation_func_sum(lambda omega: approx_func(omega, optimized_params), n_grids, freq_domain)
_ax1 = ax1.twinx()
ax1.plot(t_vals, target_corr(t_vals, T).real, label="Target BCF real")
ax1.plot(t_vals, fitted_corr(t_vals, T).real, label="Fitted BCF real")
_ax1.plot(t_vals, target_corr(t_vals, T).imag, label="Target BCF imag", lw=2, linestyle="--")
_ax1.plot(t_vals, fitted_corr(t_vals, T).imag, label="Fitted BCF imag", linestyle="--")
ax1.set_xlabel("Time $t$")
ax1.set_ylabel("C(t)")
ax1_legend = _ax1.legend(); ax1_legend.set_zorder(10)
_ax1.legend()
ax1.set_title("Bath Correlation Functions")
ax1.grid(True)
omega_vals = np.linspace(0, freq_domain[1], 1000)
def target_func(omega_vals): return ohmic(omega_vals, alpha, omega_c)
def fitted_func(omega_vals): return approx_func(
omega_vals, optimized_params)
ax2.plot(omega_vals, target_func(omega_vals), label="Target Function")
ax2.plot(omega_vals, fitted_func(omega_vals), label="Fitted Function")
for i in range(num_modes):
param = optimized_params[i * num_param: (i + 1) * num_param]
ax2.plot(
omega_vals, lorentz(omega_vals, *param), "--", label=f"Lorentz {i+1:02d}"
)
ax2.set_xlabel("$\omega$")
ax2.set_ylabel("$J(\omega)$")
ax2.legend(loc='lower right')
ax2.set_title("Spectral Densities")
ax2.grid(True)
omega_vals = np.linspace(0, 5*omega_c, 1000)
ax3.plot(omega_vals, target_func(omega_vals), label="Target Function")
ax3.plot(omega_vals, fitted_func(omega_vals), label="Fitted Function")
for i in range(num_modes):
param = optimized_params[i * num_param: (i + 1) * num_param]
ax3.plot(omega_vals, lorentz(omega_vals, *param),
"--", label=f"Lorentz {i+1:02d}")
ax3.legend()
plt.tight_layout()
plt.savefig(f"fitting_{freq_domain[0]}-{freq_domain[1]}.png", dpi=300)