+
+Jullum, Martin, Annabelle Redelmeier, and Kjersti Aas. 2021. “Efficient
+and Simple Prediction Explanations with groupShapley: A Practical
+Perspective.” In *Proceedings of the 2nd Italian Workshop on Explainable
+Artificial Intelligence*, 28–43. CEUR Workshop Proceedings.
+
+
+
Lundberg, Scott M, Gabriel G Erion, and Su-In Lee. 2018. “Consistent
@@ -246,14 +301,6 @@ Processing Systems*, 4765–74.
-
-
-Pedersen, Thomas Lin, and Michaël Benesty. 2019. *Lime: Local
-Interpretable Model-Agnostic Explanations*.
-.
-
-
-
Redelmeier, Annabelle, Martin Jullum, and Kjersti Aas. 2020. “Explaining
diff --git a/bashscript.sh b/bashscript.sh
new file mode 100644
index 000000000..28c9c3219
--- /dev/null
+++ b/bashscript.sh
@@ -0,0 +1,6 @@
+while true
+ do
+ echo "$(date '+%Y-%m-%d, %H:%M:%S,') $(smem -t -k -c pss -P 4.1.1 | tail -n 1)" | tee -a logfile2
+ sleep 2
+done
+#watch -t -n 10 "(date '+%Y-%m-%d, %H:%M:%S,' ; smem -t -k -c pss -P 4.1.1 | tail -n 1) | tee -a logfile"
diff --git a/inst/scripts/analyze_bash_test_data.R b/inst/scripts/analyze_bash_test_data.R
new file mode 100644
index 000000000..519801de3
--- /dev/null
+++ b/inst/scripts/analyze_bash_test_data.R
@@ -0,0 +1,120 @@
+
+
+library(data.table)
+### analysing bash data test
+
+dt_mem0 <- fread("inst/scripts/memory_test_2023_new2.csv")
+
+names(dt_mem0) <- c("date","time","mem_usage","rep","p","n_train","n_explain","n_batches","n_cores","approach","multicore_method","logfilename")
+
+#dt_mem0 <- dt_mem0[date>="2023-01-18"]
+
+
+dt_mem0[,max_mem_usage:=max(mem_usage),by=.(rep,p,n_train,n_explain,n_batches,n_cores,approach,multicore_method,logfilename)]
+dt_mem0[,n_batches_real:=pmin(2^p-2,n_batches)]
+
+dt_mem <- dt_mem0[mem_usage==max_mem_usage,.(date,time,mem_usage,rep,p,n_train,n_explain,n_batches_real,n_cores,approach,multicore_method)]
+
+dt_mem[,mem_usage_Mb:=mem_usage/1024]
+
+library(ggplot2)
+
+ggplot(dt_mem,aes(x=n_batches_real,y=mem_usage_Mb,col=as.factor(n_explain),linetype=as.factor(n_train)))+
+ geom_line()+
+ geom_point()+
+ facet_wrap(vars(approach,p),scales = "free",labeller = label_both)+
+ scale_y_log10()+
+ scale_x_log10()+
+ ggtitle("Memory usage")
+
+ggplot(dt_mem[p<16& p>2& approach=="empirical"],aes(x=n_batches_real,y=mem_usage_Mb,col=as.factor(n_explain)))+
+ geom_line()+
+ geom_point()+
+ facet_wrap(vars(approach,p),scales = "free",labeller = label_both)+
+ scale_y_log10()+
+ scale_x_log10()+
+ ggtitle("Memory usage for n_train=100")
+
+
+
+dt_mem0[p==8 & n_explain==100 & approach=="ctree"]
+dt_mem0[p==16 & n_explain==100 & approach=="ctree"]
+
+# Wierd and inconsistent results
+
+
+dt_time0 <- fread("inst/scripts/timing_test_2023_new2.csv")
+#names(dt_time0) <- c("p","n_train","n_explain","n_batches","n_cores","approach","time","sys_time_start_explain","sys_time_end_explain",
+# "secs_explain","rep","max_n","max_p","rho","sigma","mu_const","beta0","sigma_eps")
+
+#dt_time0 <- dt_time0[time>="2023-01-18"]
+
+
+dt_time0[,n_batches_real:=pmin(2^p-2,n_batches)]
+
+dt_time <- dt_time0[,.(time,secs_explain,timing_setup,timing_test_prediction, timing_setup_computation ,timing_compute_vS ,timing_postprocessing ,timing_shapley_computation, rep,p,n_train,n_explain,n_batches_real,approach,n_combinations)]
+
+dt_time[n_batches_real==1,secs_explain_singlebatch :=secs_explain]
+dt_time[,secs_explain_singlebatch:=mean(secs_explain_singlebatch,na.rm=T),by=.(p,n_train,n_explain,approach,n_combinations)]
+dt_time[,secs_explain_prop_singlebatch:=secs_explain/secs_explain_singlebatch]
+
+ggplot(dt_time[p<14],aes(x=n_batches_real,y=secs_explain,col=as.factor(n_explain),linetype=as.factor(n_train)))+
+ geom_line()+
+ geom_point()+
+ facet_wrap(vars(approach,p),scales = "free",labeller = label_both)+
+ #scale_y_log10()+
+ scale_x_log10()+
+ ggtitle("Time usage")
+
+ggplot(dt_time[p<14],aes(x=n_batches_real,y=secs_explain_prop_singlebatch,col=as.factor(n_explain),linetype=as.factor(n_train)))+
+ geom_line()+
+ geom_point()+
+ facet_wrap(vars(approach,p),scales = "free",labeller = label_both)+
+ #scale_y_log10()+
+ scale_x_log10()+
+ ggtitle("Time usage proportional to singlebatch")
+
+
+ggplot(dt_time[p<14],aes(x=n_batches_real,y=timing_shapley_computation,col=as.factor(n_explain),linetype=as.factor(n_train)))+
+ geom_line()+
+ geom_point()+
+ facet_wrap(vars(approach,p),scales = "free",labeller = label_both)+
+ #scale_y_log10()+
+ scale_x_log10()+
+ ggtitle("Time usage")
+
+
+
+
+ggplot(dt_time[p<16& p>2 & approach=="empirical"],aes(x=n_batches_real,y=secs_explain,col=as.factor(n_explain)))+
+ geom_line()+
+ geom_point()+
+ facet_wrap(vars(approach,p),scales = "free",labeller = label_both)+
+ # scale_y_log10()+
+ # scale_x_log10()+
+ ggtitle("Time usage for n_train=100")
+
+
+
+#### Default for ctree + gaussian: Mye å spare minnemessig + lite å tape tidsmessig
+# n_batches <- (2^p-2)
+# max 100, min 10
+
+n_batches_fun <- function(approach,p){
+ n_combinations <- 2^p-2
+
+ if(approach %in% c("ctree","gaussian","copula")){
+ init <- ceiling(n_combinations/10)
+ floor <- max(c(10,init))
+ ret <- min(c(1000,floor))
+ } else {
+ init <- ceiling(n_combinations/100)
+ floor <- max(c(2,init))
+ ret <- min(c(100,floor))
+ }
+ return(ret)
+}
+
+n_batches_fun("empirical",10)
+
+
diff --git a/inst/scripts/bashscript_2023.sh b/inst/scripts/bashscript_2023.sh
new file mode 100644
index 000000000..f7cd3b57f
--- /dev/null
+++ b/inst/scripts/bashscript_2023.sh
@@ -0,0 +1,55 @@
+#!/bin/bash
+
+#Create array of inputs - space separator
+#MJ: Define all input vectors here
+script_name="timing_script_2023.R"
+logfile_bash="memory_test_2023_new2.csv"
+logfile_Rscript="timing_test_2023_new2.csv"
+
+
+p_vec=(4 6 8 10 12 14 16)
+n_train_vec=(100 1000) #(100 1000 1000)
+n_explain_vec=(10 100) #(1 2 10 100)
+n_batches_vec=(1 2 4 8 16 32 64) #(1 2 4 8 16 32)
+n_cores_vec=1 #(1 2 4 8 16 24 32)
+approach_vec=("empirical" "gaussian" "ctree" "copula" "independence")
+multicore_method_vec=("sequential")
+reps=3
+
+## get length of $distro array
+len_p_vec=${#p_vec[@]}
+len_n_train_vec=${#n_train_vec[@]}
+len_n_explain_vec=${#n_explain_vec[@]}
+len_n_batches_vec=${#n_batches_vec[@]}
+len_n_cores_vec=${#n_cores_vec[@]}
+len_approach_vec=${#approach_vec[@]}
+len_multicore_method_vec=${#multicore_method_vec[@]}
+
+## Use bash for loop
+for (( i0=0; i0<$reps; i1++ )); do
+for (( i1=0; i1<$len_p_vec; i1++ )); do
+for (( i2=0; i2<$len_n_train_vec; i2++ )); do
+for (( i3=0; i3<$len_n_explain_vec; i3++ )); do
+for (( i4=0; i4<$len_n_batches_vec; i4++ )); do
+for (( i5=0; i5<$len_n_cores_vec; i5++ )); do
+for (( i6=0; i6<$len_approach_vec; i6++ )); do
+for (( i7=0; i7<$len_multicore_method_vec; i7++ )); do
+running_processes=1
+start_new_script=1
+while [[ $running_processes == 1 ]]
+ do
+ if [[ $start_new_script == 1 ]]
+ then
+ sleep 5
+ echo "$(date '+%Y-%m-%d, %H:%M:%S,') $(smem -t -c pss -P 4.1.1 | tail -n 1), $i0, ${p_vec[$i1]}, ${n_train_vec[$i2]}, ${n_explain_vec[$i3]}, ${n_batches_vec[$i4]}, ${n_cores_vec[$i5]}, ${approach_vec[$i6]}, ${multicore_method_vec[$i7]}, $logfile_Rscript" | tee -a $logfile_bash
+ Rscript --verbose $script_name $i0 ${p_vec[$i1]} ${n_train_vec[$i2]} ${n_explain_vec[$i3]} ${n_batches_vec[$i4]} ${n_cores_vec[$i5]} ${approach_vec[$i6]} ${multicore_method_vec[$i7]} $logfile_Rscript &
+ start_new_script=0
+ fi
+
+ sleep 0.5
+ echo "$(date '+%Y-%m-%d, %H:%M:%S,') $(smem -t -c pss -P 4.1.1 | tail -n 1), $i0, ${p_vec[$i1]}, ${n_train_vec[$i2]}, ${n_explain_vec[$i3]}, ${n_batches_vec[$i4]}, ${n_cores_vec[$i5]}, ${approach_vec[$i6]}, ${multicore_method_vec[$i7]}, $logfile_Rscript" | tee -a $logfile_bash
+ sleep 0.5
+
+ running_processes=$(pgrep -f $script_name -a -c)
+ done
+done; done; done; done; done; done; done; done
diff --git a/inst/scripts/bashscript_2023_tmp.sh b/inst/scripts/bashscript_2023_tmp.sh
new file mode 100644
index 000000000..8528564ce
--- /dev/null
+++ b/inst/scripts/bashscript_2023_tmp.sh
@@ -0,0 +1,55 @@
+#!/bin/bash
+
+#Create array of inputs - space separator
+#MJ: Define all input vectors here
+script_name="timing_script_2023.R"
+logfile_bash="memory_test_2023_tmp.csv"
+logfile_Rscript="timing_test_2023_tmp.csv"
+
+
+p_vec=(4 6 8 10 12 14 16)
+n_train_vec=(100) #(100 1000 1000)
+n_explain_vec=(10) #(1 2 10 100)
+n_batches_vec=(1 2 4 8 16 32 64) #(1 2 4 8 16 32)
+n_cores_vec=1 #(1 2 4 8 16 24 32)
+approach_vec=("empirical") #"gaussian" "ctree" "copula" "independence")
+multicore_method_vec=("sequential")
+reps=1
+
+## get length of $distro array
+len_p_vec=${#p_vec[@]}
+len_n_train_vec=${#n_train_vec[@]}
+len_n_explain_vec=${#n_explain_vec[@]}
+len_n_batches_vec=${#n_batches_vec[@]}
+len_n_cores_vec=${#n_cores_vec[@]}
+len_approach_vec=${#approach_vec[@]}
+len_multicore_method_vec=${#multicore_method_vec[@]}
+
+## Use bash for loop
+for (( i0=0; i0<$reps; i1++ )); do
+for (( i1=0; i1<$len_p_vec; i1++ )); do
+for (( i2=0; i2<$len_n_train_vec; i2++ )); do
+for (( i3=0; i3<$len_n_explain_vec; i3++ )); do
+for (( i4=0; i4<$len_n_batches_vec; i4++ )); do
+for (( i5=0; i5<$len_n_cores_vec; i5++ )); do
+for (( i6=0; i6<$len_approach_vec; i6++ )); do
+for (( i7=0; i7<$len_multicore_method_vec; i7++ )); do
+running_processes=1
+start_new_script=1
+while [[ $running_processes == 1 ]]
+ do
+ if [[ $start_new_script == 1 ]]
+ then
+ sleep 5
+ echo "$(date '+%Y-%m-%d, %H:%M:%S,') $(smem -t -c pss -P 4.1.1 | tail -n 1), $i0, ${p_vec[$i1]}, ${n_train_vec[$i2]}, ${n_explain_vec[$i3]}, ${n_batches_vec[$i4]}, ${n_cores_vec[$i5]}, ${approach_vec[$i6]}, ${multicore_method_vec[$i7]}, $logfile_Rscript" | tee -a $logfile_bash
+ Rscript --verbose $script_name $i0 ${p_vec[$i1]} ${n_train_vec[$i2]} ${n_explain_vec[$i3]} ${n_batches_vec[$i4]} ${n_cores_vec[$i5]} ${approach_vec[$i6]} ${multicore_method_vec[$i7]} $logfile_Rscript &
+ start_new_script=0
+ fi
+
+ sleep 0.5
+ echo "$(date '+%Y-%m-%d, %H:%M:%S,') $(smem -t -c pss -P 4.1.1 | tail -n 1), $i0, ${p_vec[$i1]}, ${n_train_vec[$i2]}, ${n_explain_vec[$i3]}, ${n_batches_vec[$i4]}, ${n_cores_vec[$i5]}, ${approach_vec[$i6]}, ${multicore_method_vec[$i7]}, $logfile_Rscript" | tee -a $logfile_bash
+ sleep 0.5
+
+ running_processes=$(pgrep -f $script_name -a -c)
+ done
+done; done; done; done; done; done; done; done
diff --git a/inst/scripts/compare_shap_python.R b/inst/scripts/compare_shap_python.R
index bb0369122..6a4ed7787 100644
--- a/inst/scripts/compare_shap_python.R
+++ b/inst/scripts/compare_shap_python.R
@@ -1,3 +1,7 @@
+#### NOTE: THIS COMPARISON WAS DONE BASED ON OLD VERSION OF BOTH SHAPR AND SHAP, AND MAY NO LONGER REPRESENT THE
+#### ACTUAL PERFORMANCE DIFFERENCE. THE COMPARISON SHOULD BE UPDATED WITH UP-TO-DATE VERSIONS.
+
+
library(MASS)
library(xgboost)
library(shapr)
diff --git a/inst/scripts/compare_shap_python_new.R b/inst/scripts/compare_shap_python_new.R
new file mode 100644
index 000000000..c15fed9d6
--- /dev/null
+++ b/inst/scripts/compare_shap_python_new.R
@@ -0,0 +1,67 @@
+library(MASS)
+library(xgboost)
+library(shapr)
+library(data.table)
+
+# Python settings
+# Using the virtual environment here "../../Python/.venv/bin/python", as set by
+#Sys.setenv(RETICULATE_PYTHON = "../../Python/.venv/bin/python") in the .Rprofile
+library(reticulate)
+
+# Install some packages
+#py_install("xgboost")
+#py_install("shap")
+#py_install("pandas")
+
+data("Boston")
+
+x_var <- c("lstat", "rm", "dis", "indus")
+y_var <- "medv"
+
+x_train <- as.matrix(tail(Boston[, x_var], -6))
+y_train <- tail(Boston[, y_var], -6)
+x_test <- as.matrix(head(Boston[, x_var], 6))
+
+# Creating a larger test data set (600 observations) for more realistic function time calls.
+# Modifying x_test to repeat the 6 test observations 100 times
+x_test = rep(1,100) %x% x_test
+colnames(x_test) <- colnames(x_train)
+
+# Reading the R format version of the xgboost model to avoid crash reading same xgboost model in R and Python
+model <- readRDS(system.file("model_objects", "xgboost_model_object.rds", package = "shapr"))
+
+pred_test <- predict(model,x_test)
+
+# Spedifying the phi_0, i.e. the expected prediction without any features
+p0 <- mean(predict(model,x_train))# adjustment from the standard mean(y_train) to comply with the shap implementation
+
+time_R_start <- proc.time()
+
+# Computing the actual Shapley values with kernelSHAP accounting for feature dependence using
+# the empirical (conditional) distribution approach with bandwidth parameter sigma = 0.1 (default)
+explanation_independence <- explain(model = model,x_explain = x_test,x_train=x_train,
+ approach = "independence", prediction_zero = p0,n_batches = 1)
+
+time_R_indep0 <- proc.time()
+
+
+explanation_largesigma <- explain(model = model,x_explain = x_test,x_train=x_train,
+ approach = "empirical",empirical.type="fixed_sigma",empirical.fixed_sigma=10000,empirical.eta=1,
+ prediction_zero = p0,n_batches=1)
+
+
+time_R_largesigma0 <- proc.time()
+
+(time_R_indep <- time_R_indep0 - time_R_start)
+(time_R_largesigma <- time_R_largesigma0 - time_R_indep0)
+
+# Printing the Shapley values for the test data
+Kshap_indep <- explanation_independence$shapley_values
+Kshap_largesigma <- explanation_largesigma$shapley_values
+
+Kshap_indep
+Kshap_largesigma
+
+mean(abs(as.matrix(Kshap_indep)-as.matrix(Kshap_largesigma)))
+
+reticulate::py_run_file(system.file("scripts", "shap_python_script.py", package = "shapr"))
diff --git a/inst/scripts/devel/Rscript_test.R b/inst/scripts/devel/Rscript_test.R
new file mode 100644
index 000000000..b0bc1da33
--- /dev/null
+++ b/inst/scripts/devel/Rscript_test.R
@@ -0,0 +1,19 @@
+
+
+args <- commandArgs(trailingOnly = TRUE)
+
+p <- as.numeric(args[1])
+n_train <- as.numeric(args[2])
+n_test <- as.numeric(args[3])
+n_batches <- as.numeric(args[4])
+n_cores <- as.numeric(args[5])
+approach <- args[6]
+
+print(.libPaths())
+
+print(p)
+print(n_train)
+print(n_test)
+print(n_batches)
+print(n_cores)
+print(approach)
diff --git a/inst/scripts/devel/Rscript_test_shapr.R b/inst/scripts/devel/Rscript_test_shapr.R
new file mode 100644
index 000000000..8f8b5a504
--- /dev/null
+++ b/inst/scripts/devel/Rscript_test_shapr.R
@@ -0,0 +1,105 @@
+#.libPaths("/disk/home/jullum/R/x86_64-pc-linux-gnu-library/4.1","/opt/R/4.1.1/lib/R/library")
+sys_time_initial <- Sys.time()
+
+# libraries
+library(shapr)
+library(future)
+library(MASS)
+library(microbenchmark)
+library(data.table)
+
+# Initial setup
+max_n <- 10^5
+max_p <- 13
+rho <- 0.3
+sigma <- 1
+mu_const <- 0
+beta0 <- 1
+sigma_eps <- 1
+
+mu <- rep(mu_const,max_p)
+beta <- c(beta0,seq_len(max_p)/max_p)
+Sigma <- matrix(rho,max_p,max_p)
+diag(Sigma) <- sigma
+
+set.seed(123)
+x_all <- MASS::mvrnorm(max_n,mu = mu,Sigma = Sigma)
+y_all <- as.vector(cbind(1,x_all)%*%beta)+rnorm(max_n,mean = 0,sd = sigma_eps)
+
+# Arguments form bash
+args <- commandArgs(trailingOnly = TRUE)
+if(length(args)==0) args = c(1,10,1000,100,6,2,"empirical","multisession","test.csv")
+
+this_rep <- as.numeric(args[1])
+p <- as.numeric(args[2])
+n_train <- as.numeric(args[3])
+n_test <- as.numeric(args[4])
+n_batches <- as.numeric(args[5])
+n_cores <- as.numeric(args[6])
+approach <- args[7]
+multicore_method <- args[8]
+logfilename <- args[9]
+
+set.seed(123)
+
+
+these_p <- sample.int(max_p,size=p)
+these_train <- sample.int(max_n,size=n_train)
+these_test <- sample.int(max_n,size=n_test)
+
+x_train <- as.data.frame(x_all[these_train,these_p])
+x_test <- as.data.frame(x_all[these_test,these_p])
+
+colnames(x_test) <- colnames(x_train) <- paste0("X",seq_len(p))
+
+y_train <- y_all[these_train]
+
+xy_train <- cbind(x_train,y=y_train)
+
+model <- lm(formula = y~.,data=xy_train)
+
+sys_time_start_shapr <- Sys.time()
+explainer <- shapr(x_train, model)
+sys_time_end_shapr <- Sys.time()
+
+prediction_zero <- mean(y_train)
+
+n_batches_use <- min(nrow(explainer$S),n_batches)
+
+future::plan(multicore_method,workers=n_cores)
+
+sys_time_start_explain <- Sys.time()
+explanation <- explain(
+ x_test,
+ approach = approach,
+ explainer = explainer,
+ prediction_zero = prediction_zero,
+ n_batches = n_batches_use
+)
+sys_time_end_explain <- Sys.time()
+future::plan(sequential) # To close multisessions etc
+
+timing <- list(p = p,
+ n_train = n_train,
+ n_test = n_test,
+ n_batches = n_batches,
+ n_cores = n_cores,
+ approach = approach,
+ sys_time_initial = as.character(sys_time_initial),
+ sys_time_start_shapr = as.character(sys_time_start_shapr),
+ sys_time_end_shapr = as.character(sys_time_end_shapr),
+ sys_time_start_explain = as.character(sys_time_start_explain),
+ sys_time_end_explain = as.character(sys_time_end_explain),
+ secs_shapr = as.double(difftime(sys_time_end_shapr,sys_time_start_shapr),units="secs"),
+ secs_explain = as.double(difftime(sys_time_end_explain,sys_time_start_explain),units="secs"),
+ this_rep = this_rep,
+ max_n = max_n,
+ max_p = max_p,
+ rho = rho,
+ sigma = sigma,
+ mu_const = mu_const,
+ beta0 = beta0,
+ sigma_eps = sigma_eps)
+
+#print(unlist(timing))
+data.table::fwrite(timing,logfilename,append = T)
diff --git a/inst/scripts/devel/bashscript_looping.sh b/inst/scripts/devel/bashscript_looping.sh
new file mode 100644
index 000000000..6834840fc
--- /dev/null
+++ b/inst/scripts/devel/bashscript_looping.sh
@@ -0,0 +1,60 @@
+#!/bin/bash
+
+#Create array of inputs - space separator
+#MJ: Define all input vectors here
+p_vec=(10 3 4 5 6 7 8 9 10)
+n_train_vec=(1000 10000)
+n_test_vec=(100 10 20 100)
+n_batches_vec=(1 2 4 8 16 24 32)
+n_cores_vec=(1 2 4 8 16 24 32)
+approach_vec=("empirical" "gaussian" "ctree")
+
+
+## get length of $distro array
+len_p_vec=${#p_vec[@]}
+len_n_train_vec=${#n_train_vec[@]}
+len_n_test_vec=${#n_test_vec[@]}
+len_n_batches_vec=${#n_batches_vec[@]}
+len_n_cores_vec=${#n_cores_vec[@]}
+len_approach_vec=${#approach_vec[@]}
+
+
+## Use bash for loop
+for (( i1=0; i1<$len_p_vec; i1++ )); do
+for (( i2=0; i2<$len_n_train_vec; i2++ )); do
+for (( i3=0; i3<$len_n_test_vec; i3++ )); do
+for (( i4=0; i4<$len_n_batches_vec; i4++ )); do
+for (( i5=0; i5<$len_n_cores_vec; i5++ )); do
+for (( i6=0; i6<$len_approach_vec; i6++ )); do
+# CURRENT STARTS
+ Rscript --verbose Rscript_test_shapr.R ${p_vec[$i1]} ${n_train_vec[$i2]} ${n_test_vec[$i3]} ${n_batches_vec[$i4]} ${n_cores_vec[$i5]} ${approach_vec[$i6]}
+# CURRENT ENDS
+done; done; done; done; done; done
+
+
+# SOMETHING LIKE THIS???
+# #START
+run=true
+new=true
+while run
+ do
+ if (("$new")); then
+ Rscript --verbose Rscript_test_shapr.R ${p_vec[$i1]} ${n_train_vec[$i2]} ${n_test_vec[$i3]} ${n_batches_vec[$i4]} ${n_cores_vec[$i5]} ${approach_vec[$i6]} &
+ new=false
+ else
+ echo "$(date '+%Y-%m-%d, %H:%M:%S,') $(smem -t -k -c pss -P 4.1.1 | tail -n 1)" | tee -a logfile2
+ sleep 2
+ fi
+ if (___RSCRIPT IS DONE___); then
+ run=false
+ fi
+ done
+## END
+
+
+
+while true
+ do
+ echo "$(date '+%Y-%m-%d, %H:%M:%S,') $(smem -t -k -c pss -P 4.1.1 | tail -n 1)" | tee -a logfile2
+ sleep 2
+done
diff --git a/inst/scripts/devel/bashscript_looping2.sh b/inst/scripts/devel/bashscript_looping2.sh
new file mode 100644
index 000000000..138d37ca9
--- /dev/null
+++ b/inst/scripts/devel/bashscript_looping2.sh
@@ -0,0 +1,50 @@
+#!/bin/bash
+
+#Create array of inputs - space separator
+#MJ: Define all input vectors here
+script_name="Rscript_test_shapr.R"
+logfile_bash="memory_log.csv"
+logfile_Rscript="timing_log.csv"
+
+
+p_vec=(2 3 4 5) # 6 7 8 9 10)
+n_train_vec=(1000 10000)
+n_test_vec=(20) #(10 20 100)
+n_batches_vec=(12) #(1 2 4 8 16 24 32)
+n_cores_vec=(2 12) #(1 2 4 8 16 24 32)
+approach_vec= gaussian #("empirical" "gaussian" "ctree")
+multicore_method_vec= ("multisession" "multicore")
+
+
+## get length of $distro array
+len_p_vec=${#p_vec[@]}
+len_n_train_vec=${#n_train_vec[@]}
+len_n_test_vec=${#n_test_vec[@]}
+len_n_batches_vec=${#n_batches_vec[@]}
+len_n_cores_vec=${#n_cores_vec[@]}
+len_approach_vec=${#approach_vec[@]}
+len_multicore_method_vec=${#multicore_method_vec[@]}
+
+
+## Use bash for loop
+for (( i1=0; i1<$len_p_vec; i1++ )); do
+for (( i2=0; i2<$len_n_train_vec; i2++ )); do
+for (( i3=0; i3<$len_n_test_vec; i3++ )); do
+for (( i4=0; i4<$len_n_batches_vec; i4++ )); do
+for (( i5=0; i5<$len_n_cores_vec; i5++ )); do
+for (( i6=0; i6<$len_approach_vec; i6++ )); do
+for (( i7=0; i7<$len_multicore_method_vec; i7++ )); do
+running_processes=1
+start_new_script=1
+while [[ $running_processes == 1 ]]
+ do
+ echo "$(date '+%Y-%m-%d, %H:%M:%S,') $(smem -t -c pss -P 4.1.1 | tail -n 1), ${p_vec[$i1]}, ${n_train_vec[$i2]}, ${n_test_vec[$i3]}, ${n_batches_vec[$i4]}, ${n_cores_vec[$i5]}, ${approach_vec[$i6]}, ${multicore_method_vec[$i7]}, $logfile_Rscript" | tee -a $logfile_bash
+ sleep 1
+ if [[ $start_new_script == 1 ]]
+ then
+ Rscript --verbose $script_name ${p_vec[$i1]} ${n_train_vec[$i2]} ${n_test_vec[$i3]} ${n_batches_vec[$i4]} ${n_cores_vec[$i5]} ${approach_vec[$i6]} $logfile_Rscript &
+ start_new_script=0
+ fi
+ running_processes=$(pgrep -f $script_name -a -c)
+ done
+done; done; done; done; done; done
diff --git a/inst/scripts/devel/bashscript_looping_run.sh b/inst/scripts/devel/bashscript_looping_run.sh
new file mode 100644
index 000000000..f37c34854
--- /dev/null
+++ b/inst/scripts/devel/bashscript_looping_run.sh
@@ -0,0 +1,56 @@
+#!/bin/bash
+
+#Create array of inputs - space separator
+#MJ: Define all input vectors here
+script_name="Rscript_test_shapr.R"
+logfile_bash="memory_log_test_big.csv"
+logfile_Rscript="timing_log_test_big.csv"
+
+
+p_vec=(8 9 10 11 12 13)
+n_train_vec=(1000 10000)
+n_test_vec=(100)
+n_batches_vec=(1 2 4 8 16 24 32)
+n_cores_vec=(1 2 4 8 16 24 32)
+approach_vec=("empirical" "gaussian" "ctree")
+multicore_method_vec=("multisession" "multicore")
+reps=5
+
+## get length of $distro array
+len_p_vec=${#p_vec[@]}
+len_n_train_vec=${#n_train_vec[@]}
+len_n_test_vec=${#n_test_vec[@]}
+len_n_batches_vec=${#n_batches_vec[@]}
+len_n_cores_vec=${#n_cores_vec[@]}
+len_approach_vec=${#approach_vec[@]}
+len_multicore_method_vec=${#multicore_method_vec[@]}
+
+
+## Use bash for loop
+for (( i0=0; i1<$reps; i1++ )); do
+for (( i1=0; i1<$len_p_vec; i1++ )); do
+for (( i2=0; i2<$len_n_train_vec; i2++ )); do
+for (( i3=0; i3<$len_n_test_vec; i3++ )); do
+for (( i4=0; i4<$len_n_batches_vec; i4++ )); do
+for (( i5=0; i5<$len_n_cores_vec; i5++ )); do
+for (( i6=0; i6<$len_approach_vec; i6++ )); do
+for (( i7=0; i7<$len_multicore_method_vec; i7++ )); do
+running_processes=1
+start_new_script=1
+while [[ $running_processes == 1 ]]
+ do
+ if [[ $start_new_script == 1 ]]
+ then
+ sleep 5
+ echo "$(date '+%Y-%m-%d, %H:%M:%S,') $(smem -t -c pss -P 4.1.1 | tail -n 1), $i0, ${p_vec[$i1]}, ${n_train_vec[$i2]}, ${n_test_vec[$i3]}, ${n_batches_vec[$i4]}, ${n_cores_vec[$i5]}, ${approach_vec[$i6]}, ${multicore_method_vec[$i7]}, $logfile_Rscript" | tee -a $logfile_bash
+ Rscript --verbose $script_name $i0 ${p_vec[$i1]} ${n_train_vec[$i2]} ${n_test_vec[$i3]} ${n_batches_vec[$i4]} ${n_cores_vec[$i5]} ${approach_vec[$i6]} ${multicore_method_vec[$i7]} $logfile_Rscript &
+ start_new_script=0
+ fi
+
+ sleep 0.5
+ echo "$(date '+%Y-%m-%d, %H:%M:%S,') $(smem -t -c pss -P 4.1.1 | tail -n 1), $i0, ${p_vec[$i1]}, ${n_train_vec[$i2]}, ${n_test_vec[$i3]}, ${n_batches_vec[$i4]}, ${n_cores_vec[$i5]}, ${approach_vec[$i6]}, ${multicore_method_vec[$i7]}, $logfile_Rscript" | tee -a $logfile_bash
+ sleep 0.5
+
+ running_processes=$(pgrep -f $script_name -a -c)
+ done
+done; done; done; done; done; done; done; done
diff --git a/inst/scripts/devel/compare_explain_batch.R b/inst/scripts/devel/compare_explain_batch.R
index 0e790f3e0..cedf257fb 100644
--- a/inst/scripts/devel/compare_explain_batch.R
+++ b/inst/scripts/devel/compare_explain_batch.R
@@ -78,7 +78,7 @@ explain.independence2 <- function(x, explainer, approach, prediction_zero,
if (!is.null(seed)) set.seed(seed)
# Add arguments to explainer object
- explainer$x_test <- as.matrix(preprocess_data(x, explainer$feature_list)$x_dt)
+ explainer$x_test <- as.matrix(preprocess_data(x, explainer$feature_specs)$x_dt)
explainer$approach <- approach
explainer$n_samples <- n_samples
diff --git a/inst/scripts/devel/devel_parallelization.R b/inst/scripts/devel/devel_parallelization.R
new file mode 100644
index 000000000..6dd6d10bd
--- /dev/null
+++ b/inst/scripts/devel/devel_parallelization.R
@@ -0,0 +1,147 @@
+library(xgboost)
+library(shapr)
+library(future)
+
+data("Boston", package = "MASS")
+
+x_var <- c("lstat", "rm", "dis", "indus","rad","tax","ptratio","black","zn","crim")
+y_var <- "medv"
+
+x_train <- as.matrix(Boston[-1:-6, x_var])
+y_train <- Boston[-1:-6, y_var]
+x_test <- as.matrix(Boston[1:20, x_var])
+
+# Looking at the dependence between the features
+cor(x_train)
+
+# Fitting a basic xgboost model to the training data
+model <- xgboost(
+ data = x_train,
+ label = y_train,
+ nround = 20,
+ verbose = FALSE
+)
+
+# Prepare the data for explanation
+explainer <- shapr(x_train, model)
+
+# Specifying the phi_0, i.e. the expected prediction without any features
+p <- mean(y_train)
+
+
+# No specification (sequential)
+start <- proc.time()
+explanation0 <- explain(
+ x_test,
+ approach = "gaussian",
+ explainer = explainer,
+ prediction_zero = p,n_batches = 32
+)
+stop <- proc.time()
+time0 <- stop-start
+
+
+# Sequential
+start <- proc.time()
+future::plan("sequential")
+explanation1 <- explain(
+ x_test,
+ approach = "gaussian",
+ explainer = explainer,
+ prediction_zero = p,n_batches = 32
+)
+stop <- proc.time()
+time1 <- stop-start
+
+# Try to set multicore (in Rstudio this is disabled so falls back to sequential)
+start <- proc.time()
+future::plan("multicore",workers=5) ## defaults to availableCores() workers
+explanation2 <- explain(
+ x_test,
+ approach = "gaussian",
+ explainer = explainer,
+ prediction_zero = p,n_batches = 32
+)
+stop <- proc.time()
+time2 <- stop-start
+
+# Multisession with 2 workers
+start <- proc.time()
+future::plan("multisession",workers = 2) ## defaults to availableCores() workers
+explanation3 <- explain(
+ x_test,
+ approach = "gaussian",
+ explainer = explainer,
+ prediction_zero = p,n_batches = 32
+)
+stop <- proc.time()
+time3 <- stop-start
+
+# Multisession with 5 workers
+start <- proc.time()
+future::plan("multisession",workers=5) ## defaults to availableCores() workers
+explanation4 <- explain(
+ x_test,
+ approach = "gaussian",
+ explainer = explainer,
+ prediction_zero = p,n_batches = 32
+)
+stop <- proc.time()
+time4 <- stop-start
+
+# Multisession with 10 workers
+start <- proc.time()
+future::plan("multisession",workers=10) ## defaults to availableCores() workers
+explanation5 <- explain(
+ x_test,
+ approach = "gaussian",
+ explainer = explainer,
+ prediction_zero = p,n_batches = 32
+)
+stop <- proc.time()
+time5 <- stop-start
+
+# Multisession with 20 workers
+start <- proc.time()
+future::plan("multisession",workers=20)
+explanation6 <- explain(
+ x_test,
+ approach = "gaussian",
+ explainer = explainer,
+ prediction_zero = p,n_batches = 32
+)
+stop <- proc.time()
+time6 <- stop-start
+
+# Trying to set up a cluster and run it there
+start <- proc.time()
+cl <- parallel::makeCluster(c(rep("hpc01",5),rep("hpc02",5),rep("hpc03",6)),
+ rscript = "/nr/prog/AppServerDefaults/Ubuntu_18.04_x86_64/bin/Rscript")
+plan(cluster, workers = cl)
+#plan(remote, workers = cl)
+explanation7 <- explain(
+ x_test,
+ approach = "gaussian",
+ explainer = explainer,
+ prediction_zero = p,n_batches = 32
+)
+stop <- proc.time()
+parallel::stopCluster(cl)
+time7 <- stop-start
+
+
+
+
+
+# Printing the Shapley values for the test data.
+# For more information about the interpretation of the values in the table, see ?shapr::explain.
+head(explanation0$dt,2)
+head(explanation1$dt,2)
+head(explanation2$dt,2)
+head(explanation3$dt,2)
+head(explanation4$dt,2)
+head(explanation5$dt,2)
+head(explanation6$dt,2)
+head(explanation7$dt,2)
+
+cbind(time0,time1,time2,time3,time4,time5,time6,time7)
diff --git a/inst/scripts/devel/devel_tmp_new_batch.R b/inst/scripts/devel/devel_tmp_new_batch.R
new file mode 100644
index 000000000..290d5c009
--- /dev/null
+++ b/inst/scripts/devel/devel_tmp_new_batch.R
@@ -0,0 +1,48 @@
+
+
+
+explainer <- explain_setup(
+ x_test,
+ approach = c("empirical","empirical","gaussian","copula"),
+ explainer = explainer,
+ prediction_zero = p,
+ n_batches = 4
+)
+
+
+explainer$approach = c("empirical","empirical","gaussian","copula")
+
+
+
+
+explainer$X[,randomorder:=sample(.N)]
+setorder(explainer$X,randomorder)
+
+aa <- explainer$X[!is.na(approach)][order(randomorder)][order(shapley_weight),batch:=ceiling(.I/.N*n_batches_per_approach)]
+
+aa <- explainer$X[!is.na(approach)][order(randomorder)][order(shapley_weight),batch:=ceiling(.I/.N*5)]
+
+
+bb <- explainer$X[!is.na(approach)][rank(shapley_weight,ties.method = "random")]
+
+
+explainer$X[]
+
+
+n_batches <- max(1, floor(length(index_S) / no_samples * n_batches))
+
+
+S_per_apprach <-
+
+ findInterval(x, quantile(x,type=5), rightmost.closed=TRUE)
+
+# It is fast
+set.seed(1)
+DT <- data.table(x=rep(rnorm(5),2))
+
+library(microbenchmark)
+
+
+microbenchmark(
+ order = DT[order(x),bin:=ceiling(.I/.N*5)],
+ findInterval = DT[, b2 :=findInterval(x, quantile(x,type=5), rightmost.closed=TRUE)],times=20 )
diff --git a/inst/scripts/devel/explain_new.R b/inst/scripts/devel/explain_new.R
new file mode 100644
index 000000000..b6a1e2af7
--- /dev/null
+++ b/inst/scripts/devel/explain_new.R
@@ -0,0 +1,164 @@
+library(xgboost)
+library(shapr)
+
+data("Boston", package = "MASS")
+
+x_var <- c("lstat", "rm", "dis", "indus")
+y_var <- "medv"
+
+x_train <- as.matrix(Boston[-1:-6, x_var])
+y_train <- Boston[-1:-6, y_var]
+x_test <- as.matrix(Boston[1:6, x_var])
+
+# Looking at the dependence between the features
+cor(x_train)
+
+# Fitting a basic xgboost model to the training data
+model <- xgboost(
+ data = x_train,
+ label = y_train,
+ nround = 20,
+ verbose = FALSE
+)
+
+# Prepare the data for explanation
+explainer <- shapr(x_train,model)
+explainer2 <- shapr(x_train,model,is_python=T)
+explainer3 <- shapr(x_train,is_python=T)
+
+
+# Specifying the phi_0, i.e. the expected prediction without any features
+p <- mean(y_train)
+
+# Computing the actual Shapley values with kernelSHAP accounting for feature dependence using
+# the empirical (conditional) distribution approach with bandwidth parameter sigma = 0.1 (default)
+
+##### TESTS ####
+
+explanation_new <- explain_new(
+ x_test,
+ approach = "gaussian",
+ explainer = explainer1,
+ prediction_zero = p,
+ n_samples = 5*10^5,n_batches = 1
+)
+
+explanation_new$dt_shapley
+#none lstat rm dis indus
+#1: 22.446 5.190027 -0.9981141 0.4190562 4.2444812
+#2: 22.446 1.828362 -1.3269640 -0.2576771 0.5622163
+#3: 22.446 5.447883 4.6641813 -0.1288418 0.6862445
+#4: 22.446 5.617564 2.5234393 0.6614170 2.1817247
+#5: 22.446 1.715925 5.0150390 0.8001951 1.7526796
+#6: 22.446 2.592836 -2.6699632 0.6478134 1.8333372
+
+explanation_new <- explain_new(
+ x_test,
+ approach = "gaussian",
+ explainer = explainer,
+ prediction_zero = p,
+ n_samples = 10^5,n_batches = 4
+)
+
+explanation_new$dt_shapley
+#none lstat rm dis indus
+#1: 22.446 5.194753 -0.9882765 0.4020399 4.2469342
+#2: 22.446 1.809298 -1.3121239 -0.2562250 0.5649886
+#3: 22.446 5.447172 4.6691463 -0.1240268 0.6771758
+#4: 22.446 5.626358 2.5125083 0.6672642 2.1780147
+#5: 22.446 1.712585 5.0095470 0.8175396 1.7441671
+#6: 22.446 2.590425 -2.6672009 0.6596539 1.8211454
+
+explanation_new <- explain_new(
+ x_test,
+ approach = "empirical",
+ explainer = explainer,
+ prediction_zero = p,
+ n_samples = 10^5,n_batches = 1
+)
+
+explanation_new$dt_shapley
+#none lstat rm dis indus
+#1: 22.446 5.2632030 -1.2526613 0.2920444 4.5528644
+#2: 22.446 0.1671901 -0.7088401 0.9689005 0.3786871
+#3: 22.446 5.9888022 5.5450858 0.5660134 -1.4304351
+#4: 22.446 8.2142204 0.7507572 0.1893366 1.8298304
+#5: 22.446 0.5059898 5.6875103 0.8432238 2.2471150
+#6: 22.446 1.9929673 -3.6001958 0.8601984 3.1510531
+
+explanation_new <- explain_new(
+ x_test,
+ approach = "empirical",
+ explainer = explainer,
+ prediction_zero = p,
+ n_samples = 10^5,n_batches = 4
+)
+
+explanation_new$dt_shapley
+#none lstat rm dis indus
+#1: 22.446 5.2632030 -1.2526613 0.2920444 4.5528644
+#2: 22.446 0.1671901 -0.7088401 0.9689005 0.3786871
+#3: 22.446 5.9888022 5.5450858 0.5660134 -1.4304351
+#4: 22.446 8.2142204 0.7507572 0.1893366 1.8298304
+#5: 22.446 0.5059898 5.6875103 0.8432238 2.2471150
+#6: 22.446 1.9929673 -3.6001958 0.8601984 3.1510531
+
+#### TESTS ENDS #####
+
+#
+# print(explanation$dt)
+#
+# setup <- explain_setup(
+# x_test,
+# approach = "gaussian",
+# explainer = explainer,
+# prediction_zero = p
+# )
+#
+# str(explainer,max.level = 1)
+# str(setup,max.level=1)
+#
+explainer <- explain_setup(
+ x_test,
+ approach = "empirical",
+ explainer = explainer,
+ prediction_zero = p,
+ n_batches = 4
+ )
+
+explainer0 <- explain_setup(
+ x_test,
+ approach = c("empirical","copula","ctree","gaussian"),
+ explainer = explainer,
+ prediction_zero = p,
+ n_batches = 7
+)
+
+explainer0$X
+
+#
+#
+# dt <- future.apply::future_lapply(X = explainer$S_batch,
+# FUN = batch_prepare_vS,
+# explainer = explainer,
+# future.seed = explainer$seed)
+# dt <- batch_prepare_vS(explainer$S_batch[[4]],explainer)
+#
+#
+# explanation_new <- explain_new(
+# x_test,
+# approach = "gaussian",
+# explainer = explainer,
+# prediction_zero = p,
+# n_samples = 10^5
+# )
+
+
+
+prepare_data(explainer, index_features = explainer$S_batch[[1]])
+# Printing the Shapley values for the test data.
+# For more information about the interpretation of the values in the table, see ?shapr::explain.
+print(explanation$dt)
+
+# Finally we plot the resulting explanations
+plot(explanation)
diff --git a/inst/scripts/devel/inspect_sim_res.R b/inst/scripts/devel/inspect_sim_res.R
new file mode 100644
index 000000000..3f5c3993a
--- /dev/null
+++ b/inst/scripts/devel/inspect_sim_res.R
@@ -0,0 +1,14 @@
+logfile_bash="memory_log_test_big.csv"
+logfile_Rscript="timing_log_test_big.csv"
+
+
+bash <- fread(file.path("inst/scripts/devel/",logfile_bash))
+Rscript <- fread(file.path("inst/scripts/devel/",logfile_Rscript))
+
+names(bash) <- c("date","time","mem","p","n_train","n_test","n_batches","n_cores","approach","multicore_method","logfilename")
+
+
+bash[,mem_MB:=mem/1024]
+
+bash[,list(max_mem_MB=max(mem_MB)),by=c("p","n_train","n_test","n_batches","n_cores","approach","multicore_method")]
+str(bash)
diff --git a/inst/scripts/devel/memory_log_test_big.csv b/inst/scripts/devel/memory_log_test_big.csv
new file mode 100644
index 000000000..9361ed5cc
--- /dev/null
+++ b/inst/scripts/devel/memory_log_test_big.csv
@@ -0,0 +1,15141 @@
+2022-01-21, 19:45:21, 5729 , 0, 8, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:22, 97797 , 0, 8, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:23, 529517 , 0, 8, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:24, 728727 , 0, 8, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:25, 733509 , 0, 8, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:26, 733500 , 0, 8, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:27, 733568 , 0, 8, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:28, 1136015 , 0, 8, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:34, 5739 , 0, 8, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:45:34, 96003 , 0, 8, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:45:35, 492338 , 0, 8, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:45:36, 795184 , 0, 8, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:45:37, 795188 , 0, 8, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:45:38, 795211 , 0, 8, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:45:40, 795252 , 0, 8, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:45:41, 5720 , 0, 8, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:45:46, 5718 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:47, 103070 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:48, 214132 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:49, 260444 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:50, 338168 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:51, 412081 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:52, 460903 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:53, 538486 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:54, 599121 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:55, 673397 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:56, 731939 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:58, 774835 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:45:59, 832405 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:00, 933137 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:01, 992686 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:02, 1052212 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:03, 1128938 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:04, 1189471 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:05, 1249008 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:06, 1308526 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:07, 1371175 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:08, 1410857 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:09, 1470405 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:11, 1539494 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:12, 1602390 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:13, 1661932 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:14, 1721465 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:15, 1795531 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:16, 1884663 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:17, 1944182 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:18, 1987831 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:19, 2043414 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:20, 2102947 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:21, 2162473 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:23, 2222005 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:24, 2281522 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:25, 2346216 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:26, 4554266 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:27, 5990816 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:28, 9005997 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:29, 12200041 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:30, 13368837 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:31, 5728 , 0, 8, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:46:37, 5725 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:38, 96899 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:39, 198702 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:40, 258463 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:41, 341487 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:42, 394001 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:43, 455258 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:44, 533379 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:45, 597511 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:46, 648373 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:47, 721939 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:48, 782461 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:49, 841992 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:50, 920829 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:52, 970760 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:53, 1028319 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:54, 1092555 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:55, 1168534 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:56, 1228054 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:57, 1287610 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:58, 1360063 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:46:59, 1399747 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:00, 1459268 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:01, 1518808 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:02, 1581635 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:03, 1641160 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:05, 1700714 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:06, 1771134 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:07, 1846541 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:08, 1907066 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:09, 1958659 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:10, 2018217 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:11, 2077740 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:12, 2137270 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:13, 2195805 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:14, 2234504 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:15, 2294026 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:17, 3046113 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:18, 4535152 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:19, 6798178 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:20, 10541536 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:21, 12886563 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:22, 13445907 , 0, 8, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:47:28, 5708 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:28, 99401 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:29, 232194 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:31, 287544 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:32, 379979 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:33, 478781 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:34, 540342 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:35, 602784 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:36, 626051 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:37, 673420 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:38, 724069 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:39, 764741 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:40, 794336 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:41, 814187 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:42, 870380 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:44, 944665 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:45, 964531 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:46, 984368 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:47, 1024054 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:48, 1043899 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:49, 1083591 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:50, 1123281 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:51, 1165303 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:52, 1204994 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:53, 1224840 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:54, 1264511 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:55, 1288969 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:57, 1337157 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:58, 1356996 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:47:59, 1396677 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:00, 1416518 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:01, 1456208 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:02, 1476057 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:03, 1515752 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:04, 1535590 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:05, 1591819 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:06, 1611660 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:07, 1651343 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:08, 1671181 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:10, 1710892 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:11, 1770184 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:12, 1823899 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:13, 1845747 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:14, 1883445 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:15, 1903291 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:16, 1942967 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:17, 1981684 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:18, 2001525 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:19, 2041213 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:20, 2094814 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:22, 2135487 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:23, 2155336 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:24, 2175182 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:25, 2214864 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:26, 2254553 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:27, 2274405 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:28, 2314085 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:29, 2333933 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:30, 2395156 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:31, 2416365 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:32, 2456036 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:34, 2475879 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:35, 2515570 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:36, 2535416 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:37, 2575108 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:38, 2614799 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:39, 2634639 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:40, 2675404 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:41, 2695242 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:42, 2734942 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:43, 2791280 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:45, 2855701 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:46, 3570059 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:47, 5406768 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:48, 6200516 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:49, 6833751 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:50, 6836455 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:51, 6837776 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:52, 6839417 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:54, 6840689 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:55, 6842003 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:56, 6843322 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:57, 6844616 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:58, 6845980 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:48:59, 6763909 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:49:00, 5703 , 0, 8, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:49:06, 5719 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:06, 100628 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:08, 230595 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:09, 286646 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:10, 378695 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:11, 483011 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:12, 538729 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:13, 601119 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:14, 624951 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:15, 671379 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:16, 722406 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:17, 763081 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:18, 792992 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:19, 812826 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:20, 868618 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:22, 950754 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:23, 970608 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:24, 990435 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:25, 1030124 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:26, 1049978 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:27, 1089673 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:28, 1109527 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:29, 1163612 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:30, 1183462 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:31, 1223155 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:32, 1243012 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:33, 1300390 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:35, 1352987 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:36, 1372802 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:37, 1392677 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:38, 1432371 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:39, 1462124 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:40, 1491894 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:41, 1531575 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:42, 1557782 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:43, 1577628 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:44, 1617316 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:45, 1657003 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:47, 1681713 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:48, 1776880 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:49, 1824727 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:50, 1864413 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:51, 1884267 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:52, 1902123 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:53, 1937852 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:54, 1976566 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:55, 1996392 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:56, 2036084 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:57, 2055908 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:49:59, 2101391 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:00, 2121230 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:01, 2160900 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:02, 2180761 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:03, 2220438 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:04, 2240306 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:05, 2279967 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:06, 2299820 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:07, 2346817 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:08, 2367661 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:09, 2407355 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:11, 2427185 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:12, 2480042 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:13, 2499903 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:14, 2539581 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:15, 2559417 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:16, 2599119 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:17, 2618967 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:18, 2650707 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:19, 2668559 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:20, 2707268 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:21, 2746945 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:23, 2765795 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:24, 3216519 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:25, 5138284 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:26, 5932023 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:27, 6762443 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:28, 6765977 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:29, 6767438 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:30, 6769056 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:32, 6770352 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:33, 6771652 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:34, 6773017 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:35, 6772749 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:36, 6774118 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:37, 6688860 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:38, 5718 , 0, 8, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:44, 5723 , 0, 8, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:50:44, 98385 , 0, 8, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:50:46, 203745 , 0, 8, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:50:47, 702795 , 0, 8, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:50:48, 845801 , 0, 8, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:50:49, 824288 , 0, 8, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:50:50, 763557 , 0, 8, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:50:51, 835985 , 0, 8, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:50:52, 5726 , 0, 8, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:50:58, 5728 , 0, 8, 1000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:50:58, 101840 , 0, 8, 1000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:51:04, 851383 , 0, 8, 1000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:51:04, 939821 , 0, 8, 1000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:51:10, 527327 , 0, 8, 1000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:51:11, 654416 , 0, 8, 1000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:51:16, 1437576 , 0, 8, 1000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:51:17, 1570265 , 0, 8, 1000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:51:23, 2718976 , 0, 8, 1000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:51:23, 2889310 , 0, 8, 1000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:51:29, 4293111 , 0, 8, 1000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:51:30, 4475123 , 0, 8, 1000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:51:36, 6188532 , 0, 8, 1000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:51:36, 6391211 , 0, 8, 1000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:51:42, 7232379 , 0, 8, 1000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:51:43, 7430515 , 0, 8, 1000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:51:49, 9906001 , 0, 8, 1000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:51:50, 12250994 , 0, 8, 1000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:51:56, 9564385 , 0, 8, 1000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:51:56, 10806323 , 0, 8, 1000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:52:02, 6089884 , 0, 8, 1000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:52:03, 6296255 , 0, 8, 1000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:52:09, 7998664 , 0, 8, 1000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:52:10, 8264865 , 0, 8, 1000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:52:16, 10335835 , 0, 8, 1000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:52:17, 10629743 , 0, 8, 1000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:52:23, 11660126 , 0, 8, 1000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:52:24, 11919082 , 0, 8, 1000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:52:30, 13481313 , 0, 8, 1000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:52:31, 17345416 , 0, 8, 1000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:52:37, 15462794 , 0, 8, 1000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:52:38, 16968220 , 0, 8, 1000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:52:44, 11625846 , 0, 8, 1000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:52:45, 11962121 , 0, 8, 1000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:52:51, 14033091 , 0, 8, 1000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:52:52, 14352563 , 0, 8, 1000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:52:58, 20608791 , 0, 8, 1000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:53:00, 21055592 , 0, 8, 1000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:53:07, 24689918 , 0, 8, 1000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:53:08, 25353333 , 0, 8, 1000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:53:14, 29426595 , 0, 8, 1000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:53:16, 30240975 , 0, 8, 1000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:53:22, 27925609 , 0, 8, 1000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:53:24, 29787359 , 0, 8, 1000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:53:30, 30132427 , 0, 8, 1000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:53:32, 19473341 , 0, 8, 1000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:53:38, 21578951 , 0, 8, 1000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:53:40, 22000924 , 0, 8, 1000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:53:47, 21701636 , 0, 8, 1000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:53:49, 22360303 , 0, 8, 1000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:53:56, 25876545 , 0, 8, 1000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:53:57, 26573124 , 0, 8, 1000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:54:04, 28940896 , 0, 8, 1000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:54:06, 33824357 , 0, 8, 1000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:54:13, 32202732 , 0, 8, 1000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:54:15, 31950367 , 0, 8, 1000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:54:22, 20932457 , 0, 8, 1000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:54:24, 21388965 , 0, 8, 1000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:54:30, 23598698 , 0, 8, 1000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:54:32, 26316397 , 0, 8, 1000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:54:40, 26250736 , 0, 8, 1000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:54:42, 27520267 , 0, 8, 1000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:54:50, 29365631 , 0, 8, 1000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:54:52, 35183953 , 0, 8, 1000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:54:59, 25135235 , 0, 8, 1000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:55:01, 24659867 , 0, 8, 1000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:55:08, 19594524 , 0, 8, 1000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:55:09, 19933214 , 0, 8, 1000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:55:17, 23018775 , 0, 8, 1000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:55:19, 25659157 , 0, 8, 1000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:55:26, 24968385 , 0, 8, 1000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:55:28, 26353974 , 0, 8, 1000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:55:36, 28605113 , 0, 8, 1000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:55:38, 29304647 , 0, 8, 1000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:55:46, 34535889 , 0, 8, 1000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:55:48, 32719153 , 0, 8, 1000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:55:55, 30553264 , 0, 8, 1000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:55:57, 31507128 , 0, 8, 1000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:56:03, 19430947 , 0, 8, 1000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:56:05, 22056925 , 0, 8, 1000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:56:11, 21058266 , 0, 8, 1000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:56:13, 23939825 , 0, 8, 1000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:56:20, 29222411 , 0, 8, 1000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:56:21, 26968206 , 0, 8, 1000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:56:28, 21683747 , 0, 8, 1000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:56:29, 21895856 , 0, 8, 1000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:56:36, 17230489 , 0, 8, 1000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:56:37, 17498329 , 0, 8, 1000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:56:43, 24430054 , 0, 8, 1000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:56:45, 17895429 , 0, 8, 1000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:56:52, 25146370 , 0, 8, 1000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:56:53, 18768622 , 0, 8, 1000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:57:00, 16199291 , 0, 8, 1000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:57:02, 18852585 , 0, 8, 1000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:57:08, 24323032 , 0, 8, 1000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:57:10, 26687807 , 0, 8, 1000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:57:17, 27605139 , 0, 8, 1000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:57:19, 30281226 , 0, 8, 1000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:57:25, 25551312 , 0, 8, 1000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:57:27, 25755330 , 0, 8, 1000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:57:34, 26022325 , 0, 8, 1000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:57:35, 26298585 , 0, 8, 1000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:57:42, 27997201 , 0, 8, 1000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:57:44, 28363482 , 0, 8, 1000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:57:51, 29541757 , 0, 8, 1000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:57:52, 30135606 , 0, 8, 1000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:58:00, 27633834 , 0, 8, 1000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:58:02, 28800905 , 0, 8, 1000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:58:09, 31238013 , 0, 8, 1000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:58:11, 31742295 , 0, 8, 1000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:58:19, 41850266 , 0, 8, 1000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:58:21, 39076816 , 0, 8, 1000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:58:28, 29006100 , 0, 8, 1000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:58:30, 29325285 , 0, 8, 1000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:58:37, 27166447 , 0, 8, 1000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:58:39, 27668011 , 0, 8, 1000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:58:46, 31497255 , 0, 8, 1000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:58:49, 32065828 , 0, 8, 1000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:58:56, 36161592 , 0, 8, 1000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:58:59, 37990987 , 0, 8, 1000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:59:07, 44378948 , 0, 8, 1000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:59:10, 48187699 , 0, 8, 1000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 19:59:18, 37735359 , 0, 8, 1000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:59:21, 39193419 , 0, 8, 1000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 19:59:28, 20690175 , 0, 8, 1000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:59:30, 20888409 , 0, 8, 1000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 19:59:36, 22360726 , 0, 8, 1000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:59:38, 22778672 , 0, 8, 1000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 19:59:45, 25377098 , 0, 8, 1000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:59:46, 25926249 , 0, 8, 1000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 19:59:54, 30105995 , 0, 8, 1000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 19:59:57, 32193897 , 0, 8, 1000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:00:04, 33300083 , 0, 8, 1000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:00:07, 35264942 , 0, 8, 1000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:00:14, 48004494 , 0, 8, 1000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:00:17, 33655213 , 0, 8, 1000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:00:24, 22578448 , 0, 8, 1000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:00:26, 24478718 , 0, 8, 1000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:00:33, 15709685 , 0, 8, 1000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:00:34, 16151725 , 0, 8, 1000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:00:41, 19273172 , 0, 8, 1000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:00:43, 19876822 , 0, 8, 1000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:00:50, 23264518 , 0, 8, 1000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:00:53, 24892719 , 0, 8, 1000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:01:01, 33464581 , 0, 8, 1000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:01:03, 22693809 , 0, 8, 1000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:01:11, 19653466 , 0, 8, 1000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:01:12, 19794073 , 0, 8, 1000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:01:19, 10865283 , 0, 8, 1000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:01:20, 11159599 , 0, 8, 1000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:01:27, 9559679 , 0, 8, 1000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:01:29, 10114662 , 0, 8, 1000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:01:36, 13955852 , 0, 8, 1000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:01:38, 14682134 , 0, 8, 1000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:01:46, 29465200 , 0, 8, 1000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:01:48, 21199459 , 0, 8, 1000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:01:55, 18874525 , 0, 8, 1000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:01:57, 12231055 , 0, 8, 1000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:02:03, 12598355 , 0, 8, 1000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:02:04, 9380601 , 0, 8, 1000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:02:10, 6201405 , 0, 8, 1000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:02:11, 6472933 , 0, 8, 1000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:02:17, 10099871 , 0, 8, 1000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:02:18, 10405367 , 0, 8, 1000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:02:24, 13445546 , 0, 8, 1000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:02:25, 13629871 , 0, 8, 1000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:02:32, 16921269 , 0, 8, 1000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:02:33, 17422199 , 0, 8, 1000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:02:39, 13396693 , 0, 8, 1000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:02:40, 13463567 , 0, 8, 1000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:02:46, 14578690 , 0, 8, 1000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:02:47, 14180172 , 0, 8, 1000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:02:53, 8086759 , 0, 8, 1000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:02:54, 7753786 , 0, 8, 1000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:03:00, 6567679 , 0, 8, 1000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:03:01, 7461792 , 0, 8, 1000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:03:07, 11706454 , 0, 8, 1000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:03:08, 12742990 , 0, 8, 1000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:03:14, 12519741 , 0, 8, 1000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:03:15, 12179836 , 0, 8, 1000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:03:21, 9040686 , 0, 8, 1000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:03:22, 9280458 , 0, 8, 1000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:03:29, 11877643 , 0, 8, 1000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:03:30, 9562404 , 0, 8, 1000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:03:36, 8126775 , 0, 8, 1000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:03:37, 8426868 , 0, 8, 1000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:03:43, 12323192 , 0, 8, 1000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:03:45, 13424703 , 0, 8, 1000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:03:52, 17536377 , 0, 8, 1000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:03:53, 18102789 , 0, 8, 1000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:04:00, 25602308 , 0, 8, 1000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:04:02, 28716140 , 0, 8, 1000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:04:09, 21756801 , 0, 8, 1000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:04:10, 25407640 , 0, 8, 1000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:04:17, 17171441 , 0, 8, 1000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:04:19, 17447121 , 0, 8, 1000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:04:25, 17447911 , 0, 8, 1000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:04:27, 17932383 , 0, 8, 1000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:04:34, 20322400 , 0, 8, 1000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:04:36, 21137556 , 0, 8, 1000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:04:44, 28788128 , 0, 8, 1000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:04:46, 30198760 , 0, 8, 1000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:04:55, 35900257 , 0, 8, 1000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:04:58, 35670615 , 0, 8, 1000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:05:07, 35764807 , 0, 8, 1000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:05:10, 36460780 , 0, 8, 1000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:05:18, 26640032 , 0, 8, 1000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:05:20, 27628001 , 0, 8, 1000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:05:27, 25124552 , 0, 8, 1000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:05:30, 24703684 , 0, 8, 1000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:05:38, 27793184 , 0, 8, 1000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:05:41, 29591410 , 0, 8, 1000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:05:50, 28230709 , 0, 8, 1000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:05:52, 29695387 , 0, 8, 1000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:06:01, 33128614 , 0, 8, 1000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:06:05, 32356073 , 0, 8, 1000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:06:13, 36315033 , 0, 8, 1000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:06:16, 41722179 , 0, 8, 1000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:06:25, 25277690 , 0, 8, 1000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:06:27, 23683481 , 0, 8, 1000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:06:35, 20370680 , 0, 8, 1000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:06:37, 21433964 , 0, 8, 1000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:06:45, 25065437 , 0, 8, 1000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:06:48, 20941617 , 0, 8, 1000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:06:55, 26926946 , 0, 8, 1000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:06:59, 27758646 , 0, 8, 1000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:07:07, 31233079 , 0, 8, 1000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:07:10, 31628000 , 0, 8, 1000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:07:18, 21827686 , 0, 8, 1000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:07:21, 26345675 , 0, 8, 1000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:07:29, 21697560 , 0, 8, 1000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:07:31, 21468476 , 0, 8, 1000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:07:39, 19813691 , 0, 8, 1000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:07:41, 14908561 , 0, 8, 1000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:07:48, 22279758 , 0, 8, 1000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:07:50, 23373938 , 0, 8, 1000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:07:59, 25642346 , 0, 8, 1000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:08:04, 24002177 , 0, 8, 1000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:08:12, 21853663 , 0, 8, 1000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:08:15, 21688034 , 0, 8, 1000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:08:22, 14897797 , 0, 8, 1000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:08:23, 7058062 , 0, 8, 1000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:08:29, 8435471 , 0, 8, 1000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:08:31, 9282384 , 0, 8, 1000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:08:37, 14675944 , 0, 8, 1000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:08:38, 16044444 , 0, 8, 1000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:08:45, 17923501 , 0, 8, 1000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:08:46, 18748036 , 0, 8, 1000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:08:53, 1820544 , 0, 8, 1000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:08:53, 1877059 , 0, 8, 1000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:08:59, 2043676 , 0, 8, 1000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:09:00, 2172511 , 0, 8, 1000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:09:05, 3026200 , 0, 8, 1000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:09:06, 3278556 , 0, 8, 1000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:09:12, 6689562 , 0, 8, 1000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:09:13, 4930148 , 0, 8, 1000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:09:19, 6519057 , 0, 8, 1000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:09:19, 5396399 , 0, 8, 1000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:09:25, 8832130 , 0, 8, 1000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:09:26, 7643887 , 0, 8, 1000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:09:32, 9459426 , 0, 8, 1000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:09:33, 8870990 , 0, 8, 1000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:09:39, 8403504 , 0, 8, 1000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:09:40, 9331740 , 0, 8, 1000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:09:46, 10001124 , 0, 8, 1000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:09:47, 9301454 , 0, 8, 1000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:09:54, 10403303 , 0, 8, 1000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:09:55, 12183685 , 0, 8, 1000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:10:01, 9985093 , 0, 8, 1000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:10:03, 9915478 , 0, 8, 1000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:10:10, 11535859 , 0, 8, 1000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:10:12, 11340169 , 0, 8, 1000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:10:18, 14817310 , 0, 8, 1000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:10:20, 15653969 , 0, 8, 1000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:10:26, 16651725 , 0, 8, 1000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:10:28, 17241787 , 0, 8, 1000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:10:35, 18914269 , 0, 8, 1000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:10:38, 21659115 , 0, 8, 1000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:10:46, 14841036 , 0, 8, 1000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:10:48, 16739958 , 0, 8, 1000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:10:55, 19217726 , 0, 8, 1000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:10:57, 17958338 , 0, 8, 1000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:11:05, 18579134 , 0, 8, 1000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:11:07, 19036306 , 0, 8, 1000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:11:15, 20508973 , 0, 8, 1000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:11:18, 23588819 , 0, 8, 1000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:11:28, 34153138 , 0, 8, 1000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:11:31, 38141017 , 0, 8, 1000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:11:41, 24231015 , 0, 8, 1000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:11:44, 23977075 , 0, 8, 1000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:11:53, 21349764 , 0, 8, 1000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:11:56, 21174404 , 0, 8, 1000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:12:03, 27505272 , 0, 8, 1000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:12:08, 29161975 , 0, 8, 1000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:12:17, 27523691 , 0, 8, 1000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:12:20, 25701960 , 0, 8, 1000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:12:32, 27724477 , 0, 8, 1000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:12:38, 28797803 , 0, 8, 1000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:12:49, 29075902 , 0, 8, 1000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:12:55, 28241605 , 0, 8, 1000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:13:03, 14301775 , 0, 8, 1000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:13:05, 14842326 , 0, 8, 1000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:13:13, 17948720 , 0, 8, 1000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:13:16, 20473761 , 0, 8, 1000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:13:24, 27375173 , 0, 8, 1000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:13:27, 24057158 , 0, 8, 1000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:13:35, 18894778 , 0, 8, 1000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:13:38, 19394008 , 0, 8, 1000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:13:47, 24644135 , 0, 8, 1000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:13:52, 23512585 , 0, 8, 1000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:14:03, 15494016 , 0, 8, 1000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:14:05, 15303778 , 0, 8, 1000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:14:12, 13248337 , 0, 8, 1000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:14:14, 13786609 , 0, 8, 1000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:14:22, 17272564 , 0, 8, 1000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:14:25, 21875533 , 0, 8, 1000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:14:33, 18425480 , 0, 8, 1000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:14:35, 15493459 , 0, 8, 1000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:14:45, 17632029 , 0, 8, 1000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:14:49, 18459974 , 0, 8, 1000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:14:59, 27421560 , 0, 8, 1000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:15:04, 25057074 , 0, 8, 1000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:15:12, 9904125 , 0, 8, 1000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:15:14, 10506677 , 0, 8, 1000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:15:20, 13219807 , 0, 8, 1000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:15:22, 14714119 , 0, 8, 1000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:15:29, 21074499 , 0, 8, 1000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:15:31, 21250215 , 0, 8, 1000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:15:38, 12374176 , 0, 8, 1000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:15:39, 12244811 , 0, 8, 1000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:15:46, 1388585 , 0, 8, 1000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:15:46, 1838025 , 0, 8, 1000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:15:52, 2495703 , 0, 8, 1000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:15:53, 2635925 , 0, 8, 1000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:15:58, 2935970 , 0, 8, 1000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:15:59, 3049658 , 0, 8, 1000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:16:05, 4036150 , 0, 8, 1000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:16:06, 3881525 , 0, 8, 1000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:16:12, 4181821 , 0, 8, 1000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:16:13, 4583448 , 0, 8, 1000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:16:19, 4697788 , 0, 8, 1000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:16:20, 4784537 , 0, 8, 1000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:16:26, 7119198 , 0, 8, 1000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:16:27, 4967715 , 0, 8, 1000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:16:33, 6552814 , 0, 8, 1000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:16:34, 6519951 , 0, 8, 1000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:16:40, 6994639 , 0, 8, 1000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:16:41, 7849031 , 0, 8, 1000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:16:48, 9078373 , 0, 8, 1000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:16:49, 9454615 , 0, 8, 1000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:16:56, 8868490 , 0, 8, 1000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:16:58, 8222005 , 0, 8, 1000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:17:05, 9403565 , 0, 8, 1000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:17:06, 10059786 , 0, 8, 1000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:17:13, 9641118 , 0, 8, 1000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:17:16, 10901456 , 0, 8, 1000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:17:23, 14344618 , 0, 8, 1000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:17:26, 11993839 , 0, 8, 1000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:17:34, 13972117 , 0, 8, 1000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:17:36, 14357992 , 0, 8, 1000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:17:44, 16626884 , 0, 8, 1000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:17:47, 15689711 , 0, 8, 1000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:17:56, 18058708 , 0, 8, 1000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:17:59, 17880082 , 0, 8, 1000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:18:08, 16174576 , 0, 8, 1000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:18:12, 12990422 , 0, 8, 1000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:18:23, 14155550 , 0, 8, 1000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:18:27, 16503259 , 0, 8, 1000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:18:34, 17375735 , 0, 8, 1000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:18:38, 17637574 , 0, 8, 1000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:18:48, 23115543 , 0, 8, 1000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:18:52, 25201975 , 0, 8, 1000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:19:01, 19057675 , 0, 8, 1000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:19:05, 20461027 , 0, 8, 1000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:19:14, 25321778 , 0, 8, 1000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:19:20, 22647882 , 0, 8, 1000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:19:31, 18290253 , 0, 8, 1000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:19:35, 18208472 , 0, 8, 1000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:19:44, 22615231 , 0, 8, 1000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:19:53, 22310952 , 0, 8, 1000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:20:08, 32465609 , 0, 8, 1000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:20:13, 28178922 , 0, 8, 1000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:20:24, 23542205 , 0, 8, 1000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:20:28, 25229208 , 0, 8, 1000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:20:39, 23605065 , 0, 8, 1000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:20:47, 23989413 , 0, 8, 1000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:20:59, 23626696 , 0, 8, 1000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:21:04, 19316694 , 0, 8, 1000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:21:12, 5865986 , 0, 8, 1000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:21:14, 7075230 , 0, 8, 1000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:21:22, 13787179 , 0, 8, 1000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:21:27, 16481942 , 0, 8, 1000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:21:37, 11812150 , 0, 8, 1000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:21:38, 5505617 , 0, 8, 1000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:21:45, 13703656 , 0, 8, 1000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:21:48, 15013046 , 0, 8, 1000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:21:56, 20771016 , 0, 8, 1000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:22:00, 24016681 , 0, 8, 1000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:22:12, 21173729 , 0, 8, 1000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:22:17, 16467537 , 0, 8, 1000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:22:25, 19280555 , 0, 8, 1000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:22:29, 17427586 , 0, 8, 1000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:22:40, 12280950 , 0, 8, 1000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:22:45, 16511500 , 0, 8, 1000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:22:55, 4159742 , 0, 8, 1000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:22:56, 5152034 , 0, 8, 1000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:23:02, 12904756 , 0, 8, 1000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:23:05, 14385839 , 0, 8, 1000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:23:13, 19080230 , 0, 8, 1000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:23:15, 23599694 , 0, 8, 1000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:23:24, 14604567 , 0, 8, 1000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:23:25, 14679684 , 0, 8, 1000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:23:32, 2349088 , 0, 8, 1000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:23:33, 2441478 , 0, 8, 1000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:23:39, 3106895 , 0, 8, 1000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:23:39, 3588684 , 0, 8, 1000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:23:45, 2499453 , 0, 8, 1000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:23:46, 2464639 , 0, 8, 1000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:23:52, 2289975 , 0, 8, 1000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:23:52, 2959783 , 0, 8, 1000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:23:58, 3360850 , 0, 8, 1000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:23:59, 3875283 , 0, 8, 1000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:24:05, 3827301 , 0, 8, 1000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:24:06, 4354800 , 0, 8, 1000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:24:12, 4724500 , 0, 8, 1000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:24:13, 4233046 , 0, 8, 1000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:24:19, 4216115 , 0, 8, 1000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:24:20, 4780236 , 0, 8, 1000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:24:26, 5085029 , 0, 8, 1000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:24:27, 5638016 , 0, 8, 1000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:24:33, 6827819 , 0, 8, 1000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:24:34, 6379884 , 0, 8, 1000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:24:41, 7731886 , 0, 8, 1000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:24:42, 7326797 , 0, 8, 1000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:24:49, 8770895 , 0, 8, 1000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:24:51, 8364964 , 0, 8, 1000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:24:58, 9399693 , 0, 8, 1000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:25:00, 9793818 , 0, 8, 1000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:25:08, 10502294 , 0, 8, 1000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:25:11, 10744299 , 0, 8, 1000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:25:18, 12682338 , 0, 8, 1000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:25:21, 12706632 , 0, 8, 1000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:25:29, 11852440 , 0, 8, 1000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:25:31, 13248171 , 0, 8, 1000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:25:39, 14468910 , 0, 8, 1000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:25:41, 14176647 , 0, 8, 1000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:25:51, 15837166 , 0, 8, 1000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:25:56, 15009902 , 0, 8, 1000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:26:05, 15264311 , 0, 8, 1000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:26:10, 15749173 , 0, 8, 1000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:26:18, 16297484 , 0, 8, 1000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:26:23, 15610032 , 0, 8, 1000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:26:32, 17155419 , 0, 8, 1000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:26:36, 17837840 , 0, 8, 1000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:26:46, 23017626 , 0, 8, 1000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:26:49, 18341276 , 0, 8, 1000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:26:57, 19693535 , 0, 8, 1000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:27:00, 19816452 , 0, 8, 1000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:27:11, 20478439 , 0, 8, 1000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:27:15, 20220936 , 0, 8, 1000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:27:24, 21388241 , 0, 8, 1000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:27:29, 23299559 , 0, 8, 1000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:27:42, 28428172 , 0, 8, 1000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:27:54, 26386210 , 0, 8, 1000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:28:07, 27536814 , 0, 8, 1000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:28:12, 26249295 , 0, 8, 1000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:28:22, 21902227 , 0, 8, 1000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:28:26, 24039850 , 0, 8, 1000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:28:36, 29253328 , 0, 8, 1000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:28:42, 22383108 , 0, 8, 1000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:28:55, 18174740 , 0, 8, 1000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:28:59, 17894417 , 0, 8, 1000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:29:07, 15023177 , 0, 8, 1000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:29:10, 15483285 , 0, 8, 1000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:29:18, 19926635 , 0, 8, 1000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:29:28, 19694597 , 0, 8, 1000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:29:39, 20918963 , 0, 8, 1000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:29:41, 6150140 , 0, 8, 1000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:29:48, 15378471 , 0, 8, 1000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:29:52, 18267036 , 0, 8, 1000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:30:01, 25576422 , 0, 8, 1000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:30:08, 27679485 , 0, 8, 1000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:30:20, 20732885 , 0, 8, 1000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:30:25, 19948308 , 0, 8, 1000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:30:34, 7623453 , 0, 8, 1000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:30:37, 8830593 , 0, 8, 1000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:30:46, 14330391 , 0, 8, 1000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:30:53, 19427971 , 0, 8, 1000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:31:03, 4005369 , 0, 8, 1000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:31:04, 4766390 , 0, 8, 1000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:31:10, 14475178 , 0, 8, 1000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:31:14, 17948875 , 0, 8, 1000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:31:24, 21257160 , 0, 8, 1000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:31:29, 16590231 , 0, 8, 1000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:31:36, 16124883 , 0, 8, 1000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:31:38, 16290141 , 0, 8, 1000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:31:45, 2192074 , 0, 8, 1000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:31:46, 2245116 , 0, 8, 1000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:31:51, 2594586 , 0, 8, 1000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:31:52, 2997775 , 0, 8, 1000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:31:58, 3414706 , 0, 8, 1000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:31:59, 3608814 , 0, 8, 1000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:32:05, 3314129 , 0, 8, 1000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:32:05, 3300754 , 0, 8, 1000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:32:11, 3052052 , 0, 8, 1000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:32:12, 3331699 , 0, 8, 1000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:32:18, 3235943 , 0, 8, 1000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:32:19, 3508841 , 0, 8, 1000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:32:25, 4234780 , 0, 8, 1000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:32:26, 3830557 , 0, 8, 1000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:32:32, 3879451 , 0, 8, 1000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:32:33, 4427326 , 0, 8, 1000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:32:39, 4961059 , 0, 8, 1000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:32:40, 4879897 , 0, 8, 1000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:32:46, 6799744 , 0, 8, 1000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:32:47, 6321118 , 0, 8, 1000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:32:54, 7668544 , 0, 8, 1000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:32:55, 7413334 , 0, 8, 1000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:33:02, 7660409 , 0, 8, 1000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:33:04, 7783475 , 0, 8, 1000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:33:10, 7546655 , 0, 8, 1000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:33:12, 8685336 , 0, 8, 1000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:33:21, 10756718 , 0, 8, 1000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:33:23, 9442595 , 0, 8, 1000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:33:31, 10013381 , 0, 8, 1000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:33:33, 10056209 , 0, 8, 1000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:33:40, 12348216 , 0, 8, 1000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:33:44, 13499937 , 0, 8, 1000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:33:52, 13421361 , 0, 8, 1000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:33:56, 13301052 , 0, 8, 1000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:34:07, 14704558 , 0, 8, 1000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:34:12, 14197641 , 0, 8, 1000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:34:23, 14178574 , 0, 8, 1000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:34:27, 13877074 , 0, 8, 1000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:34:37, 13382806 , 0, 8, 1000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:34:40, 14233929 , 0, 8, 1000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:34:49, 15330418 , 0, 8, 1000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:34:53, 16162063 , 0, 8, 1000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:35:02, 19119425 , 0, 8, 1000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:35:07, 20518669 , 0, 8, 1000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:35:17, 18365499 , 0, 8, 1000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:35:21, 17508955 , 0, 8, 1000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:35:28, 17823240 , 0, 8, 1000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:35:35, 18639727 , 0, 8, 1000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:35:43, 20793115 , 0, 8, 1000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:35:49, 21463790 , 0, 8, 1000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:36:01, 23403446 , 0, 8, 1000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:36:09, 20193235 , 0, 8, 1000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:36:24, 19331245 , 0, 8, 1000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:36:31, 20421895 , 0, 8, 1000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:36:39, 18600885 , 0, 8, 1000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:36:44, 20606277 , 0, 8, 1000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:36:54, 25900130 , 0, 8, 1000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:37:02, 21795103 , 0, 8, 1000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:37:17, 16220069 , 0, 8, 1000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:37:21, 15963358 , 0, 8, 1000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:37:30, 16503469 , 0, 8, 1000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:37:33, 18202385 , 0, 8, 1000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:37:44, 12288469 , 0, 8, 1000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:37:50, 10721905 , 0, 8, 1000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:38:00, 15199886 , 0, 8, 1000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:38:02, 17119056 , 0, 8, 1000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:38:11, 24363436 , 0, 8, 1000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:38:16, 19622914 , 0, 8, 1000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:38:28, 19296763 , 0, 8, 1000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:38:32, 19971563 , 0, 8, 1000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:38:43, 18464475 , 0, 8, 1000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:38:46, 17847735 , 0, 8, 1000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:38:56, 20191042 , 0, 8, 1000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:38:59, 22167936 , 0, 8, 1000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:39:13, 17359455 , 0, 8, 1000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:39:21, 12132777 , 0, 8, 1000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:39:29, 3695876 , 0, 8, 1000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:39:30, 4437152 , 0, 8, 1000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:39:36, 15744033 , 0, 8, 10000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:39:41, 20939324 , 0, 8, 10000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:39:51, 23297645 , 0, 8, 10000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:39:56, 18627351 , 0, 8, 10000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:40:03, 21013408 , 0, 8, 10000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:40:05, 23118286 , 0, 8, 10000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:40:13, 11788129 , 0, 8, 10000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:40:13, 12439813 , 0, 8, 10000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:40:19, 14103516 , 0, 8, 10000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:40:20, 14265549 , 0, 8, 10000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:40:26, 15426253 , 0, 8, 10000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:40:27, 15116601 , 0, 8, 10000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:40:33, 15667943 , 0, 8, 10000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:40:33, 16757021 , 0, 8, 10000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:40:39, 20642535 , 0, 8, 10000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:40:40, 21100794 , 0, 8, 10000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:40:46, 28566471 , 0, 8, 10000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:40:47, 29820416 , 0, 8, 10000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:40:53, 36172010 , 0, 8, 10000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:40:55, 37214011 , 0, 8, 10000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:41:01, 42536326 , 0, 8, 10000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:41:02, 43297340 , 0, 8, 10000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:41:09, 52795015 , 0, 8, 10000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:41:10, 57336562 , 0, 8, 10000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:41:17, 26719685 , 0, 8, 10000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:41:18, 27177248 , 0, 8, 10000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:41:24, 30732800 , 0, 8, 10000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:41:25, 32093816 , 0, 8, 10000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:41:31, 42098805 , 0, 8, 10000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:41:33, 42030246 , 0, 8, 10000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:41:39, 49639526 , 0, 8, 10000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:41:40, 50868554 , 0, 8, 10000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:41:47, 58771518 , 0, 8, 10000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:41:49, 47669626 , 0, 8, 10000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:41:55, 62491822 , 0, 8, 10000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:41:57, 51653776 , 0, 8, 10000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:42:04, 46662237 , 0, 8, 10000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:42:05, 47375606 , 0, 8, 10000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:42:11, 55683543 , 0, 8, 10000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:42:13, 47233328 , 0, 8, 10000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:42:20, 55129992 , 0, 8, 10000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:42:21, 57748342 , 0, 8, 10000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:42:28, 64937119 , 0, 8, 10000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:42:30, 66176877 , 0, 8, 10000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:42:37, 61698843 , 0, 8, 10000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:42:39, 64657296 , 0, 8, 10000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:42:47, 65695640 , 0, 8, 10000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:42:49, 67880073 , 0, 8, 10000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:42:56, 65941649 , 0, 8, 10000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:42:58, 55823167 , 0, 8, 10000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:43:05, 68848749 , 0, 8, 10000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:43:08, 71564143 , 0, 8, 10000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:43:15, 80963934 , 0, 8, 10000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:43:18, 84087947 , 0, 8, 10000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:43:26, 90943311 , 0, 8, 10000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:43:29, 91556829 , 0, 8, 10000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:43:37, 98599328 , 0, 8, 10000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:43:40, 94958162 , 0, 8, 10000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:43:48, 94425664 , 0, 8, 10000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:43:51, 88077778 , 0, 8, 10000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:43:59, 83189031 , 0, 8, 10000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:44:02, 87788696 , 0, 8, 10000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:44:10, 95948135 , 0, 8, 10000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:44:14, 99337056 , 0, 8, 10000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:44:22, 106781189 , 0, 8, 10000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:44:26, 110559457 , 0, 8, 10000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:44:35, 115384803 , 0, 8, 10000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:44:39, 117361353 , 0, 8, 10000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:44:49, 125633566 , 0, 8, 10000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:44:53, 109673011 , 0, 8, 10000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:45:03, 115777944 , 0, 8, 10000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:45:07, 106540318 , 0, 8, 10000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:45:16, 103131540 , 0, 8, 10000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:45:20, 104719034 , 0, 8, 10000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:45:29, 112037520 , 0, 8, 10000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:45:33, 116435915 , 0, 8, 10000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:45:43, 122727512 , 0, 8, 10000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:45:48, 119398016 , 0, 8, 10000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:45:59, 127858115 , 0, 8, 10000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:46:05, 122366933 , 0, 8, 10000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:46:16, 115967862 , 0, 8, 10000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:46:21, 123879385 , 0, 8, 10000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:46:32, 108644732 , 0, 8, 10000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:46:36, 102276477 , 0, 8, 10000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:46:46, 85198749 , 0, 8, 10000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:46:50, 88068604 , 0, 8, 10000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:46:59, 99645622 , 0, 8, 10000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:47:04, 103109600 , 0, 8, 10000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:47:13, 110833899 , 0, 8, 10000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:47:18, 102834279 , 0, 8, 10000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:47:28, 104119033 , 0, 8, 10000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:47:32, 110612308 , 0, 8, 10000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:47:41, 81874445 , 0, 8, 10000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:47:44, 82471040 , 0, 8, 10000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:47:52, 75383328 , 0, 8, 10000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:47:55, 81946778 , 0, 8, 10000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:48:04, 83527582 , 0, 8, 10000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:48:07, 75944148 , 0, 8, 10000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:48:15, 84124462 , 0, 8, 10000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:48:19, 85903597 , 0, 8, 10000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:48:27, 87812932 , 0, 8, 10000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:48:31, 88192905 , 0, 8, 10000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:48:40, 88542367 , 0, 8, 10000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:48:44, 89350244 , 0, 8, 10000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:48:54, 87518203 , 0, 8, 10000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:48:59, 76600785 , 0, 8, 10000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:49:08, 77079809 , 0, 8, 10000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:49:12, 80663379 , 0, 8, 10000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:49:21, 65498616 , 0, 8, 10000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:49:25, 60819077 , 0, 8, 10000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:49:33, 79725165 , 0, 8, 10000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:49:37, 84217154 , 0, 8, 10000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:49:46, 88937048 , 0, 8, 10000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:49:50, 83779871 , 0, 8, 10000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:49:59, 82548298 , 0, 8, 10000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:50:02, 84919511 , 0, 8, 10000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:50:11, 87475763 , 0, 8, 10000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:50:16, 88243957 , 0, 8, 10000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:50:25, 90664065 , 0, 8, 10000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:50:30, 87572075 , 0, 8, 10000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:50:40, 67762741 , 0, 8, 10000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:50:44, 67033833 , 0, 8, 10000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:50:53, 90560957 , 0, 8, 10000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:50:57, 80165914 , 0, 8, 10000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:51:05, 81573730 , 0, 8, 10000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:51:09, 76807614 , 0, 8, 10000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:51:18, 69817354 , 0, 8, 10000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:51:22, 70844063 , 0, 8, 10000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:51:30, 72685223 , 0, 8, 10000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:51:34, 73354625 , 0, 8, 10000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:51:44, 76493309 , 0, 8, 10000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:51:48, 75663304 , 0, 8, 10000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:51:59, 79113679 , 0, 8, 10000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:52:03, 75419827 , 0, 8, 10000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:52:13, 95737923 , 0, 8, 10000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:52:17, 86266972 , 0, 8, 10000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:52:27, 82943066 , 0, 8, 10000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:52:31, 83317900 , 0, 8, 10000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:52:41, 66410709 , 0, 8, 10000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:52:44, 61410677 , 0, 8, 10000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:52:53, 65931331 , 0, 8, 10000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:52:57, 66554707 , 0, 8, 10000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:53:06, 70131559 , 0, 8, 10000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:53:10, 68462825 , 0, 8, 10000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:53:19, 65403154 , 0, 8, 10000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:53:23, 68483775 , 0, 8, 10000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:53:33, 86982131 , 0, 8, 10000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:53:37, 94001944 , 0, 8, 10000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:53:47, 80002002 , 0, 8, 10000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:53:51, 68912135 , 0, 8, 10000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:54:00, 49569512 , 0, 8, 10000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:54:03, 51450422 , 0, 8, 10000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:54:11, 48027945 , 0, 8, 10000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:54:14, 48618514 , 0, 8, 10000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:54:23, 46141355 , 0, 8, 10000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:54:26, 47706885 , 0, 8, 10000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:54:35, 44087717 , 0, 8, 10000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:54:38, 42678467 , 0, 8, 10000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:54:47, 60288971 , 0, 8, 10000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:54:50, 64840770 , 0, 8, 10000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:55:00, 49823965 , 0, 8, 10000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:55:02, 49479711 , 0, 8, 10000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:55:11, 35043915 , 0, 8, 10000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:55:14, 35013104 , 0, 8, 10000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:55:22, 31333429 , 0, 8, 10000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:55:24, 32809713 , 0, 8, 10000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:55:33, 28853841 , 0, 8, 10000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:55:36, 30853970 , 0, 8, 10000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:55:44, 24970662 , 0, 8, 10000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:55:45, 26838317 , 0, 8, 10000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:55:53, 32163283 , 0, 8, 10000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:55:55, 35751228 , 0, 8, 10000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:56:02, 40528436 , 0, 8, 10000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:56:04, 28522483 , 0, 8, 10000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:56:11, 30727039 , 0, 8, 10000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:56:12, 30157571 , 0, 8, 10000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:56:19, 22728177 , 0, 8, 10000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:56:20, 23447987 , 0, 8, 10000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:56:27, 25576937 , 0, 8, 10000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:56:28, 25587137 , 0, 8, 10000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:56:35, 25251838 , 0, 8, 10000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:56:37, 24815672 , 0, 8, 10000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:56:44, 31629458 , 0, 8, 10000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:56:46, 32050601 , 0, 8, 10000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:56:53, 40926979 , 0, 8, 10000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:56:55, 39520939 , 0, 8, 10000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:57:03, 41818547 , 0, 8, 10000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:57:05, 42584066 , 0, 8, 10000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:57:14, 41847971 , 0, 8, 10000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:57:17, 32540142 , 0, 8, 10000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:57:25, 40230376 , 0, 8, 10000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:57:27, 37354498 , 0, 8, 10000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:57:35, 43765556 , 0, 8, 10000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:57:38, 42745857 , 0, 8, 10000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:57:46, 43988934 , 0, 8, 10000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:57:49, 39800818 , 0, 8, 10000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:57:57, 46208472 , 0, 8, 10000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:58:01, 47460591 , 0, 8, 10000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:58:10, 50455526 , 0, 8, 10000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:58:14, 46289165 , 0, 8, 10000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:58:24, 48896054 , 0, 8, 10000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:58:28, 46704200 , 0, 8, 10000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:58:38, 40905758 , 0, 8, 10000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:58:42, 44062754 , 0, 8, 10000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:58:51, 42234463 , 0, 8, 10000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:58:54, 29047527 , 0, 8, 10000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 20:59:01, 40680302 , 0, 8, 10000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:59:03, 35084966 , 0, 8, 10000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 20:59:10, 44189661 , 0, 8, 10000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:59:13, 44515872 , 0, 8, 10000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 20:59:20, 46905190 , 0, 8, 10000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:59:24, 46031164 , 0, 8, 10000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 20:59:33, 51033835 , 0, 8, 10000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:59:37, 48013495 , 0, 8, 10000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 20:59:47, 47903470 , 0, 8, 10000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 20:59:51, 52378008 , 0, 8, 10000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:00:02, 68726525 , 0, 8, 10000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:00:07, 63592269 , 0, 8, 10000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:00:16, 56614592 , 0, 8, 10000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:00:20, 50351055 , 0, 8, 10000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:00:28, 51740165 , 0, 8, 10000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:00:31, 52312275 , 0, 8, 10000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:00:40, 53993496 , 0, 8, 10000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:00:44, 53867510 , 0, 8, 10000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:00:54, 55331214 , 0, 8, 10000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:01:00, 57279945 , 0, 8, 10000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:01:12, 51618037 , 0, 8, 10000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:01:17, 52167844 , 0, 8, 10000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:01:28, 55473856 , 0, 8, 10000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:01:34, 56715154 , 0, 8, 10000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:01:44, 47399878 , 0, 8, 10000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:01:47, 46819965 , 0, 8, 10000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:01:55, 54723267 , 0, 8, 10000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:01:59, 55171933 , 0, 8, 10000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:02:08, 50662237 , 0, 8, 10000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:02:13, 54061437 , 0, 8, 10000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:02:25, 42359564 , 0, 8, 10000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:02:29, 41581524 , 0, 8, 10000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:02:40, 49491676 , 0, 8, 10000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:02:46, 52547192 , 0, 8, 10000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:02:55, 43942885 , 0, 8, 10000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:02:59, 35751669 , 0, 8, 10000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:03:07, 40856149 , 0, 8, 10000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:03:10, 41978126 , 0, 8, 10000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:03:19, 48485988 , 0, 8, 10000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:03:22, 35535225 , 0, 8, 10000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:03:30, 40282486 , 0, 8, 10000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:03:34, 41069652 , 0, 8, 10000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:03:43, 42759581 , 0, 8, 10000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:03:49, 46845137 , 0, 8, 10000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:04:01, 42446405 , 0, 8, 10000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:04:05, 40944630 , 0, 8, 10000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:04:15, 37544282 , 0, 8, 10000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:04:18, 43606734 , 0, 8, 10000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:04:25, 36347471 , 0, 8, 10000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:04:28, 37167663 , 0, 8, 10000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:04:36, 18567725 , 0, 8, 10000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:04:37, 19590007 , 0, 8, 10000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:04:43, 22159230 , 0, 8, 10000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:04:45, 24074503 , 0, 8, 10000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:04:52, 29828714 , 0, 8, 10000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:04:54, 33137169 , 0, 8, 10000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:05:01, 24403498 , 0, 8, 10000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:05:02, 20869616 , 0, 8, 10000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:05:09, 6127278 , 0, 8, 10000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:05:10, 8425520 , 0, 8, 10000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:05:16, 7933427 , 0, 8, 10000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:05:17, 9161468 , 0, 8, 10000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:05:23, 10251797 , 0, 8, 10000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:05:24, 10342790 , 0, 8, 10000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:05:30, 14388808 , 0, 8, 10000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:05:31, 12519953 , 0, 8, 10000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:05:38, 16798584 , 0, 8, 10000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:05:39, 19147677 , 0, 8, 10000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:05:46, 18582493 , 0, 8, 10000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:05:47, 18777465 , 0, 8, 10000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:05:54, 22558811 , 0, 8, 10000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:05:56, 21181308 , 0, 8, 10000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:06:03, 24188657 , 0, 8, 10000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:06:05, 23875668 , 0, 8, 10000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:06:13, 30125376 , 0, 8, 10000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:06:15, 30634323 , 0, 8, 10000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:06:23, 29977320 , 0, 8, 10000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:06:26, 28837872 , 0, 8, 10000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:06:35, 30541824 , 0, 8, 10000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:06:40, 30676802 , 0, 8, 10000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:06:48, 31139449 , 0, 8, 10000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:06:53, 36289969 , 0, 8, 10000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:07:01, 37153418 , 0, 8, 10000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:07:06, 35724225 , 0, 8, 10000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:07:16, 38078260 , 0, 8, 10000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:07:20, 40091128 , 0, 8, 10000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:07:31, 53054000 , 0, 8, 10000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:07:36, 46685110 , 0, 8, 10000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:07:46, 48386268 , 0, 8, 10000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:07:53, 44130557 , 0, 8, 10000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:08:08, 46424113 , 0, 8, 10000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:08:17, 43840091 , 0, 8, 10000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:08:31, 46788976 , 0, 8, 10000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:08:37, 39408486 , 0, 8, 10000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:08:46, 38893122 , 0, 8, 10000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:08:49, 34606166 , 0, 8, 10000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:08:57, 43864290 , 0, 8, 10000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:09:01, 46719337 , 0, 8, 10000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:09:10, 57163166 , 0, 8, 10000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:09:16, 60257713 , 0, 8, 10000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:09:29, 60425985 , 0, 8, 10000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:09:36, 56177423 , 0, 8, 10000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:09:54, 57311844 , 0, 8, 10000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:10:04, 58299518 , 0, 8, 10000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:10:20, 48726946 , 0, 8, 10000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:10:26, 36697570 , 0, 8, 10000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:10:34, 20091041 , 0, 8, 10000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:10:36, 21588341 , 0, 8, 10000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:10:43, 30903341 , 0, 8, 10000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:10:45, 33474511 , 0, 8, 10000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:10:54, 43779317 , 0, 8, 10000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:10:58, 46647525 , 0, 8, 10000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:11:08, 46962139 , 0, 8, 10000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:11:16, 43601597 , 0, 8, 10000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:11:27, 41764889 , 0, 8, 10000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:11:38, 36488294 , 0, 8, 10000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:11:51, 28398865 , 0, 8, 10000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:11:55, 14978940 , 0, 8, 10000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:12:03, 16913637 , 0, 8, 10000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:12:04, 19059019 , 0, 8, 10000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:12:12, 29393291 , 0, 8, 10000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:12:15, 31674473 , 0, 8, 10000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:12:23, 43928861 , 0, 8, 10000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:12:27, 46086444 , 0, 8, 10000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:12:39, 41729161 , 0, 8, 10000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:12:46, 32516792 , 0, 8, 10000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:13:01, 34509057 , 0, 8, 10000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:13:09, 31218354 , 0, 8, 10000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:13:20, 21801612 , 0, 8, 10000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:13:22, 9892058 , 0, 8, 10000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:13:28, 17853625 , 0, 8, 10000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:13:30, 19460178 , 0, 8, 10000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:13:37, 22893746 , 0, 8, 10000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:13:38, 23735774 , 0, 8, 10000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:13:45, 28862928 , 0, 8, 10000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:13:47, 32234815 , 0, 8, 10000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:13:55, 20056681 , 0, 8, 10000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:13:57, 18366365 , 0, 8, 10000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:14:03, 17355601 , 0, 8, 10000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:14:05, 4009895 , 0, 8, 10000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:14:10, 3159399 , 0, 8, 10000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:14:11, 3495280 , 0, 8, 10000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:14:17, 3796066 , 0, 8, 10000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:14:18, 4422720 , 0, 8, 10000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:14:24, 5736892 , 0, 8, 10000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:14:24, 7105755 , 0, 8, 10000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:14:30, 6890529 , 0, 8, 10000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:14:31, 7520700 , 0, 8, 10000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:14:37, 8115577 , 0, 8, 10000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:14:38, 8799018 , 0, 8, 10000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:14:45, 9847876 , 0, 8, 10000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:14:46, 10245914 , 0, 8, 10000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:14:52, 11090386 , 0, 8, 10000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:14:54, 13402776 , 0, 8, 10000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:15:01, 12659070 , 0, 8, 10000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:15:02, 14466697 , 0, 8, 10000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:15:09, 15365210 , 0, 8, 10000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:15:11, 14988471 , 0, 8, 10000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:15:19, 18934515 , 0, 8, 10000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:15:21, 17967098 , 0, 8, 10000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:15:29, 18371504 , 0, 8, 10000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:15:31, 18541029 , 0, 8, 10000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:15:40, 21240694 , 0, 8, 10000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:15:45, 21763499 , 0, 8, 10000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:15:55, 23850848 , 0, 8, 10000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:15:59, 22323204 , 0, 8, 10000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:16:08, 25958807 , 0, 8, 10000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:16:13, 24757718 , 0, 8, 10000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:16:22, 27513859 , 0, 8, 10000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:16:27, 26697514 , 0, 8, 10000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:16:37, 30692351 , 0, 8, 10000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:16:42, 31230975 , 0, 8, 10000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:16:54, 31974944 , 0, 8, 10000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:17:00, 29871616 , 0, 8, 10000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:17:13, 30711071 , 0, 8, 10000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:17:22, 32427613 , 0, 8, 10000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:17:36, 34745856 , 0, 8, 10000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:17:44, 36256207 , 0, 8, 10000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:17:57, 42097781 , 0, 8, 10000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:18:08, 37439617 , 0, 8, 10000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:18:21, 42349614 , 0, 8, 10000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:18:29, 47222668 , 0, 8, 10000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:18:45, 56402103 , 0, 8, 10000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:18:54, 57006241 , 0, 8, 10000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:19:11, 46676348 , 0, 8, 10000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:19:26, 42408714 , 0, 8, 10000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:19:40, 47745393 , 0, 8, 10000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:19:53, 54353478 , 0, 8, 10000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:20:15, 29014765 , 0, 8, 10000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:20:18, 30209650 , 0, 8, 10000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:20:27, 41037155 , 0, 8, 10000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:20:34, 43005286 , 0, 8, 10000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:20:43, 43557744 , 0, 8, 10000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:20:50, 43011113 , 0, 8, 10000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:21:04, 51026625 , 0, 8, 10000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:21:16, 39120175 , 0, 8, 10000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:21:26, 32687003 , 0, 8, 10000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:21:31, 17245286 , 0, 8, 10000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:21:46, 21717571 , 0, 8, 10000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:21:58, 27561939 , 0, 8, 10000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:22:13, 10999157 , 0, 8, 10000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:22:15, 12691335 , 0, 8, 10000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:22:22, 23019594 , 0, 8, 10000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:22:25, 26763511 , 0, 8, 10000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:22:34, 35040126 , 0, 8, 10000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:22:42, 41882870 , 0, 8, 10000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:22:54, 41387802 , 0, 8, 10000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:23:02, 38776522 , 0, 8, 10000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:23:13, 31687928 , 0, 8, 10000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:23:19, 14001242 , 0, 8, 10000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:23:31, 20386698 , 0, 8, 10000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:23:42, 25457502 , 0, 8, 10000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:23:56, 17508709 , 0, 8, 10000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:23:59, 20341007 , 0, 8, 10000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:24:07, 23044727 , 0, 8, 10000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:24:11, 25604855 , 0, 8, 10000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:24:20, 31482762 , 0, 8, 10000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:24:23, 35798159 , 0, 8, 10000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:24:32, 21863897 , 0, 8, 10000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:24:34, 21946639 , 0, 8, 10000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:24:41, 4402115 , 0, 8, 10000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:24:42, 4492695 , 0, 8, 10000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:24:48, 4497771 , 0, 8, 10000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:24:49, 4908506 , 0, 8, 10000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:24:55, 5086934 , 0, 8, 10000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:24:55, 5249214 , 0, 8, 10000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:25:01, 5983963 , 0, 8, 10000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:25:02, 6005266 , 0, 8, 10000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:25:08, 5718145 , 0, 8, 10000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:25:09, 5467058 , 0, 8, 10000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:25:15, 6675544 , 0, 8, 10000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:25:16, 6861838 , 0, 8, 10000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:25:22, 7554476 , 0, 8, 10000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:25:23, 7525584 , 0, 8, 10000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:25:29, 7293022 , 0, 8, 10000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:25:30, 8271729 , 0, 8, 10000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:25:37, 9530982 , 0, 8, 10000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:25:38, 8925203 , 0, 8, 10000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:25:45, 10947275 , 0, 8, 10000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:25:47, 11005992 , 0, 8, 10000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:25:53, 12182697 , 0, 8, 10000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:25:55, 12738322 , 0, 8, 10000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:26:02, 13431808 , 0, 8, 10000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:26:04, 13689043 , 0, 8, 10000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:26:11, 15311081 , 0, 8, 10000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:26:13, 16048010 , 0, 8, 10000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:26:23, 17347455 , 0, 8, 10000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:26:27, 17846607 , 0, 8, 10000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:26:36, 16931547 , 0, 8, 10000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:26:39, 19368597 , 0, 8, 10000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:26:48, 20694098 , 0, 8, 10000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:26:53, 21145382 , 0, 8, 10000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:27:03, 24466191 , 0, 8, 10000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:27:09, 23180668 , 0, 8, 10000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:27:21, 24582404 , 0, 8, 10000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:27:27, 25065471 , 0, 8, 10000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:27:40, 26543693 , 0, 8, 10000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:27:47, 27863400 , 0, 8, 10000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:28:00, 28036842 , 0, 8, 10000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:28:08, 28607857 , 0, 8, 10000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:28:21, 28071436 , 0, 8, 10000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:28:32, 29665692 , 0, 8, 10000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:28:47, 34145022 , 0, 8, 10000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:28:55, 36635202 , 0, 8, 10000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:29:06, 35225958 , 0, 8, 10000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:29:16, 37555562 , 0, 8, 10000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:29:30, 42433103 , 0, 8, 10000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:29:42, 41833580 , 0, 8, 10000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:30:00, 42020478 , 0, 8, 10000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:30:19, 44122442 , 0, 8, 10000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:30:48, 53335811 , 0, 8, 10000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:31:08, 48637329 , 0, 8, 10000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:31:31, 35400776 , 0, 8, 10000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:31:39, 28024797 , 0, 8, 10000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:31:51, 38070224 , 0, 8, 10000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:31:59, 41697687 , 0, 8, 10000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:32:12, 44017014 , 0, 8, 10000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:32:20, 41488043 , 0, 8, 10000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:32:35, 42553170 , 0, 8, 10000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:32:45, 33764262 , 0, 8, 10000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:33:01, 32309314 , 0, 8, 10000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:33:15, 19614385 , 0, 8, 10000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:33:31, 25714179 , 0, 8, 10000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:33:47, 34110698 , 0, 8, 10000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:34:01, 11740838 , 0, 8, 10000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:34:03, 13503325 , 0, 8, 10000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:34:11, 26980895 , 0, 8, 10000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:34:17, 33852529 , 0, 8, 10000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:34:31, 38393032 , 0, 8, 10000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:34:40, 40269272 , 0, 8, 10000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:34:55, 36910732 , 0, 8, 10000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:35:01, 35100851 , 0, 8, 10000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:35:11, 13846573 , 0, 8, 10000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:35:16, 14340393 , 0, 8, 10000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:35:30, 23044812 , 0, 8, 10000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:35:51, 24640414 , 0, 8, 10000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:36:04, 35549692 , 0, 8, 10000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:36:08, 13010738 , 0, 8, 10000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:36:17, 24451396 , 0, 8, 10000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:36:23, 31205164 , 0, 8, 10000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:36:34, 37412318 , 0, 8, 10000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:36:39, 38760109 , 0, 8, 10000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:36:50, 25235546 , 0, 8, 10000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:36:52, 13089238 , 0, 8, 10000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:36:59, 4594817 , 0, 8, 10000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:36:59, 5318097 , 0, 8, 10000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:37:05, 5441817 , 0, 8, 10000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:37:06, 5492385 , 0, 8, 10000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:37:12, 5826404 , 0, 8, 10000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:37:13, 5982293 , 0, 8, 10000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:37:19, 7132425 , 0, 8, 10000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:37:20, 6824138 , 0, 8, 10000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:37:26, 7293065 , 0, 8, 10000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:37:27, 7173949 , 0, 8, 10000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:37:33, 8467691 , 0, 8, 10000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:37:35, 8260966 , 0, 8, 10000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:37:41, 8510994 , 0, 8, 10000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:37:42, 7898141 , 0, 8, 10000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:37:48, 9603271 , 0, 8, 10000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:37:50, 9517841 , 0, 8, 10000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:37:57, 9201771 , 0, 8, 10000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:37:58, 9542698 , 0, 8, 10000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:38:05, 10590369 , 0, 8, 10000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:38:06, 11157386 , 0, 8, 10000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:38:13, 12175238 , 0, 8, 10000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:38:15, 11537683 , 0, 8, 10000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:38:23, 13647105 , 0, 8, 10000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:38:25, 14207244 , 0, 8, 10000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:38:33, 15664414 , 0, 8, 10000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:38:38, 16131563 , 0, 8, 10000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:38:47, 16921537 , 0, 8, 10000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:38:49, 17624792 , 0, 8, 10000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:38:59, 18761234 , 0, 8, 10000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:39:04, 19680558 , 0, 8, 10000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:39:15, 20523680 , 0, 8, 10000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:39:22, 22327505 , 0, 8, 10000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:39:32, 24423491 , 0, 8, 10000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:39:39, 24540676 , 0, 8, 10000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:39:52, 26993764 , 0, 8, 10000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:40:00, 25061395 , 0, 8, 10000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:40:15, 26382657 , 0, 8, 10000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:40:25, 25441293 , 0, 8, 10000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:40:40, 25665424 , 0, 8, 10000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:40:51, 24230759 , 0, 8, 10000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:41:06, 24997897 , 0, 8, 10000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:41:14, 26185038 , 0, 8, 10000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:41:27, 30804891 , 0, 8, 10000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:41:36, 32047334 , 0, 8, 10000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:41:50, 30112448 , 0, 8, 10000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:41:58, 31915619 , 0, 8, 10000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:42:14, 36452952 , 0, 8, 10000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:42:24, 38036249 , 0, 8, 10000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:42:42, 35505672 , 0, 8, 10000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:42:56, 37142652 , 0, 8, 10000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:43:19, 41687610 , 0, 8, 10000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:43:46, 36806509 , 0, 8, 10000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:44:12, 31546005 , 0, 8, 10000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:44:20, 31095527 , 0, 8, 10000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:44:35, 41552394 , 0, 8, 10000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:44:50, 45991007 , 0, 8, 10000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:45:07, 47615738 , 0, 8, 10000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:45:21, 41576381 , 0, 8, 10000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:45:42, 34206392 , 0, 8, 10000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:45:53, 28422230 , 0, 8, 10000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:46:06, 15258721 , 0, 8, 10000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:46:13, 16200774 , 0, 8, 10000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:46:29, 24101012 , 0, 8, 10000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:46:46, 27656535 , 0, 8, 10000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:47:00, 31287338 , 0, 8, 10000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:47:04, 31887675 , 0, 8, 10000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:47:19, 36995428 , 0, 8, 10000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:47:33, 39605109 , 0, 8, 10000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:47:48, 41061044 , 0, 8, 10000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:48:00, 41546869 , 0, 8, 10000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:48:16, 32202984 , 0, 8, 10000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:48:26, 28151918 , 0, 8, 10000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:48:38, 20014042 , 0, 8, 10000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:48:44, 14841950 , 0, 8, 10000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:49:06, 25612912 , 0, 8, 10000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:49:22, 23988754 , 0, 8, 10000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:49:36, 23175688 , 0, 8, 10000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:49:39, 9968737 , 0, 8, 10000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:49:47, 24328794 , 0, 9, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:49:52, 31475845 , 0, 9, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:50:05, 40771474 , 0, 9, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:50:12, 30288315 , 0, 9, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:50:23, 28142362 , 0, 9, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:50:25, 28040225 , 0, 9, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:50:33, 6468404 , 0, 9, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:50:34, 6588197 , 0, 9, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:50:40, 7790576 , 0, 9, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:50:41, 7973843 , 0, 9, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:50:47, 8437640 , 0, 9, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:50:48, 8864587 , 0, 9, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:50:54, 7457036 , 0, 9, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:50:55, 7807000 , 0, 9, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:51:01, 9936656 , 0, 9, 1000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:51:02, 10348475 , 0, 9, 1000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:51:08, 12699750 , 0, 9, 1000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:51:09, 12933813 , 0, 9, 1000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:51:15, 13125891 , 0, 9, 1000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:51:16, 13425416 , 0, 9, 1000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:51:23, 14263609 , 0, 9, 1000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:51:24, 15108464 , 0, 9, 1000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:51:31, 13231765 , 0, 9, 1000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:51:32, 13568039 , 0, 9, 1000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:51:38, 14455156 , 0, 9, 1000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:51:39, 14739847 , 0, 9, 1000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:51:46, 16360544 , 0, 9, 1000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:51:47, 16567493 , 0, 9, 1000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:51:53, 19822860 , 0, 9, 1000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:51:55, 20070378 , 0, 9, 1000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:52:01, 21213613 , 0, 9, 1000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:52:03, 21742429 , 0, 9, 1000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:52:09, 23984927 , 0, 9, 1000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:52:11, 24817325 , 0, 9, 1000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:52:18, 25932948 , 0, 9, 1000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:52:19, 23925424 , 0, 9, 1000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:52:26, 26090827 , 0, 9, 1000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:52:28, 26694848 , 0, 9, 1000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:52:35, 29900648 , 0, 9, 1000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:52:37, 30342812 , 0, 9, 1000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:52:44, 33649485 , 0, 9, 1000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:52:46, 34184820 , 0, 9, 1000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:52:53, 35474037 , 0, 9, 1000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:52:55, 36052612 , 0, 9, 1000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:53:02, 38535582 , 0, 9, 1000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:53:05, 39094921 , 0, 9, 1000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:53:13, 40359430 , 0, 9, 1000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:53:15, 40932626 , 0, 9, 1000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:53:23, 45548887 , 0, 9, 1000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:53:25, 46364659 , 0, 9, 1000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:53:33, 60444732 , 0, 9, 1000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:53:36, 67169898 , 0, 9, 1000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:53:44, 80056052 , 0, 9, 1000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:53:48, 85549439 , 0, 9, 1000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:53:57, 70317413 , 0, 9, 1000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:54:01, 73498802 , 0, 9, 1000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:54:11, 45276322 , 0, 9, 1000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:54:15, 46445893 , 0, 9, 1000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:54:23, 47395246 , 0, 9, 1000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:54:27, 48437271 , 0, 9, 1000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:54:36, 51176742 , 0, 9, 1000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:54:40, 52511115 , 0, 9, 1000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:54:50, 57567783 , 0, 9, 1000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:54:55, 63272588 , 0, 9, 1000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:55:05, 68286745 , 0, 9, 1000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:55:09, 77954545 , 0, 9, 1000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:55:19, 96016559 , 0, 9, 1000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:55:25, 101283406 , 0, 9, 1000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:55:36, 86284138 , 0, 9, 1000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:55:42, 89604286 , 0, 9, 1000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:55:53, 61323910 , 0, 9, 1000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:55:59, 62941923 , 0, 9, 1000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:56:10, 65838930 , 0, 9, 1000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:56:15, 67310894 , 0, 9, 1000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:56:25, 72675696 , 0, 9, 1000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:56:32, 79184015 , 0, 9, 1000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:56:44, 88936061 , 0, 9, 1000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:56:51, 101489245 , 0, 9, 1000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:57:04, 127234968 , 0, 9, 1000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:57:13, 107189140 , 0, 9, 1000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:57:25, 85308375 , 0, 9, 1000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:57:30, 90085904 , 0, 9, 1000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:57:43, 97331872 , 0, 9, 1000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:57:50, 99251603 , 0, 9, 1000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 21:58:02, 107185679 , 0, 9, 1000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:58:07, 106104457 , 0, 9, 1000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 21:58:19, 128631783 , 0, 9, 1000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:58:26, 129675695 , 0, 9, 1000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 21:58:45, 129293924 , 0, 9, 1000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:58:55, 128664784 , 0, 9, 1000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 21:59:13, 107612510 , 0, 9, 1000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:59:23, 112530863 , 0, 9, 1000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 21:59:35, 115160510 , 0, 9, 1000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:59:42, 116745690 , 0, 9, 1000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 21:59:54, 100718768 , 0, 9, 1000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:00:00, 108411853 , 0, 9, 1000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:00:11, 118527549 , 0, 9, 1000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:00:18, 130586564 , 0, 9, 1000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:00:34, 113472332 , 0, 9, 1000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:00:44, 124703044 , 0, 9, 1000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:00:57, 106570127 , 0, 9, 1000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:01:03, 107459484 , 0, 9, 1000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:01:15, 115107141 , 0, 9, 1000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:01:23, 120657627 , 0, 9, 1000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:01:36, 127687687 , 0, 9, 1000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:01:46, 126691675 , 0, 9, 1000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:02:01, 128432401 , 0, 9, 1000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:02:10, 128237725 , 0, 9, 1000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:02:26, 110843474 , 0, 9, 1000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:02:35, 112231180 , 0, 9, 1000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:02:49, 127996604 , 0, 9, 1000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:02:59, 107072979 , 0, 9, 1000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:03:14, 116406665 , 0, 9, 1000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:03:22, 124000567 , 0, 9, 1000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:03:36, 128568247 , 0, 9, 1000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:03:47, 124108067 , 0, 9, 1000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:04:03, 116286234 , 0, 9, 1000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:04:15, 119541493 , 0, 9, 1000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:04:35, 99781032 , 0, 9, 1000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:04:41, 88015087 , 0, 9, 1000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:04:54, 87978732 , 0, 9, 1000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:05:01, 90638356 , 0, 9, 1000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:05:14, 108389310 , 0, 9, 1000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:05:23, 121073541 , 0, 9, 1000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:05:37, 132258585 , 0, 9, 1000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:05:50, 116423176 , 0, 9, 1000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:06:03, 125261292 , 0, 9, 1000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:06:12, 106555068 , 0, 9, 1000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:06:28, 128633543 , 0, 9, 1000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:06:37, 128469034 , 0, 9, 1000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:06:54, 122430733 , 0, 9, 1000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:07:01, 119495464 , 0, 9, 1000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:07:17, 127720375 , 0, 9, 1000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:07:24, 119617858 , 0, 9, 1000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:07:37, 120672160 , 0, 9, 1000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:07:48, 119082967 , 0, 9, 1000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:08:00, 89004616 , 0, 9, 1000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:08:06, 92041745 , 0, 9, 1000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:08:18, 88143959 , 0, 9, 1000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:08:24, 96226082 , 0, 9, 1000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:08:36, 119049524 , 0, 9, 1000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:08:47, 129036537 , 0, 9, 1000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:09:02, 132182292 , 0, 9, 1000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:09:14, 127505955 , 0, 9, 1000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:09:34, 96618508 , 0, 9, 1000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:09:41, 100749453 , 0, 9, 1000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:09:54, 112212393 , 0, 9, 1000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:10:02, 116723901 , 0, 9, 1000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:10:18, 127816024 , 0, 9, 1000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:10:27, 128714967 , 0, 9, 1000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:10:59, 124850447 , 0, 9, 1000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:11:06, 121968392 , 0, 9, 1000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:11:18, 126731726 , 0, 9, 1000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:11:29, 112272566 , 0, 9, 1000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:11:46, 95497671 , 0, 9, 1000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:11:52, 98255374 , 0, 9, 1000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:12:04, 105564257 , 0, 9, 1000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:12:10, 109342371 , 0, 9, 1000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:12:22, 89935931 , 0, 9, 1000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:12:29, 96022849 , 0, 9, 1000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:12:41, 108771169 , 0, 9, 1000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:12:48, 108548577 , 0, 9, 1000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:13:02, 113430340 , 0, 9, 1000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:13:11, 118361201 , 0, 9, 1000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:13:25, 122468197 , 0, 9, 1000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:13:35, 124712928 , 0, 9, 1000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:13:51, 127912063 , 0, 9, 1000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:14:00, 131628297 , 0, 9, 1000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:14:20, 117917150 , 0, 9, 1000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:14:30, 118996395 , 0, 9, 1000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:14:46, 125387453 , 0, 9, 1000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:14:57, 129803048 , 0, 9, 1000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:15:12, 102342084 , 0, 9, 1000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:15:18, 103279234 , 0, 9, 1000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:15:32, 111237138 , 0, 9, 1000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:15:42, 112765230 , 0, 9, 1000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:15:55, 114939529 , 0, 9, 1000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:16:03, 124806472 , 0, 9, 1000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:16:16, 131065173 , 0, 9, 1000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:16:24, 132886861 , 0, 9, 1000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:16:39, 126555506 , 0, 9, 1000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:16:46, 75527076 , 0, 9, 1000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:16:56, 73906152 , 0, 9, 1000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:17:01, 71520089 , 0, 9, 1000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:17:11, 74981159 , 0, 9, 1000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:17:16, 76969020 , 0, 9, 1000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:17:27, 89440636 , 0, 9, 1000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:17:33, 91212129 , 0, 9, 1000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:17:44, 97162385 , 0, 9, 1000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:17:50, 101159000 , 0, 9, 1000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:18:02, 103087799 , 0, 9, 1000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:18:09, 105403096 , 0, 9, 1000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:18:21, 100205596 , 0, 9, 1000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:18:29, 97276475 , 0, 9, 1000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:18:41, 94426811 , 0, 9, 1000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:18:48, 93285568 , 0, 9, 1000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:19:01, 84630275 , 0, 9, 1000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:19:07, 80725318 , 0, 9, 1000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:19:17, 80749198 , 0, 9, 1000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:19:24, 85475232 , 0, 9, 1000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:19:40, 77080500 , 0, 9, 1000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:19:54, 84599389 , 0, 9, 1000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:20:12, 93328051 , 0, 9, 1000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:20:26, 96154771 , 0, 9, 1000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:20:44, 101291251 , 0, 9, 1000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:21:01, 105377675 , 0, 9, 1000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:21:21, 99259909 , 0, 9, 1000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:21:33, 126038586 , 0, 9, 1000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:21:50, 82649515 , 0, 9, 1000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:21:57, 81699595 , 0, 9, 1000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:22:09, 76627084 , 0, 9, 1000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:22:13, 77417285 , 0, 9, 1000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:22:26, 76726558 , 0, 9, 1000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:22:34, 68176627 , 0, 9, 1000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:22:48, 68519685 , 0, 9, 1000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:22:55, 70290542 , 0, 9, 1000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:23:06, 83322465 , 0, 9, 1000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:23:18, 86561238 , 0, 9, 1000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:23:34, 97484737 , 0, 9, 1000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:23:45, 103080005 , 0, 9, 1000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:24:00, 103352462 , 0, 9, 1000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:24:13, 104333871 , 0, 9, 1000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:24:27, 105538556 , 0, 9, 1000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:24:40, 81678930 , 0, 9, 1000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:24:51, 76292031 , 0, 9, 1000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:24:57, 65558085 , 0, 9, 1000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:25:09, 65478106 , 0, 9, 1000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:25:18, 68724393 , 0, 9, 1000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:25:32, 73561570 , 0, 9, 1000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:25:42, 80087527 , 0, 9, 1000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:25:57, 87104296 , 0, 9, 1000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:26:09, 81835341 , 0, 9, 1000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:26:24, 81404292 , 0, 9, 1000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:26:34, 86850309 , 0, 9, 1000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:26:45, 83479239 , 0, 9, 1000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:26:53, 70084824 , 0, 9, 1000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:27:06, 66859150 , 0, 9, 1000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:27:11, 60720145 , 0, 9, 1000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:27:23, 64807292 , 0, 9, 1000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:27:30, 67499446 , 0, 9, 1000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:27:43, 70288602 , 0, 9, 1000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:27:51, 75118426 , 0, 9, 1000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:28:09, 85763305 , 0, 9, 1000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:28:24, 85329639 , 0, 9, 1000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:28:41, 84338332 , 0, 9, 1000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:28:49, 72367852 , 0, 9, 1000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:29:02, 78584935 , 0, 9, 1000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:29:08, 49696975 , 0, 9, 1000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:29:18, 41429305 , 0, 9, 1000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:29:23, 42684576 , 0, 9, 1000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:29:34, 51970147 , 0, 9, 1000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:29:40, 57805885 , 0, 9, 1000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:29:54, 68313222 , 0, 9, 1000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:30:03, 70388655 , 0, 9, 1000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:30:20, 66311090 , 0, 9, 1000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:30:29, 66797413 , 0, 9, 1000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:30:40, 77795075 , 0, 9, 1000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:30:45, 85911735 , 0, 9, 1000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:30:57, 44195267 , 0, 9, 1000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:31:00, 41852388 , 0, 9, 1000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:31:08, 36109989 , 0, 9, 1000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:31:11, 37560100 , 0, 9, 1000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:31:19, 41302627 , 0, 9, 1000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:31:22, 50190754 , 0, 9, 1000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:31:31, 58692106 , 0, 9, 1000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:31:35, 57633379 , 0, 9, 1000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:31:44, 58451636 , 0, 9, 1000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:31:47, 55397050 , 0, 9, 1000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:31:56, 28632653 , 0, 9, 1000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:31:59, 29262113 , 0, 9, 1000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:32:07, 30764282 , 0, 9, 1000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:32:09, 31673497 , 0, 9, 1000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:32:17, 32846363 , 0, 9, 1000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:32:20, 34509611 , 0, 9, 1000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:32:29, 36679792 , 0, 9, 1000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:32:32, 38031527 , 0, 9, 1000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:32:40, 44008707 , 0, 9, 1000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:32:44, 41697706 , 0, 9, 1000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:32:53, 45714631 , 0, 9, 1000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:32:57, 43656740 , 0, 9, 1000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:33:07, 43434014 , 0, 9, 1000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:33:10, 43260890 , 0, 9, 1000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:33:20, 39653835 , 0, 9, 1000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:33:25, 35787480 , 0, 9, 1000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:33:36, 32915485 , 0, 9, 1000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:33:39, 29382904 , 0, 9, 1000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:33:49, 34335146 , 0, 9, 1000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:33:54, 37138817 , 0, 9, 1000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:34:04, 40808111 , 0, 9, 1000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:34:08, 43201691 , 0, 9, 1000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:34:19, 51684286 , 0, 9, 1000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:34:29, 49354835 , 0, 9, 1000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:34:44, 54657523 , 0, 9, 1000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:34:52, 50315456 , 0, 9, 1000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:35:04, 43251575 , 0, 9, 1000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:35:10, 37410759 , 0, 9, 1000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:35:25, 40819012 , 0, 9, 1000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:35:35, 43270721 , 0, 9, 1000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:35:51, 38444489 , 0, 9, 1000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:36:01, 44267483 , 0, 9, 1000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:36:18, 55809919 , 0, 9, 1000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:36:31, 44891043 , 0, 9, 1000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:36:47, 76866994 , 0, 9, 1000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:36:59, 59465205 , 0, 9, 1000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:37:12, 47150548 , 0, 9, 1000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:37:17, 43215506 , 0, 9, 1000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:37:28, 40569556 , 0, 9, 1000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:37:36, 41847098 , 0, 9, 1000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:37:51, 43695913 , 0, 9, 1000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:38:01, 48022214 , 0, 9, 1000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:38:18, 53342716 , 0, 9, 1000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:38:31, 63063230 , 0, 9, 1000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:38:53, 81057409 , 0, 9, 1000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:39:08, 95667062 , 0, 9, 1000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:39:28, 75774590 , 0, 9, 1000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:39:38, 53491168 , 0, 9, 1000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:39:52, 55015885 , 0, 9, 1000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:39:59, 55861592 , 0, 9, 1000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:40:11, 53900479 , 0, 9, 1000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:40:18, 51606128 , 0, 9, 1000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:40:33, 61788991 , 0, 9, 1000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:40:46, 56015533 , 0, 9, 1000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:41:01, 65709971 , 0, 9, 1000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:41:16, 68181565 , 0, 9, 1000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:41:41, 70279589 , 0, 9, 1000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:41:52, 82619289 , 0, 9, 1000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:42:09, 47735515 , 0, 9, 1000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:42:17, 43947799 , 0, 9, 1000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:42:27, 40976248 , 0, 9, 1000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:42:33, 40025686 , 0, 9, 1000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:42:42, 29682053 , 0, 9, 1000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:42:48, 32236066 , 0, 9, 1000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:42:58, 40683728 , 0, 9, 1000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:43:07, 45271659 , 0, 9, 1000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:43:23, 49779778 , 0, 9, 1000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:43:37, 49775064 , 0, 9, 1000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:43:55, 63628052 , 0, 9, 1000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:44:07, 76361938 , 0, 9, 1000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:44:21, 39793384 , 0, 9, 1000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:44:26, 37626848 , 0, 9, 1000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:44:34, 36279329 , 0, 9, 1000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:44:37, 37852024 , 0, 9, 1000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:44:45, 31536826 , 0, 9, 1000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:44:48, 33785034 , 0, 9, 1000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:44:56, 45067007 , 0, 9, 1000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:44:59, 47517851 , 0, 9, 1000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:45:07, 41686551 , 0, 9, 1000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:45:10, 33100173 , 0, 9, 1000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:45:18, 32272253 , 0, 9, 1000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:45:20, 32153339 , 0, 9, 1000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:45:29, 28060646 , 0, 9, 1000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:45:31, 28749831 , 0, 9, 1000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:45:39, 28069129 , 0, 9, 1000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:45:41, 26954980 , 0, 9, 1000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:45:49, 24111162 , 0, 9, 1000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:45:51, 11277922 , 0, 9, 1000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:45:57, 13082283 , 0, 9, 1000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:45:59, 14268928 , 0, 9, 1000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:46:05, 14737424 , 0, 9, 1000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:46:07, 16093115 , 0, 9, 1000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:46:14, 17552495 , 0, 9, 1000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:46:16, 18526266 , 0, 9, 1000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:46:23, 17732804 , 0, 9, 1000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:46:25, 18400540 , 0, 9, 1000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:46:32, 20942375 , 0, 9, 1000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:46:35, 22685893 , 0, 9, 1000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:46:44, 21793499 , 0, 9, 1000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:46:48, 21832571 , 0, 9, 1000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:46:57, 22514978 , 0, 9, 1000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:47:02, 22264317 , 0, 9, 1000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:47:13, 26466978 , 0, 9, 1000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:47:19, 31045956 , 0, 9, 1000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:47:30, 34425121 , 0, 9, 1000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:47:35, 34101566 , 0, 9, 1000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:47:47, 33790437 , 0, 9, 1000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:47:54, 29325550 , 0, 9, 1000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:48:08, 38463844 , 0, 9, 1000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:48:17, 36083386 , 0, 9, 1000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:48:31, 40497037 , 0, 9, 1000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:48:39, 38828532 , 0, 9, 1000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:48:54, 38981597 , 0, 9, 1000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:49:05, 41021010 , 0, 9, 1000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:49:21, 42386292 , 0, 9, 1000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:49:34, 54836855 , 0, 9, 1000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:49:51, 65953571 , 0, 9, 1000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:50:05, 57185376 , 0, 9, 1000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:50:24, 48983162 , 0, 9, 1000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:50:39, 58913040 , 0, 9, 1000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:51:03, 43561783 , 0, 9, 1000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:51:10, 49923964 , 0, 9, 1000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:51:23, 48384515 , 0, 9, 1000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:51:37, 48222393 , 0, 9, 1000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:51:57, 50081905 , 0, 9, 1000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:52:14, 51998604 , 0, 9, 1000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:52:37, 70746413 , 0, 9, 1000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:52:52, 59049481 , 0, 9, 1000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:53:06, 47572356 , 0, 9, 1000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:53:14, 51434964 , 0, 9, 1000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:53:27, 64684089 , 0, 9, 1000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:53:46, 63623954 , 0, 9, 1000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:54:14, 64188746 , 0, 9, 1000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:54:28, 67198571 , 0, 9, 1000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:54:43, 74006605 , 0, 9, 1000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:54:55, 53384378 , 0, 9, 1000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:55:18, 43469707 , 0, 9, 1000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:55:37, 29826962 , 0, 9, 1000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:55:53, 39912430 , 0, 9, 1000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:56:04, 58482692 , 0, 9, 1000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:56:20, 29894758 , 0, 9, 1000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:56:24, 31400363 , 0, 9, 1000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:56:32, 32831284 , 0, 9, 1000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:56:38, 35542246 , 0, 9, 1000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:56:54, 38734833 , 0, 9, 1000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:57:01, 41883379 , 0, 9, 1000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:57:17, 50076254 , 0, 9, 1000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:57:31, 44144839 , 0, 9, 1000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:57:51, 39972628 , 0, 9, 1000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:58:09, 37451579 , 0, 9, 1000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:58:27, 39039176 , 0, 9, 1000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:58:38, 45983438 , 0, 9, 1000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:58:50, 19814632 , 0, 9, 1000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:58:54, 21238154 , 0, 9, 1000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 22:59:03, 24377721 , 0, 9, 1000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:59:07, 26265794 , 0, 9, 1000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 22:59:16, 33375995 , 0, 9, 1000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:59:21, 42872405 , 0, 9, 1000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 22:59:32, 34537336 , 0, 9, 1000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:59:36, 27092419 , 0, 9, 1000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 22:59:43, 26909218 , 0, 9, 1000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:59:46, 27137940 , 0, 9, 1000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 22:59:53, 27411157 , 0, 9, 1000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 22:59:56, 27353000 , 0, 9, 1000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:00:03, 9541766 , 0, 9, 1000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:00:05, 9196866 , 0, 9, 1000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:00:11, 9561044 , 0, 9, 1000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:00:12, 9495120 , 0, 9, 1000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:00:18, 10009542 , 0, 9, 1000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:00:19, 10202497 , 0, 9, 1000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:00:26, 10759139 , 0, 9, 1000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:00:27, 10271729 , 0, 9, 1000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:00:34, 13951245 , 0, 9, 1000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:00:36, 13443025 , 0, 9, 1000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:00:43, 13104785 , 0, 9, 1000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:00:44, 13484407 , 0, 9, 1000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:00:51, 14249751 , 0, 9, 1000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:00:53, 16071986 , 0, 9, 1000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:01:00, 16027899 , 0, 9, 1000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:01:03, 17459422 , 0, 9, 1000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:01:10, 16299617 , 0, 9, 1000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:01:13, 15904846 , 0, 9, 1000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:01:20, 14764487 , 0, 9, 1000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:01:23, 15566512 , 0, 9, 1000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:01:32, 16590412 , 0, 9, 1000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:01:36, 18869914 , 0, 9, 1000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:01:47, 24289628 , 0, 9, 1000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:01:52, 22512191 , 0, 9, 1000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:02:03, 22838695 , 0, 9, 1000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:02:11, 26501982 , 0, 9, 1000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:02:22, 28185896 , 0, 9, 1000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:02:31, 28007143 , 0, 9, 1000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:02:47, 30226725 , 0, 9, 1000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:02:55, 32586008 , 0, 9, 1000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:03:11, 29281728 , 0, 9, 1000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:03:23, 29136624 , 0, 9, 1000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:03:41, 36056713 , 0, 9, 1000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:03:55, 31887168 , 0, 9, 1000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:04:09, 36021061 , 0, 9, 1000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:04:22, 42684646 , 0, 9, 1000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:04:39, 37976382 , 0, 9, 1000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:04:53, 44316515 , 0, 9, 1000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:05:14, 41848059 , 0, 9, 1000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:05:31, 43469665 , 0, 9, 1000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:05:53, 40114544 , 0, 9, 1000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:06:11, 40078393 , 0, 9, 1000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:06:25, 39875608 , 0, 9, 1000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:06:39, 36643257 , 0, 9, 1000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:06:58, 37341154 , 0, 9, 1000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:07:12, 47396866 , 0, 9, 1000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:07:33, 56400400 , 0, 9, 1000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:07:47, 58266966 , 0, 9, 1000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:08:08, 74021031 , 0, 9, 1000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:08:26, 44638741 , 0, 9, 1000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:08:41, 50182971 , 0, 9, 1000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:08:55, 57005485 , 0, 9, 1000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:09:27, 56682235 , 0, 9, 1000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:09:48, 44091573 , 0, 9, 1000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:09:59, 44400869 , 0, 9, 1000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:10:09, 47544484 , 0, 9, 1000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:10:33, 49461128 , 0, 9, 1000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:10:58, 55880578 , 0, 9, 1000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:11:23, 63408673 , 0, 9, 1000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:11:29, 33826374 , 0, 9, 1000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:11:40, 42607377 , 0, 9, 1000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:11:53, 47333942 , 0, 9, 1000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:12:10, 41542116 , 0, 9, 1000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:12:27, 42338808 , 0, 9, 1000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:12:54, 42195082 , 0, 9, 1000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:13:02, 32752262 , 0, 9, 1000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:13:10, 32621101 , 0, 9, 1000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:13:16, 32924159 , 0, 9, 1000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:13:27, 38657579 , 0, 9, 1000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:13:47, 25495348 , 0, 9, 1000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:14:06, 46374653 , 0, 9, 1000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:14:16, 42391163 , 0, 9, 1000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:14:28, 23144594 , 0, 9, 1000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:14:33, 26098092 , 0, 9, 1000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:14:44, 29622272 , 0, 9, 1000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:14:51, 34199244 , 0, 9, 1000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:15:00, 38426572 , 0, 9, 1000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:15:07, 41523898 , 0, 9, 1000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:15:18, 34987775 , 0, 9, 1000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:15:23, 30938537 , 0, 9, 1000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:15:31, 29310042 , 0, 9, 1000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:15:35, 28838707 , 0, 9, 1000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:15:43, 8208315 , 0, 9, 1000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:15:44, 8754064 , 0, 9, 1000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:15:50, 6132073 , 0, 9, 1000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:15:51, 6184531 , 0, 9, 1000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:15:57, 7550091 , 0, 9, 1000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:15:58, 8931794 , 0, 9, 1000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:16:04, 9235294 , 0, 9, 1000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:16:05, 9533356 , 0, 9, 1000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:16:12, 9533457 , 0, 9, 1000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:16:13, 9640518 , 0, 9, 1000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:16:20, 9519250 , 0, 9, 1000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:16:21, 11399356 , 0, 9, 1000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:16:28, 11834051 , 0, 9, 1000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:16:29, 11396597 , 0, 9, 1000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:16:37, 12507927 , 0, 9, 1000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:16:38, 13697830 , 0, 9, 1000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:16:45, 14014971 , 0, 9, 1000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:16:47, 12248429 , 0, 9, 1000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:16:56, 13716296 , 0, 9, 1000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:16:58, 12551952 , 0, 9, 1000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:17:06, 14040610 , 0, 9, 1000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:17:08, 12100840 , 0, 9, 1000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:17:16, 15492044 , 0, 9, 1000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:17:20, 16422470 , 0, 9, 1000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:17:29, 17010997 , 0, 9, 1000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:17:35, 15900061 , 0, 9, 1000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:17:46, 20456356 , 0, 9, 1000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:17:51, 21039417 , 0, 9, 1000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:18:00, 21458974 , 0, 9, 1000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:18:07, 22537171 , 0, 9, 1000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:18:21, 28365612 , 0, 9, 1000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:18:31, 24706402 , 0, 9, 1000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:18:47, 25483330 , 0, 9, 1000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:19:00, 25914317 , 0, 9, 1000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:19:21, 27776677 , 0, 9, 1000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:19:35, 33263385 , 0, 9, 1000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:19:58, 30651211 , 0, 9, 1000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:20:12, 31153807 , 0, 9, 1000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:20:31, 35391102 , 0, 9, 1000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:20:47, 34861819 , 0, 9, 1000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:21:07, 38535021 , 0, 9, 1000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:21:27, 41818592 , 0, 9, 1000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:21:56, 36545494 , 0, 9, 1000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:22:11, 31159101 , 0, 9, 1000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:22:23, 33558306 , 0, 9, 1000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:22:34, 33566637 , 0, 9, 1000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:22:51, 37957834 , 0, 9, 1000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:23:11, 39812631 , 0, 9, 1000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:23:32, 40088034 , 0, 9, 1000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:23:53, 48896127 , 0, 9, 1000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:24:16, 39126614 , 0, 9, 1000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:24:23, 41141492 , 0, 9, 1000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:24:40, 46721053 , 0, 9, 1000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:24:53, 50707080 , 0, 9, 1000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:25:21, 51573843 , 0, 9, 1000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:25:42, 47039796 , 0, 9, 1000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:25:59, 47816770 , 0, 9, 1000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:26:15, 46089795 , 0, 9, 1000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:26:40, 53977331 , 0, 9, 1000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:27:11, 58926373 , 0, 9, 1000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:27:30, 46021530 , 0, 9, 1000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:27:39, 44548502 , 0, 9, 1000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:27:52, 25131868 , 0, 9, 1000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:27:59, 28229273 , 0, 9, 1000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:28:13, 34802781 , 0, 9, 1000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:28:25, 43246809 , 0, 9, 1000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:28:50, 43400976 , 0, 9, 1000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:29:07, 36705502 , 0, 9, 1000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:29:20, 37729834 , 0, 9, 1000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:29:28, 34825721 , 0, 9, 1000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:29:49, 46435259 , 0, 9, 1000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:30:16, 51752001 , 0, 9, 1000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:30:36, 61525605 , 0, 9, 1000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:30:41, 30649506 , 0, 9, 1000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:30:51, 43598470 , 0, 9, 10000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:31:01, 33994763 , 0, 9, 10000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:31:14, 42917724 , 0, 9, 10000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:31:23, 50362387 , 0, 9, 10000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:31:39, 47061720 , 0, 9, 10000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:31:44, 42612148 , 0, 9, 10000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:31:55, 38914786 , 0, 9, 10000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:31:58, 41163321 , 0, 9, 10000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:32:07, 18638575 , 0, 9, 10000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:32:08, 21967427 , 0, 9, 10000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:32:14, 25329811 , 0, 9, 10000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:32:15, 28861473 , 0, 9, 10000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:32:22, 32720363 , 0, 9, 10000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:32:23, 33381447 , 0, 9, 10000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:32:30, 39955242 , 0, 9, 10000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:32:31, 40412562 , 0, 9, 10000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:32:38, 45373582 , 0, 9, 10000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:32:39, 45887231 , 0, 9, 10000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:32:46, 49756040 , 0, 9, 10000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:32:48, 51901476 , 0, 9, 10000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:32:55, 58999686 , 0, 9, 10000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:32:57, 63116987 , 0, 9, 10000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:33:04, 66939663 , 0, 9, 10000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:33:06, 69627001 , 0, 9, 10000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:33:14, 68582498 , 0, 9, 10000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:33:16, 69277035 , 0, 9, 10000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:33:23, 77251838 , 0, 9, 10000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:33:25, 79296632 , 0, 9, 10000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:33:33, 87558318 , 0, 9, 10000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:33:35, 89261102 , 0, 9, 10000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:33:43, 94317738 , 0, 9, 10000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:33:46, 98499114 , 0, 9, 10000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:33:54, 108052431 , 0, 9, 10000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:33:57, 114017427 , 0, 9, 10000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:34:06, 122316335 , 0, 9, 10000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:34:10, 124113269 , 0, 9, 10000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:34:19, 121240193 , 0, 9, 10000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:34:22, 123370481 , 0, 9, 10000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:34:32, 130889718 , 0, 9, 10000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:34:37, 130456149 , 0, 9, 10000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:34:48, 130655961 , 0, 9, 10000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:34:58, 126303058 , 0, 9, 10000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:35:14, 129066641 , 0, 9, 10000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:35:18, 127913495 , 0, 9, 10000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:35:29, 129771230 , 0, 9, 10000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:35:36, 124008684 , 0, 9, 10000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:35:58, 118708517 , 0, 9, 10000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:36:06, 126439262 , 0, 9, 10000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:36:17, 126158608 , 0, 9, 10000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:36:24, 128671097 , 0, 9, 10000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:36:37, 124399258 , 0, 9, 10000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:36:48, 128267188 , 0, 9, 10000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:37:02, 129126213 , 0, 9, 10000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:37:07, 130978080 , 0, 9, 10000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:37:22, 128643073 , 0, 9, 10000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:37:34, 126034066 , 0, 9, 10000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:37:47, 117899733 , 0, 9, 10000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:37:53, 122286930 , 0, 9, 10000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:38:04, 130110050 , 0, 9, 10000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:38:09, 116848786 , 0, 9, 10000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:38:20, 123467565 , 0, 9, 10000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:38:24, 128676457 , 0, 9, 10000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:38:40, 129742073 , 0, 9, 10000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:38:46, 119207500 , 0, 9, 10000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:39:02, 121675375 , 0, 9, 10000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:39:12, 130189133 , 0, 9, 10000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:39:24, 122015045 , 0, 9, 10000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:39:30, 130558122 , 0, 9, 10000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:39:43, 130756019 , 0, 9, 10000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:39:49, 120376716 , 0, 9, 10000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:40:02, 117147661 , 0, 9, 10000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:40:11, 121830775 , 0, 9, 10000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:40:23, 130197980 , 0, 9, 10000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:40:30, 130204123 , 0, 9, 10000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:40:42, 111611987 , 0, 9, 10000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:40:48, 120426991 , 0, 9, 10000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:40:59, 117830835 , 0, 9, 10000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:41:11, 126301885 , 0, 9, 10000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:41:27, 129280448 , 0, 9, 10000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:41:33, 124705967 , 0, 9, 10000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:41:49, 119555692 , 0, 9, 10000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:41:55, 126194077 , 0, 9, 10000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:42:08, 115989512 , 0, 9, 10000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:42:20, 119618754 , 0, 9, 10000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:42:32, 118719924 , 0, 9, 10000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:42:39, 122334603 , 0, 9, 10000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:42:54, 111827201 , 0, 9, 10000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:42:59, 119740589 , 0, 9, 10000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:43:10, 130796408 , 0, 9, 10000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:43:19, 124514482 , 0, 9, 10000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:43:30, 130625771 , 0, 9, 10000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:43:40, 118043189 , 0, 9, 10000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:43:51, 128132153 , 0, 9, 10000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:44:00, 130056487 , 0, 9, 10000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:44:14, 110460832 , 0, 9, 10000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:44:20, 114239393 , 0, 9, 10000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:44:30, 122148523 , 0, 9, 10000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:44:35, 129287504 , 0, 9, 10000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:44:50, 130263099 , 0, 9, 10000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:45:02, 130610371 , 0, 9, 10000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:45:15, 131568944 , 0, 9, 10000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:45:22, 130270279 , 0, 9, 10000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:45:35, 124123815 , 0, 9, 10000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:45:41, 128670377 , 0, 9, 10000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:45:56, 113912337 , 0, 9, 10000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:46:03, 114968251 , 0, 9, 10000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:46:15, 121982098 , 0, 9, 10000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:46:22, 129397292 , 0, 9, 10000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:46:35, 116451227 , 0, 9, 10000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:46:42, 120752772 , 0, 9, 10000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:46:58, 126746849 , 0, 9, 10000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:47:07, 130368650 , 0, 9, 10000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:47:22, 130689499 , 0, 9, 10000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:47:31, 127726245 , 0, 9, 10000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:47:45, 129885378 , 0, 9, 10000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:47:54, 112315266 , 0, 9, 10000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:48:09, 105440160 , 0, 9, 10000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:48:15, 106832945 , 0, 9, 10000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:48:26, 125830573 , 0, 9, 10000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:48:33, 105203921 , 0, 9, 10000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:48:46, 112491606 , 0, 9, 10000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:48:53, 111805364 , 0, 9, 10000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:49:07, 129197036 , 0, 9, 10000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:49:18, 109595908 , 0, 9, 10000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:49:29, 129277241 , 0, 9, 10000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:49:35, 129897717 , 0, 9, 10000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:49:53, 112637500 , 0, 9, 10000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:50:00, 124572942 , 0, 9, 10000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:50:12, 127922450 , 0, 9, 10000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:50:21, 130595512 , 0, 9, 10000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:50:35, 116949218 , 0, 9, 10000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:50:44, 102608544 , 0, 9, 10000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:50:55, 96980080 , 0, 9, 10000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:51:01, 101700923 , 0, 9, 10000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:51:13, 114032379 , 0, 9, 10000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:51:19, 124965187 , 0, 9, 10000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:51:37, 128163217 , 0, 9, 10000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:51:46, 122818309 , 0, 9, 10000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:52:04, 122023807 , 0, 9, 10000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:52:13, 121680880 , 0, 9, 10000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:52:29, 107176886 , 0, 9, 10000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:52:36, 120265270 , 0, 9, 10000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:52:49, 117162692 , 0, 9, 10000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:52:56, 121809091 , 0, 9, 10000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:53:11, 119972082 , 0, 9, 10000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:53:20, 111569538 , 0, 9, 10000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:53:33, 128535731 , 0, 9, 10000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:53:43, 126213943 , 0, 9, 10000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:53:56, 121046977 , 0, 9, 10000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:54:03, 129298327 , 0, 9, 10000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:54:17, 123246374 , 0, 9, 10000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:54:26, 130163812 , 0, 9, 10000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:54:41, 118806493 , 0, 9, 10000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:54:50, 126467652 , 0, 9, 10000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:55:08, 131156749 , 0, 9, 10000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:55:17, 127700841 , 0, 9, 10000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:55:32, 118813184 , 0, 9, 10000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:55:41, 107633932 , 0, 9, 10000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:55:55, 121589072 , 0, 9, 10000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:56:04, 119701748 , 0, 9, 10000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:56:36, 120086001 , 0, 9, 10000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:56:47, 123104963 , 0, 9, 10000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:57:05, 125916188 , 0, 9, 10000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:57:12, 101324072 , 0, 9, 10000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:57:24, 106841459 , 0, 9, 10000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:57:30, 96062938 , 0, 9, 10000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:57:43, 103195366 , 0, 9, 10000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:57:50, 106803367 , 0, 9, 10000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:58:03, 122774986 , 0, 9, 10000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:58:11, 129396079 , 0, 9, 10000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-21, 23:58:26, 130614097 , 0, 9, 10000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:58:35, 127025122 , 0, 9, 10000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-21, 23:58:52, 120088038 , 0, 9, 10000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:58:59, 107050327 , 0, 9, 10000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-21, 23:59:11, 124727706 , 0, 9, 10000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:59:18, 129584450 , 0, 9, 10000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-21, 23:59:33, 100998354 , 0, 9, 10000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:59:38, 106742651 , 0, 9, 10000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-21, 23:59:48, 104374614 , 0, 9, 10000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-21, 23:59:54, 109959281 , 0, 9, 10000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:00:04, 110139291 , 0, 9, 10000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:00:09, 113282346 , 0, 9, 10000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:00:21, 127782213 , 0, 9, 10000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:00:28, 126502819 , 0, 9, 10000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:00:50, 115452886 , 0, 9, 10000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:00:56, 114008903 , 0, 9, 10000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:01:08, 109707201 , 0, 9, 10000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:01:14, 105563255 , 0, 9, 10000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:01:25, 112844920 , 0, 9, 10000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:01:32, 124914580 , 0, 9, 10000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:01:46, 126738296 , 0, 9, 10000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:01:54, 123349894 , 0, 9, 10000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:02:09, 123269925 , 0, 9, 10000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:02:16, 131919627 , 0, 9, 10000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:02:33, 131784695 , 0, 9, 10000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:02:44, 127770479 , 0, 9, 10000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:03:05, 124087814 , 0, 9, 10000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:03:15, 131829489 , 0, 9, 10000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:03:29, 123450712 , 0, 9, 10000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:03:41, 103337891 , 0, 9, 10000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:04:00, 99204993 , 0, 9, 10000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:04:13, 95383945 , 0, 9, 10000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:04:30, 99752118 , 0, 9, 10000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:04:45, 110697740 , 0, 9, 10000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:05:08, 94773701 , 0, 9, 10000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:05:21, 94923230 , 0, 9, 10000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:05:39, 100574925 , 0, 9, 10000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:05:50, 103024850 , 0, 9, 10000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:06:05, 130834571 , 0, 9, 10000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:06:13, 128967950 , 0, 9, 10000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:06:30, 109002151 , 0, 9, 10000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:06:38, 90261491 , 0, 9, 10000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:06:52, 83930620 , 0, 9, 10000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:07:00, 87409563 , 0, 9, 10000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:07:13, 92546315 , 0, 9, 10000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:07:22, 97912416 , 0, 9, 10000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:07:37, 107271015 , 0, 9, 10000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:07:46, 92562980 , 0, 9, 10000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:08:00, 102534905 , 0, 9, 10000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:08:12, 108403917 , 0, 9, 10000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:08:29, 131029101 , 0, 9, 10000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:08:42, 130027922 , 0, 9, 10000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:09:01, 129972639 , 0, 9, 10000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:09:14, 131629036 , 0, 9, 10000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:09:31, 124136903 , 0, 9, 10000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:09:53, 105666045 , 0, 9, 10000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:10:09, 110278377 , 0, 9, 10000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:10:24, 110876526 , 0, 9, 10000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:10:44, 94334357 , 0, 9, 10000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:10:55, 102231951 , 0, 9, 10000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:11:13, 113023046 , 0, 9, 10000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:11:26, 105417663 , 0, 9, 10000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:11:44, 123110089 , 0, 9, 10000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:11:53, 122154671 , 0, 9, 10000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:12:09, 129098798 , 0, 9, 10000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:12:22, 116713197 , 0, 9, 10000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:12:45, 108678997 , 0, 9, 10000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:12:53, 111145184 , 0, 9, 10000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:13:09, 108420969 , 0, 9, 10000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:13:22, 112388939 , 0, 9, 10000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:13:42, 97798638 , 0, 9, 10000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:13:54, 100570890 , 0, 9, 10000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:14:14, 112229003 , 0, 9, 10000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:14:28, 123555619 , 0, 9, 10000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:14:47, 122677788 , 0, 9, 10000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:15:04, 130295302 , 0, 9, 10000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:15:25, 129021686 , 0, 9, 10000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:15:38, 128679240 , 0, 9, 10000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:15:54, 88376156 , 0, 9, 10000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:16:03, 76294372 , 0, 9, 10000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:16:17, 74240620 , 0, 9, 10000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:16:27, 80800926 , 0, 9, 10000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:16:42, 90138724 , 0, 9, 10000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:16:51, 73253095 , 0, 9, 10000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:17:04, 76621095 , 0, 9, 10000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:17:12, 90270301 , 0, 9, 10000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:17:26, 105875741 , 0, 9, 10000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:17:34, 102956909 , 0, 9, 10000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:17:45, 82283842 , 0, 9, 10000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:17:49, 85118859 , 0, 9, 10000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:17:59, 81931101 , 0, 9, 10000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:18:04, 78790544 , 0, 9, 10000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:18:13, 76193928 , 0, 9, 10000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:18:18, 78324379 , 0, 9, 10000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:18:27, 79023797 , 0, 9, 10000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:18:32, 83723784 , 0, 9, 10000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:18:42, 95805686 , 0, 9, 10000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:18:47, 97875491 , 0, 9, 10000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:18:58, 93282456 , 0, 9, 10000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:19:03, 69305832 , 0, 9, 10000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:19:12, 66528319 , 0, 9, 10000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:19:16, 62593744 , 0, 9, 10000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:19:26, 60146734 , 0, 9, 10000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:19:30, 63973227 , 0, 9, 10000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:19:40, 69456607 , 0, 9, 10000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:19:44, 74762531 , 0, 9, 10000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:19:54, 80048494 , 0, 9, 10000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:20:00, 73605308 , 0, 9, 10000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:20:11, 79342028 , 0, 9, 10000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:20:17, 76860566 , 0, 9, 10000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:20:28, 86801571 , 0, 9, 10000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:20:37, 89576221 , 0, 9, 10000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:20:55, 91991700 , 0, 9, 10000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:21:08, 90585975 , 0, 9, 10000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:21:29, 77250823 , 0, 9, 10000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:21:41, 75977140 , 0, 9, 10000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:21:55, 82816554 , 0, 9, 10000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:22:07, 83520424 , 0, 9, 10000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:22:24, 91755608 , 0, 9, 10000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:22:36, 91302663 , 0, 9, 10000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:22:55, 103683666 , 0, 9, 10000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:23:12, 94020365 , 0, 9, 10000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:23:32, 92524771 , 0, 9, 10000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:23:47, 105747226 , 0, 9, 10000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:24:06, 89533336 , 0, 9, 10000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:24:22, 98692324 , 0, 9, 10000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:24:47, 75532599 , 0, 9, 10000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:24:59, 70348252 , 0, 9, 10000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:25:17, 69952414 , 0, 9, 10000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:25:31, 77206858 , 0, 9, 10000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:25:49, 113703080 , 0, 9, 10000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:26:02, 91539606 , 0, 9, 10000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:26:17, 96356596 , 0, 9, 10000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:26:26, 105823524 , 0, 9, 10000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:26:42, 117558533 , 0, 9, 10000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:26:57, 116174304 , 0, 9, 10000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:27:11, 122078953 , 0, 9, 10000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:27:33, 121653145 , 0, 9, 10000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:28:02, 124197296 , 0, 9, 10000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:28:23, 105435747 , 0, 9, 10000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:28:44, 121595456 , 0, 9, 10000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:29:05, 130128510 , 0, 9, 10000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:29:28, 95252421 , 0, 9, 10000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:29:35, 79734510 , 0, 9, 10000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:29:47, 100624140 , 0, 9, 10000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:29:54, 106313102 , 0, 9, 10000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:30:11, 122156579 , 0, 9, 10000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:30:23, 116103063 , 0, 9, 10000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:30:39, 105835816 , 0, 9, 10000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:30:55, 102246105 , 0, 9, 10000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:31:26, 97258425 , 0, 9, 10000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:31:42, 88876808 , 0, 9, 10000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:32:04, 104393459 , 0, 9, 10000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:32:18, 112157539 , 0, 9, 10000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:32:38, 93603188 , 0, 9, 10000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:32:46, 78047329 , 0, 9, 10000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:32:58, 94183873 , 0, 9, 10000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:33:06, 93651175 , 0, 9, 10000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:33:19, 107406387 , 0, 9, 10000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:33:28, 103461559 , 0, 9, 10000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:33:45, 76976061 , 0, 9, 10000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:34:02, 75159329 , 0, 9, 10000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:34:25, 70220659 , 0, 9, 10000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:34:39, 75638134 , 0, 9, 10000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:34:58, 98635838 , 0, 9, 10000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:35:14, 82265126 , 0, 9, 10000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:35:31, 64776512 , 0, 9, 10000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:35:36, 64808829 , 0, 9, 10000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:35:45, 71674013 , 0, 9, 10000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:35:49, 73585544 , 0, 9, 10000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:36:00, 49976583 , 0, 9, 10000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:36:02, 50991594 , 0, 9, 10000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:36:10, 55620600 , 0, 9, 10000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:36:14, 58542758 , 0, 9, 10000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:36:22, 67803057 , 0, 9, 10000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:36:27, 72997640 , 0, 9, 10000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:36:36, 71850298 , 0, 9, 10000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:36:40, 68277142 , 0, 9, 10000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:36:49, 51438027 , 0, 9, 10000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:36:52, 53143653 , 0, 9, 10000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:37:01, 54214184 , 0, 9, 10000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:37:05, 51592955 , 0, 9, 10000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:37:14, 49416596 , 0, 9, 10000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:37:17, 47254896 , 0, 9, 10000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:37:25, 21300870 , 0, 9, 10000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:37:27, 20680136 , 0, 9, 10000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:37:34, 25309757 , 0, 9, 10000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:37:36, 27155470 , 0, 9, 10000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:37:43, 27242324 , 0, 9, 10000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:37:45, 27133380 , 0, 9, 10000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:37:53, 29686502 , 0, 9, 10000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:37:55, 30245456 , 0, 9, 10000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:38:03, 33812925 , 0, 9, 10000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:38:06, 35244449 , 0, 9, 10000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:38:15, 41443926 , 0, 9, 10000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:38:18, 42602553 , 0, 9, 10000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:38:26, 42191032 , 0, 9, 10000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:38:32, 43499355 , 0, 9, 10000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:38:46, 47498325 , 0, 9, 10000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:38:54, 49864894 , 0, 9, 10000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:39:05, 51387701 , 0, 9, 10000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:39:12, 53149808 , 0, 9, 10000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:39:25, 60416713 , 0, 9, 10000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:39:35, 62884064 , 0, 9, 10000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:39:49, 66897291 , 0, 9, 10000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:40:04, 69057671 , 0, 9, 10000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:40:25, 82606805 , 0, 9, 10000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:40:43, 78331136 , 0, 9, 10000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:41:07, 82087672 , 0, 9, 10000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:41:28, 82685821 , 0, 9, 10000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:41:56, 88521864 , 0, 9, 10000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:42:22, 93160861 , 0, 9, 10000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:42:54, 83982125 , 0, 9, 10000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:43:14, 69147629 , 0, 9, 10000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:43:36, 75592259 , 0, 9, 10000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:43:51, 58619759 , 0, 9, 10000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:44:04, 68961801 , 0, 9, 10000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:44:14, 75748984 , 0, 9, 10000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:44:34, 95559926 , 0, 9, 10000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:44:55, 99178118 , 0, 9, 10000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:45:25, 97206867 , 0, 9, 10000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:45:51, 96322752 , 0, 9, 10000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:46:28, 95879168 , 0, 9, 10000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:46:50, 86938457 , 0, 9, 10000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:47:09, 70851606 , 0, 9, 10000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:47:16, 75503250 , 0, 9, 10000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:47:31, 91721658 , 0, 9, 10000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:47:44, 99792352 , 0, 9, 10000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:48:06, 105657038 , 0, 9, 10000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:48:23, 110136665 , 0, 9, 10000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:48:51, 131507948 , 0, 9, 10000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:49:15, 125579244 , 0, 9, 10000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:49:48, 92634007 , 0, 9, 10000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:50:04, 68374562 , 0, 9, 10000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:50:26, 41572048 , 0, 9, 10000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:50:41, 43526745 , 0, 9, 10000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:51:02, 70728716 , 0, 9, 10000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:51:12, 48935956 , 0, 9, 10000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:51:24, 49905315 , 0, 9, 10000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:51:30, 58411986 , 0, 9, 10000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:51:44, 68605027 , 0, 9, 10000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:51:55, 76068353 , 0, 9, 10000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:52:13, 95047695 , 0, 9, 10000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:52:33, 103109554 , 0, 9, 10000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:53:01, 85372440 , 0, 9, 10000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:53:21, 84254434 , 0, 9, 10000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:53:49, 58790245 , 0, 9, 10000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:54:04, 75751893 , 0, 9, 10000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:54:23, 37534955 , 0, 9, 10000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:54:28, 21380144 , 0, 9, 10000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:54:36, 33000716 , 0, 9, 10000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:54:41, 41106408 , 0, 9, 10000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:54:51, 49484414 , 0, 9, 10000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:54:57, 52479891 , 0, 9, 10000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:55:06, 56925582 , 0, 9, 10000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:55:13, 58756897 , 0, 9, 10000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:55:24, 72213992 , 0, 9, 10000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:55:31, 61279945 , 0, 9, 10000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:55:42, 45998401 , 0, 9, 10000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:55:45, 44008091 , 0, 9, 10000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:55:54, 44089295 , 0, 9, 10000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:55:57, 44999484 , 0, 9, 10000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:56:05, 12526177 , 0, 9, 10000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:56:06, 12668060 , 0, 9, 10000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:56:13, 15253722 , 0, 9, 10000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:56:14, 15341518 , 0, 9, 10000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:56:20, 15418378 , 0, 9, 10000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:56:22, 16082919 , 0, 9, 10000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:56:28, 16401127 , 0, 9, 10000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:56:30, 17157356 , 0, 9, 10000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:56:36, 19661213 , 0, 9, 10000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:56:38, 20017115 , 0, 9, 10000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:56:45, 21846859 , 0, 9, 10000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:56:47, 21574476 , 0, 9, 10000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:56:55, 26422315 , 0, 9, 10000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:56:58, 26106577 , 0, 9, 10000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:57:05, 26214941 , 0, 9, 10000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:57:08, 28450306 , 0, 9, 10000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:57:16, 26540028 , 0, 9, 10000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:57:20, 25394065 , 0, 9, 10000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:57:28, 27811938 , 0, 9, 10000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:57:34, 28305879 , 0, 9, 10000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 00:57:45, 28530990 , 0, 9, 10000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:57:52, 30732252 , 0, 9, 10000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 00:58:03, 37557882 , 0, 9, 10000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:58:09, 34426673 , 0, 9, 10000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 00:58:22, 38553765 , 0, 9, 10000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:58:31, 44188721 , 0, 9, 10000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 00:58:46, 45399752 , 0, 9, 10000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:58:57, 48892504 , 0, 9, 10000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 00:59:16, 53569352 , 0, 9, 10000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:59:31, 55966973 , 0, 9, 10000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 00:59:52, 64275524 , 0, 9, 10000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:00:11, 59129832 , 0, 9, 10000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:00:38, 68004616 , 0, 9, 10000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:01:00, 66414584 , 0, 9, 10000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:01:30, 64320955 , 0, 9, 10000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:01:57, 66332394 , 0, 9, 10000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:02:28, 65922254 , 0, 9, 10000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:02:51, 58749631 , 0, 9, 10000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:03:08, 63497617 , 0, 9, 10000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:03:22, 66172053 , 0, 9, 10000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:03:40, 79716357 , 0, 9, 10000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:04:03, 80128822 , 0, 9, 10000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:04:30, 74231068 , 0, 9, 10000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:04:56, 77258111 , 0, 9, 10000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:05:30, 89722245 , 0, 9, 10000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:06:00, 88324706 , 0, 9, 10000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:06:30, 95363094 , 0, 9, 10000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:06:51, 79213428 , 0, 9, 10000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:07:15, 89452130 , 0, 9, 10000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:07:30, 81821563 , 0, 9, 10000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:07:49, 87419352 , 0, 9, 10000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:08:09, 92651881 , 0, 9, 10000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:08:47, 107854684 , 0, 9, 10000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:09:14, 97481607 , 0, 9, 10000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:09:43, 78181117 , 0, 9, 10000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:10:05, 82751857 , 0, 9, 10000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:10:44, 82633770 , 0, 9, 10000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:11:10, 105270817 , 0, 9, 10000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:11:23, 53060607 , 0, 9, 10000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:11:28, 57414714 , 0, 9, 10000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:11:42, 53381220 , 0, 9, 10000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:11:51, 62671184 , 0, 9, 10000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:12:05, 77880444 , 0, 9, 10000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:12:22, 80969174 , 0, 9, 10000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:12:45, 98964157 , 0, 9, 10000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:13:16, 76873440 , 0, 9, 10000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:13:43, 68097027 , 0, 9, 10000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:13:57, 74840141 , 0, 9, 10000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:14:25, 50769660 , 0, 9, 10000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:14:43, 50693819 , 0, 9, 10000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:15:01, 17837954 , 0, 9, 10000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:15:03, 19912672 , 0, 9, 10000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:15:11, 35495438 , 0, 9, 10000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:15:18, 44880680 , 0, 9, 10000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:15:30, 53668621 , 0, 9, 10000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:15:38, 59016353 , 0, 9, 10000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:15:53, 66661278 , 0, 9, 10000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:16:04, 69536236 , 0, 9, 10000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:16:18, 51182483 , 0, 9, 10000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:16:23, 47123812 , 0, 9, 10000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:16:32, 45004012 , 0, 9, 10000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:16:36, 43972348 , 0, 9, 10000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:16:44, 11470356 , 0, 9, 10000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:16:45, 11358574 , 0, 9, 10000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:16:51, 14510896 , 0, 9, 10000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:16:52, 13535301 , 0, 9, 10000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:16:59, 14101854 , 0, 9, 10000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:17:00, 14082576 , 0, 9, 10000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:17:07, 14558404 , 0, 9, 10000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:17:08, 16426964 , 0, 9, 10000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:17:15, 15102718 , 0, 9, 10000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:17:17, 16849529 , 0, 9, 10000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:17:24, 16485232 , 0, 9, 10000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:17:25, 18965394 , 0, 9, 10000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:17:33, 19533910 , 0, 9, 10000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:17:35, 21397155 , 0, 9, 10000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:17:43, 20337235 , 0, 9, 10000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:17:45, 22298321 , 0, 9, 10000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:17:54, 23868061 , 0, 9, 10000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:17:57, 23410502 , 0, 9, 10000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:18:06, 22931194 , 0, 9, 10000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:18:10, 23516080 , 0, 9, 10000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:18:18, 25372132 , 0, 9, 10000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:18:22, 25036990 , 0, 9, 10000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:18:32, 25375303 , 0, 9, 10000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:18:38, 28952977 , 0, 9, 10000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:18:51, 29788770 , 0, 9, 10000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:18:57, 29988697 , 0, 9, 10000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:19:09, 35527162 , 0, 9, 10000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:19:15, 37644824 , 0, 9, 10000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:19:29, 40782842 , 0, 9, 10000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:19:38, 42526847 , 0, 9, 10000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:19:56, 43555209 , 0, 9, 10000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:20:07, 46847082 , 0, 9, 10000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:20:24, 48998742 , 0, 9, 10000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:20:41, 49750477 , 0, 9, 10000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:21:07, 54771230 , 0, 9, 10000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:21:30, 54696742 , 0, 9, 10000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:22:00, 59974540 , 0, 9, 10000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:22:26, 60517097 , 0, 9, 10000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:23:01, 65452433 , 0, 9, 10000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:23:28, 60315443 , 0, 9, 10000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:23:55, 58002958 , 0, 9, 10000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:24:15, 59785785 , 0, 9, 10000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:24:41, 66894456 , 0, 9, 10000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:25:00, 68892536 , 0, 9, 10000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:25:27, 70295583 , 0, 9, 10000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:25:56, 66793146 , 0, 9, 10000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:26:36, 69305119 , 0, 9, 10000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:27:08, 69588762 , 0, 9, 10000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:27:42, 90106949 , 0, 9, 10000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:28:06, 58792197 , 0, 9, 10000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:28:23, 66261745 , 0, 9, 10000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:28:35, 73539894 , 0, 9, 10000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:28:59, 83151267 , 0, 9, 10000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:29:21, 89910540 , 0, 9, 10000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:29:54, 94118694 , 0, 9, 10000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:30:25, 91330770 , 0, 9, 10000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:30:56, 92750490 , 0, 9, 10000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:31:32, 80212817 , 0, 9, 10000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:32:14, 83088855 , 0, 9, 10000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:32:38, 66556419 , 0, 9, 10000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:32:54, 45128398 , 0, 9, 10000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:33:00, 44818243 , 0, 9, 10000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:33:13, 44271149 , 0, 9, 10000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:33:22, 52575759 , 0, 9, 10000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:33:38, 67201872 , 0, 9, 10000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:33:55, 77191380 , 0, 9, 10000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:34:23, 93179609 , 0, 9, 10000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:34:46, 69485908 , 0, 9, 10000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:35:16, 69191940 , 0, 9, 10000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:35:38, 72518817 , 0, 9, 10000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:36:23, 76197986 , 0, 9, 10000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:36:44, 75224024 , 0, 9, 10000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:36:55, 20816093 , 0, 9, 10000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:36:58, 23982902 , 0, 9, 10000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:37:08, 43887026 , 0, 10, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:37:19, 57142660 , 0, 10, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:37:39, 73303526 , 0, 10, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:37:56, 77525829 , 0, 10, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:38:15, 57464478 , 0, 10, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:38:21, 56260567 , 0, 10, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:38:31, 54937863 , 0, 10, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:38:34, 55378705 , 0, 10, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:38:43, 16980286 , 0, 10, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:38:44, 17227137 , 0, 10, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:38:50, 15235970 , 0, 10, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:38:52, 15708092 , 0, 10, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:38:58, 15209380 , 0, 10, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:38:59, 15409635 , 0, 10, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:39:06, 15555489 , 0, 10, 1000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:39:07, 16347753 , 0, 10, 1000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:39:13, 23141433 , 0, 10, 1000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:39:15, 23270209 , 0, 10, 1000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:39:21, 20096642 , 0, 10, 1000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:39:23, 20163244 , 0, 10, 1000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:39:30, 20246069 , 0, 10, 1000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:39:31, 20593577 , 0, 10, 1000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:39:38, 23030572 , 0, 10, 1000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:39:40, 23456430 , 0, 10, 1000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:39:47, 25295993 , 0, 10, 1000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:39:48, 25777684 , 0, 10, 1000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:39:55, 30365308 , 0, 10, 1000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:39:57, 27462378 , 0, 10, 1000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:40:04, 33230216 , 0, 10, 1000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:40:06, 29920362 , 0, 10, 1000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:40:13, 28637971 , 0, 10, 1000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:40:15, 29408409 , 0, 10, 1000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:40:23, 29693186 , 0, 10, 1000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:40:25, 30187349 , 0, 10, 1000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:40:32, 32908012 , 0, 10, 1000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:40:34, 33651753 , 0, 10, 1000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:40:42, 35624672 , 0, 10, 1000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:40:44, 36389817 , 0, 10, 1000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:40:52, 40876727 , 0, 10, 1000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:40:55, 43111476 , 0, 10, 1000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:41:03, 46250283 , 0, 10, 1000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:41:06, 41764903 , 0, 10, 1000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:41:14, 43623579 , 0, 10, 1000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:41:18, 44449740 , 0, 10, 1000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:41:27, 45538597 , 0, 10, 1000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:41:30, 46724536 , 0, 10, 1000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:41:39, 49746396 , 0, 10, 1000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:41:43, 51056995 , 0, 10, 1000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:41:52, 53634635 , 0, 10, 1000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:41:57, 55080000 , 0, 10, 1000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:42:08, 60625423 , 0, 10, 1000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:42:13, 61185397 , 0, 10, 1000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:42:23, 61116648 , 0, 10, 1000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:42:27, 62946597 , 0, 10, 1000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:42:38, 65326402 , 0, 10, 1000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:42:42, 65971253 , 0, 10, 1000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:42:53, 68672220 , 0, 10, 1000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:42:59, 69783026 , 0, 10, 1000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:43:09, 73083209 , 0, 10, 1000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:43:15, 74674653 , 0, 10, 1000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:43:26, 77636025 , 0, 10, 1000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:43:33, 79014381 , 0, 10, 1000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:43:45, 81283006 , 0, 10, 1000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:43:51, 81572536 , 0, 10, 1000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:44:05, 87088242 , 0, 10, 1000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:44:13, 89046730 , 0, 10, 1000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:44:28, 92790794 , 0, 10, 1000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:44:37, 94391551 , 0, 10, 1000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:44:50, 97868947 , 0, 10, 1000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:44:59, 99633452 , 0, 10, 1000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:45:14, 104988884 , 0, 10, 1000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:45:25, 109677464 , 0, 10, 1000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:45:41, 105366083 , 0, 10, 1000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:45:50, 107822894 , 0, 10, 1000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:46:04, 114392584 , 0, 10, 1000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:46:17, 117246872 , 0, 10, 1000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:46:34, 122913746 , 0, 10, 1000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:46:46, 124693972 , 0, 10, 1000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:47:03, 128857672 , 0, 10, 1000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:47:14, 128320916 , 0, 10, 1000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:47:33, 128063063 , 0, 10, 1000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:47:46, 127907737 , 0, 10, 1000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:48:04, 127646189 , 0, 10, 1000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:48:18, 127637760 , 0, 10, 1000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:48:34, 127882354 , 0, 10, 1000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:48:48, 127824669 , 0, 10, 1000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:49:07, 128179528 , 0, 10, 1000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:49:19, 129231162 , 0, 10, 1000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:49:40, 123893116 , 0, 10, 1000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:49:51, 126796186 , 0, 10, 1000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:50:12, 123598900 , 0, 10, 1000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:50:27, 128215257 , 0, 10, 1000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:50:48, 122839760 , 0, 10, 1000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:51:02, 123504963 , 0, 10, 1000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:51:20, 127014372 , 0, 10, 1000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:51:32, 127402976 , 0, 10, 1000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:51:53, 121980914 , 0, 10, 1000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:52:06, 125665269 , 0, 10, 1000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:52:25, 123238665 , 0, 10, 1000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:52:39, 125317610 , 0, 10, 1000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:52:59, 122447019 , 0, 10, 1000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:53:11, 124737998 , 0, 10, 1000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:53:29, 118743540 , 0, 10, 1000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:53:42, 118065020 , 0, 10, 1000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:54:00, 123490150 , 0, 10, 1000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:54:13, 126729919 , 0, 10, 1000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:54:44, 126175535 , 0, 10, 1000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:54:58, 124283633 , 0, 10, 1000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:55:18, 128921348 , 0, 10, 1000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:55:32, 128795225 , 0, 10, 1000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:55:53, 129067764 , 0, 10, 1000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:56:13, 124632082 , 0, 10, 1000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:56:32, 129004982 , 0, 10, 1000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:56:47, 125655332 , 0, 10, 1000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 01:57:08, 120496037 , 0, 10, 1000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:57:21, 120336563 , 0, 10, 1000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 01:57:39, 126328794 , 0, 10, 1000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:57:54, 123870607 , 0, 10, 1000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 01:58:18, 129342713 , 0, 10, 1000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:58:31, 127293720 , 0, 10, 1000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 01:58:55, 122362671 , 0, 10, 1000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:59:12, 119122710 , 0, 10, 1000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 01:59:32, 125917887 , 0, 10, 1000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 01:59:46, 128509307 , 0, 10, 1000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:00:09, 129039696 , 0, 10, 1000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:00:23, 124157884 , 0, 10, 1000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:00:43, 123460815 , 0, 10, 1000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:00:59, 127336516 , 0, 10, 1000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:01:18, 124081563 , 0, 10, 1000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:01:36, 125288035 , 0, 10, 1000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:01:59, 123335871 , 0, 10, 1000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:02:14, 119605555 , 0, 10, 1000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:02:34, 128449174 , 0, 10, 1000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:02:51, 124999591 , 0, 10, 1000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:03:10, 116741517 , 0, 10, 1000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:03:20, 119104831 , 0, 10, 1000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:03:35, 125151698 , 0, 10, 1000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:03:46, 128393753 , 0, 10, 1000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:04:07, 127168605 , 0, 10, 1000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:04:21, 123111053 , 0, 10, 1000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:04:40, 128990195 , 0, 10, 1000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:04:54, 128862685 , 0, 10, 1000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:05:16, 130444111 , 0, 10, 1000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:05:34, 128235260 , 0, 10, 1000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:05:53, 123020225 , 0, 10, 1000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:06:00, 126242144 , 0, 10, 1000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:06:22, 130381834 , 0, 10, 1000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:06:36, 125423576 , 0, 10, 1000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:06:57, 123131608 , 0, 10, 1000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:07:09, 129648757 , 0, 10, 1000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:07:32, 124381193 , 0, 10, 1000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:07:49, 118918410 , 0, 10, 1000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:08:08, 130953503 , 0, 10, 1000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:08:22, 117387752 , 0, 10, 1000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:08:43, 124676165 , 0, 10, 1000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:08:59, 129456453 , 0, 10, 1000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:09:23, 127187660 , 0, 10, 1000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:09:42, 123303797 , 0, 10, 1000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:10:03, 127023183 , 0, 10, 1000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:10:17, 129488159 , 0, 10, 1000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:10:35, 129231064 , 0, 10, 1000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:10:46, 123041879 , 0, 10, 1000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:11:09, 119025243 , 0, 10, 1000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:11:23, 123544363 , 0, 10, 1000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:11:36, 120980010 , 0, 10, 1000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:11:51, 119307038 , 0, 10, 1000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:12:12, 129048203 , 0, 10, 1000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:12:28, 111945499 , 0, 10, 1000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:12:51, 107430858 , 0, 10, 1000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:13:10, 114143843 , 0, 10, 1000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:13:32, 127606434 , 0, 10, 1000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:13:48, 122493769 , 0, 10, 1000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:14:09, 125634832 , 0, 10, 1000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:14:22, 130479520 , 0, 10, 1000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:14:39, 121402796 , 0, 10, 1000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:14:56, 116026836 , 0, 10, 1000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:15:14, 123798051 , 0, 10, 1000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:15:30, 107292014 , 0, 10, 1000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:15:47, 114666829 , 0, 10, 1000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:15:58, 124846880 , 0, 10, 1000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:16:16, 117873195 , 0, 10, 1000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:16:26, 114050413 , 0, 10, 1000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:16:43, 124778591 , 0, 10, 1000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:16:53, 129729845 , 0, 10, 1000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:17:11, 126053320 , 0, 10, 1000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:17:20, 128374120 , 0, 10, 1000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:17:37, 119209618 , 0, 10, 1000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:17:51, 124302074 , 0, 10, 1000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:18:12, 114228994 , 0, 10, 1000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:18:20, 120806040 , 0, 10, 1000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:18:38, 126286228 , 0, 10, 1000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:18:48, 115720992 , 0, 10, 1000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:19:05, 129109507 , 0, 10, 1000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:19:16, 119673421 , 0, 10, 1000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:19:32, 117885310 , 0, 10, 1000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:20:08, 113630821 , 0, 10, 1000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:20:22, 119805452 , 0, 10, 1000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:20:30, 127038924 , 0, 10, 1000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:20:43, 133056332 , 0, 10, 1000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:20:54, 133534716 , 0, 10, 1000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:21:15, 119525712 , 0, 10, 1000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:21:27, 129659635 , 0, 10, 1000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:21:46, 114464756 , 0, 10, 1000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:21:59, 124042964 , 0, 10, 1000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:22:12, 125592563 , 0, 10, 1000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:22:27, 102908061 , 0, 10, 1000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:22:42, 115055272 , 0, 10, 1000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:22:58, 124561956 , 0, 10, 1000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:23:21, 107714031 , 0, 10, 1000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:23:36, 110753098 , 0, 10, 1000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:23:55, 125851811 , 0, 10, 1000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:24:13, 129122759 , 0, 10, 1000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:24:34, 120963808 , 0, 10, 1000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:24:52, 131610778 , 0, 10, 1000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:25:22, 130439442 , 0, 10, 1000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:25:37, 126555054 , 0, 10, 1000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:26:03, 124548818 , 0, 10, 1000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:26:14, 125239563 , 0, 10, 1000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:26:33, 106327050 , 0, 10, 1000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:26:42, 110396585 , 0, 10, 1000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:27:03, 122161030 , 0, 10, 1000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:27:20, 122632000 , 0, 10, 1000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:27:49, 119250179 , 0, 10, 1000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:28:00, 108015996 , 0, 10, 1000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:28:20, 123219679 , 0, 10, 1000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:28:39, 115276801 , 0, 10, 1000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:29:05, 121582378 , 0, 10, 1000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:29:29, 135097653 , 0, 10, 1000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:29:56, 125645172 , 0, 10, 1000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:30:32, 109741426 , 0, 10, 1000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:30:58, 128716494 , 0, 10, 1000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:31:21, 101544301 , 0, 10, 1000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:31:41, 117357060 , 0, 10, 1000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:31:56, 126157815 , 0, 10, 1000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:32:15, 128474284 , 0, 10, 1000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:32:34, 119755378 , 0, 10, 1000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:33:01, 130077976 , 0, 10, 1000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:33:26, 131317203 , 0, 10, 1000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:33:55, 129341397 , 0, 10, 1000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:34:23, 109429428 , 0, 10, 1000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:35:19, 124097746 , 0, 10, 1000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:35:37, 130113227 , 0, 10, 1000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:35:57, 129801978 , 0, 10, 1000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:36:09, 130158095 , 0, 10, 1000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:36:33, 123087348 , 0, 10, 1000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:36:47, 124328540 , 0, 10, 1000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:37:01, 132201255 , 0, 10, 1000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:37:33, 121452726 , 0, 10, 1000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:38:10, 122635360 , 0, 10, 1000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:38:35, 131090763 , 0, 10, 1000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:39:02, 134548348 , 0, 10, 1000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:39:22, 115462089 , 0, 10, 1000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:39:47, 116975979 , 0, 10, 1000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:40:44, 129442977 , 0, 10, 1000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:41:09, 118957023 , 0, 10, 1000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:41:26, 126537077 , 0, 10, 1000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:41:52, 130159837 , 0, 10, 1000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:42:09, 129573897 , 0, 10, 1000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:42:29, 122924703 , 0, 10, 1000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:42:52, 122417221 , 0, 10, 1000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:43:11, 116963639 , 0, 10, 1000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:43:20, 128228470 , 0, 10, 1000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:43:35, 120776243 , 0, 10, 1000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:43:45, 121110496 , 0, 10, 1000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:43:58, 124129871 , 0, 10, 1000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:44:10, 123215281 , 0, 10, 1000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:44:27, 115392365 , 0, 10, 1000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:44:37, 116536517 , 0, 10, 1000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:44:50, 111691708 , 0, 10, 1000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:44:58, 105535771 , 0, 10, 1000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:45:11, 105560472 , 0, 10, 1000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:45:20, 106779469 , 0, 10, 1000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:45:34, 124661854 , 0, 10, 1000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:45:44, 130703311 , 0, 10, 1000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:46:01, 117802784 , 0, 10, 1000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:46:13, 121747747 , 0, 10, 1000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:46:29, 129126911 , 0, 10, 1000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:46:44, 126866542 , 0, 10, 1000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:47:03, 124227311 , 0, 10, 1000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:47:19, 126608799 , 0, 10, 1000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:47:38, 124157966 , 0, 10, 1000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:47:52, 121817848 , 0, 10, 1000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:48:07, 99776674 , 0, 10, 1000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:48:16, 101795276 , 0, 10, 1000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:48:31, 100280105 , 0, 10, 1000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:48:40, 81800054 , 0, 10, 1000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:48:57, 86145625 , 0, 10, 1000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:49:08, 90523344 , 0, 10, 1000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:49:27, 104047414 , 0, 10, 1000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:49:43, 109708075 , 0, 10, 1000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:50:05, 111701930 , 0, 10, 1000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:50:27, 122554132 , 0, 10, 1000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:50:50, 113867801 , 0, 10, 1000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:51:06, 125247316 , 0, 10, 1000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:51:22, 121747514 , 0, 10, 1000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:51:44, 117585757 , 0, 10, 1000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:52:03, 92720176 , 0, 10, 1000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:52:25, 68221956 , 0, 10, 1000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:52:49, 69237695 , 0, 10, 1000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:53:07, 73342403 , 0, 10, 1000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:53:33, 89862325 , 0, 10, 1000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:53:58, 92625527 , 0, 10, 1000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:54:33, 100963148 , 0, 10, 1000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:55:09, 130076811 , 0, 10, 1000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 02:55:41, 128825504 , 0, 10, 1000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:56:06, 128305210 , 0, 10, 1000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 02:56:23, 125978970 , 0, 10, 1000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:56:44, 130426398 , 0, 10, 1000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 02:57:06, 123199139 , 0, 10, 1000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:57:32, 101966427 , 0, 10, 1000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 02:58:01, 81811145 , 0, 10, 1000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:58:22, 84091502 , 0, 10, 1000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 02:58:47, 99127771 , 0, 10, 1000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:59:08, 89479554 , 0, 10, 1000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 02:59:35, 102170873 , 0, 10, 1000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:00:03, 131474871 , 0, 10, 1000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:00:43, 130919867 , 0, 10, 1000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:01:00, 133806035 , 0, 10, 1000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:01:25, 96364115 , 0, 10, 1000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:01:32, 81054469 , 0, 10, 1000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:01:43, 93139345 , 0, 10, 1000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:02:01, 99908973 , 0, 10, 1000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:02:34, 115840753 , 0, 10, 1000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:03:07, 129126631 , 0, 10, 1000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:03:43, 131787478 , 0, 10, 1000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:04:14, 135380676 , 0, 10, 1000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:04:58, 135269642 , 0, 10, 1000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:05:41, 126980567 , 0, 10, 1000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:06:12, 113609236 , 0, 10, 1000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:06:23, 129117815 , 0, 10, 1000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:06:44, 92294499 , 0, 10, 1000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:07:06, 63094809 , 0, 10, 1000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:07:27, 70893569 , 0, 10, 1000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:07:46, 81246876 , 0, 10, 1000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:08:14, 89207444 , 0, 10, 1000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:08:40, 84047120 , 0, 10, 1000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:09:07, 97274671 , 0, 10, 1000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:09:34, 110905128 , 0, 10, 1000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:10:05, 123419517 , 0, 10, 1000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:10:30, 124827015 , 0, 10, 1000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:11:00, 128842746 , 0, 10, 1000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:11:28, 111387684 , 0, 10, 1000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:11:44, 79843071 , 0, 10, 1000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:11:51, 85805161 , 0, 10, 1000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:12:05, 89177688 , 0, 10, 1000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:12:14, 96012141 , 0, 10, 1000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:12:30, 103935053 , 0, 10, 1000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:12:42, 108339316 , 0, 10, 1000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:12:57, 117891691 , 0, 10, 1000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:13:06, 127205798 , 0, 10, 1000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:13:22, 124930500 , 0, 10, 1000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:13:34, 102168330 , 0, 10, 1000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:13:48, 95544606 , 0, 10, 1000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:13:57, 99074141 , 0, 10, 1000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:14:11, 85382348 , 0, 10, 1000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:14:19, 85630966 , 0, 10, 1000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:14:31, 86353057 , 0, 10, 1000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:14:42, 80579251 , 0, 10, 1000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:14:58, 84160770 , 0, 10, 1000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:15:07, 87824268 , 0, 10, 1000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:15:25, 81100388 , 0, 10, 1000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:15:32, 71583399 , 0, 10, 1000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:15:46, 66458691 , 0, 10, 1000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:15:51, 61308768 , 0, 10, 1000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:16:01, 56552410 , 0, 10, 1000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:16:09, 56260237 , 0, 10, 1000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:16:23, 41814297 , 0, 10, 1000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:16:30, 38274344 , 0, 10, 1000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:16:44, 42530505 , 0, 10, 1000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:16:52, 43801440 , 0, 10, 1000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:17:05, 58114879 , 0, 10, 1000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:17:16, 49927019 , 0, 10, 1000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:17:31, 53280287 , 0, 10, 1000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:17:41, 60385048 , 0, 10, 1000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:17:58, 65911323 , 0, 10, 1000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:18:06, 65511041 , 0, 10, 1000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:18:25, 55096841 , 0, 10, 1000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:18:36, 53133980 , 0, 10, 1000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:18:51, 41113668 , 0, 10, 1000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:19:01, 48656514 , 0, 10, 1000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:19:19, 52332212 , 0, 10, 1000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:19:33, 69305368 , 0, 10, 1000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:19:54, 62105699 , 0, 10, 1000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:20:11, 69529433 , 0, 10, 1000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:20:38, 78761578 , 0, 10, 1000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:21:01, 104952330 , 0, 10, 1000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:21:32, 133509933 , 0, 10, 1000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:22:10, 105760821 , 0, 10, 1000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:22:48, 82428762 , 0, 10, 1000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:23:13, 79104923 , 0, 10, 1000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:23:44, 116458147 , 0, 10, 1000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:24:15, 98341462 , 0, 10, 1000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:24:53, 81056978 , 0, 10, 1000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:25:19, 85953787 , 0, 10, 1000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:25:58, 106939987 , 0, 10, 1000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:26:38, 127544529 , 0, 10, 1000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:27:17, 126704105 , 0, 10, 1000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:27:56, 59794667 , 0, 10, 1000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:28:15, 67155678 , 0, 10, 1000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:28:37, 76314262 , 0, 10, 1000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:29:09, 82540026 , 0, 10, 1000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:29:23, 89462332 , 0, 10, 1000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:29:49, 109296602 , 0, 10, 1000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:30:27, 124849958 , 0, 10, 1000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:31:18, 134337247 , 0, 10, 1000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:32:33, 129175296 , 0, 10, 1000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:33:55, 102141701 , 0, 10, 1000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:34:38, 104838922 , 0, 10, 1000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:35:03, 56555081 , 0, 10, 1000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:35:10, 60052934 , 0, 10, 1000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:35:26, 67520896 , 0, 10, 1000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:35:42, 70104695 , 0, 10, 1000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:36:07, 79485903 , 0, 10, 1000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:36:21, 86383507 , 0, 10, 1000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:36:38, 106630218 , 0, 10, 1000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:37:13, 117990044 , 0, 10, 1000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:38:04, 119879852 , 0, 10, 1000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:39:00, 109139742 , 0, 10, 1000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:39:44, 89459686 , 0, 10, 1000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:40:09, 111496378 , 0, 10, 1000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:40:36, 54946317 , 0, 10, 1000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:40:43, 52457511 , 0, 10, 1000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:40:55, 47813096 , 0, 10, 1000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:41:03, 53103749 , 0, 10, 1000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:41:17, 53522851 , 0, 10, 1000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:41:25, 56867420 , 0, 10, 1000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:41:38, 64958366 , 0, 10, 1000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:41:50, 77617289 , 0, 10, 1000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:42:10, 100477971 , 0, 10, 1000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:42:22, 102224258 , 0, 10, 1000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:42:40, 97885604 , 0, 10, 1000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:42:49, 96149966 , 0, 10, 1000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:43:04, 74377366 , 0, 10, 1000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:43:11, 72224792 , 0, 10, 1000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:43:25, 61243520 , 0, 10, 1000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:43:34, 59779227 , 0, 10, 1000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:43:44, 61472088 , 0, 10, 1000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:43:48, 59394042 , 0, 10, 1000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:43:58, 29305803 , 0, 10, 1000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:44:01, 29533743 , 0, 10, 1000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:44:09, 27508150 , 0, 10, 1000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:44:12, 27782471 , 0, 10, 1000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:44:20, 29385714 , 0, 10, 1000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:44:23, 33935462 , 0, 10, 1000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:44:31, 39302747 , 0, 10, 1000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:44:35, 37917030 , 0, 10, 1000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:44:43, 37535446 , 0, 10, 1000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:44:48, 36025531 , 0, 10, 1000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:44:57, 40861350 , 0, 10, 1000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:45:01, 43891112 , 0, 10, 1000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:45:11, 43773763 , 0, 10, 1000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:45:18, 46845993 , 0, 10, 1000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:45:31, 46453620 , 0, 10, 1000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:45:41, 46722365 , 0, 10, 1000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:45:55, 50600719 , 0, 10, 1000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:46:07, 54751850 , 0, 10, 1000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:46:24, 54572684 , 0, 10, 1000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:46:34, 54244899 , 0, 10, 1000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:46:50, 55018435 , 0, 10, 1000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:47:03, 58404594 , 0, 10, 1000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:47:20, 59506727 , 0, 10, 1000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:47:34, 58421095 , 0, 10, 1000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:47:56, 61101687 , 0, 10, 1000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:48:17, 66527421 , 0, 10, 1000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:48:43, 69865550 , 0, 10, 1000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:49:05, 59582144 , 0, 10, 1000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:49:28, 71942546 , 0, 10, 1000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:49:45, 87972718 , 0, 10, 1000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:50:12, 82847378 , 0, 10, 1000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:50:36, 72642390 , 0, 10, 1000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:51:05, 78780181 , 0, 10, 1000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:51:36, 93732501 , 0, 10, 1000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:52:18, 93722595 , 0, 10, 1000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:52:56, 90052273 , 0, 10, 1000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:53:31, 91147544 , 0, 10, 1000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:54:04, 93300623 , 0, 10, 1000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 03:54:45, 81875765 , 0, 10, 1000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:55:16, 75397586 , 0, 10, 1000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 03:55:47, 115396531 , 0, 10, 1000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:56:16, 111323021 , 0, 10, 1000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 03:56:47, 108520885 , 0, 10, 1000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:57:20, 121473581 , 0, 10, 1000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 03:57:58, 104712461 , 0, 10, 1000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:58:33, 93248023 , 0, 10, 1000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 03:59:15, 99148383 , 0, 10, 1000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 03:59:45, 111645600 , 0, 10, 1000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:00:22, 117216768 , 0, 10, 1000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:01:02, 95171348 , 0, 10, 1000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:01:50, 110179320 , 0, 10, 1000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:02:46, 129555342 , 0, 10, 1000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:03:31, 140896882 , 0, 10, 1000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:04:11, 56022358 , 0, 10, 1000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:04:30, 70063230 , 0, 10, 1000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:04:51, 80699153 , 0, 10, 1000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:05:15, 84379785 , 0, 10, 1000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:05:54, 89810104 , 0, 10, 1000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:06:34, 81315209 , 0, 10, 1000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:06:52, 93818331 , 0, 10, 1000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:07:15, 98613430 , 0, 10, 1000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:07:53, 78846117 , 0, 10, 1000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:08:48, 75848187 , 0, 10, 1000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:09:34, 65585743 , 0, 10, 1000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:10:11, 111456896 , 0, 10, 1000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:10:35, 44581865 , 0, 10, 1000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:10:51, 44627170 , 0, 10, 1000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:11:01, 47640584 , 0, 10, 1000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:11:16, 51176591 , 0, 10, 1000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:11:29, 55466616 , 0, 10, 1000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:11:46, 61921544 , 0, 10, 1000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:11:57, 73811656 , 0, 10, 1000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:12:21, 88452819 , 0, 10, 1000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:12:35, 97919843 , 0, 10, 1000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:13:01, 89843226 , 0, 10, 1000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:13:14, 78045680 , 0, 10, 1000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:13:33, 59354993 , 0, 10, 1000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:13:38, 62187055 , 0, 10, 1000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:13:49, 56096018 , 0, 10, 1000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:13:53, 52841963 , 0, 10, 1000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:14:02, 29392760 , 0, 10, 1000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:14:05, 29711297 , 0, 10, 1000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:14:12, 32819797 , 0, 10, 1000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:14:15, 33237235 , 0, 10, 1000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:14:24, 29979636 , 0, 10, 1000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:14:27, 23286686 , 0, 10, 1000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:14:34, 23019594 , 0, 10, 1000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:14:36, 22964248 , 0, 10, 1000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:14:45, 25740867 , 0, 10, 1000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:14:47, 26447043 , 0, 10, 1000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:14:56, 28910143 , 0, 10, 1000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:14:59, 27804179 , 0, 10, 1000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:15:07, 26458786 , 0, 10, 1000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:15:11, 28309379 , 0, 10, 1000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:15:22, 32797077 , 0, 10, 1000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:15:27, 33820359 , 0, 10, 1000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:15:39, 37915461 , 0, 10, 1000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:15:48, 41210043 , 0, 10, 1000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:16:04, 36583467 , 0, 10, 1000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:16:15, 38174366 , 0, 10, 1000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:16:28, 41139568 , 0, 10, 1000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:16:38, 45598995 , 0, 10, 1000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:16:55, 47074088 , 0, 10, 1000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:17:05, 48386359 , 0, 10, 1000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:17:20, 44798673 , 0, 10, 1000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:17:31, 45337936 , 0, 10, 1000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:17:52, 53237057 , 0, 10, 1000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:18:08, 52781210 , 0, 10, 1000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:18:29, 55484340 , 0, 10, 1000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:18:51, 50845525 , 0, 10, 1000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:19:19, 53845901 , 0, 10, 1000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:19:36, 55778506 , 0, 10, 1000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:20:00, 62302429 , 0, 10, 1000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:20:18, 71936546 , 0, 10, 1000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:20:43, 68694584 , 0, 10, 1000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:21:06, 67001880 , 0, 10, 1000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:21:34, 79402182 , 0, 10, 1000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:22:08, 82141866 , 0, 10, 1000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:22:53, 88635527 , 0, 10, 1000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:23:32, 85024990 , 0, 10, 1000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:24:04, 77983481 , 0, 10, 1000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:24:36, 79944059 , 0, 10, 1000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:25:16, 75897549 , 0, 10, 1000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:25:52, 88918703 , 0, 10, 1000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:26:33, 116187947 , 0, 10, 1000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:27:13, 88560676 , 0, 10, 1000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:27:56, 107891732 , 0, 10, 1000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:28:25, 80852541 , 0, 10, 1000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:28:49, 75201597 , 0, 10, 1000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:29:16, 87666714 , 0, 10, 1000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:30:01, 97120367 , 0, 10, 1000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:30:32, 105133330 , 0, 10, 1000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:31:10, 90259731 , 0, 10, 1000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:31:40, 89991532 , 0, 10, 1000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:32:30, 123967086 , 0, 10, 1000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:33:24, 138369617 , 0, 10, 1000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:34:14, 112812475 , 0, 10, 1000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:35:01, 101078515 , 0, 10, 1000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:35:39, 77897227 , 0, 10, 1000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:36:10, 77255610 , 0, 10, 1000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:36:40, 70088360 , 0, 10, 1000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:37:11, 93902793 , 0, 10, 1000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:38:06, 94168024 , 0, 10, 1000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:38:37, 68587403 , 0, 10, 1000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:38:55, 60943796 , 0, 10, 1000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:39:08, 62452556 , 0, 10, 1000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:39:43, 74195121 , 0, 10, 1000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:40:34, 112690370 , 0, 10, 1000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:41:39, 81219882 , 0, 10, 1000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:42:25, 40877604 , 0, 10, 1000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:42:41, 53295141 , 0, 10, 10000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:42:57, 63971928 , 0, 10, 10000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:43:19, 82801170 , 0, 10, 10000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:43:40, 90512354 , 0, 10, 10000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:44:08, 108864678 , 0, 10, 10000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:44:39, 114786454 , 0, 10, 10000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:45:04, 78761374 , 0, 10, 10000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:45:18, 76323689 , 0, 10, 10000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:45:34, 76257186 , 0, 10, 10000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:45:43, 74983907 , 0, 10, 10000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:45:53, 70754232 , 0, 10, 10000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:45:58, 46726512 , 0, 10, 10000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:46:06, 48436128 , 0, 10, 10000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:46:08, 56186392 , 0, 10, 10000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:46:17, 75893347 , 0, 10, 10000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:46:20, 72658159 , 0, 10, 10000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:46:29, 88732665 , 0, 10, 10000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:46:33, 93792512 , 0, 10, 10000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:46:43, 92057787 , 0, 10, 10000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:46:49, 98580995 , 0, 10, 10000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:46:58, 94018258 , 0, 10, 10000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:47:04, 96673475 , 0, 10, 10000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:47:14, 94727243 , 0, 10, 10000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:47:18, 96869818 , 0, 10, 10000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:47:29, 112441375 , 0, 10, 10000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:47:34, 121608497 , 0, 10, 10000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:47:45, 126356400 , 0, 10, 10000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:47:51, 127170103 , 0, 10, 10000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:48:08, 131905889 , 0, 10, 10000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:48:15, 129767473 , 0, 10, 10000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:48:27, 129369057 , 0, 10, 10000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:48:32, 129421247 , 0, 10, 10000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:48:43, 102640752 , 0, 10, 10000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:48:52, 110018550 , 0, 10, 10000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:49:02, 121370271 , 0, 10, 10000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:49:09, 119075912 , 0, 10, 10000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:49:21, 107569010 , 0, 10, 10000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:49:29, 109256615 , 0, 10, 10000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:49:40, 104103566 , 0, 10, 10000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:49:49, 113325638 , 0, 10, 10000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:50:02, 122078643 , 0, 10, 10000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:50:11, 130922385 , 0, 10, 10000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:50:25, 127941426 , 0, 10, 10000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:50:31, 129466003 , 0, 10, 10000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:50:42, 126327034 , 0, 10, 10000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:50:47, 129779041 , 0, 10, 10000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:50:59, 107451658 , 0, 10, 10000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:51:08, 117056519 , 0, 10, 10000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:51:20, 129209657 , 0, 10, 10000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:51:29, 128509205 , 0, 10, 10000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:51:42, 128253907 , 0, 10, 10000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:51:50, 128469453 , 0, 10, 10000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:52:06, 128509622 , 0, 10, 10000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:52:14, 110693328 , 0, 10, 10000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:52:26, 118023041 , 0, 10, 10000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:52:32, 122800960 , 0, 10, 10000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:52:46, 118013321 , 0, 10, 10000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:52:57, 119056222 , 0, 10, 10000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:53:11, 127868225 , 0, 10, 10000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:53:23, 120239714 , 0, 10, 10000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:53:41, 127078049 , 0, 10, 10000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:53:54, 121916649 , 0, 10, 10000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:54:10, 116304377 , 0, 10, 10000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:54:23, 127904253 , 0, 10, 10000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:54:38, 121444418 , 0, 10, 10000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:54:47, 127744506 , 0, 10, 10000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:55:03, 109260203 , 0, 10, 10000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:55:15, 115054176 , 0, 10, 10000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:55:31, 125817148 , 0, 10, 10000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:55:46, 113610216 , 0, 10, 10000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:56:04, 127823933 , 0, 10, 10000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:56:18, 119445928 , 0, 10, 10000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:56:33, 112935179 , 0, 10, 10000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:56:44, 119103044 , 0, 10, 10000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 04:57:03, 114248386 , 0, 10, 10000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:57:19, 118205507 , 0, 10, 10000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 04:57:37, 117259354 , 0, 10, 10000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:57:49, 121461067 , 0, 10, 10000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 04:58:08, 129069868 , 0, 10, 10000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:58:21, 118256344 , 0, 10, 10000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 04:58:47, 129678542 , 0, 10, 10000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:59:03, 116866781 , 0, 10, 10000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 04:59:24, 115613580 , 0, 10, 10000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:59:40, 118012054 , 0, 10, 10000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 04:59:59, 126180275 , 0, 10, 10000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:00:14, 120730075 , 0, 10, 10000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:00:37, 128448708 , 0, 10, 10000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:00:59, 120145577 , 0, 10, 10000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:01:16, 127217001 , 0, 10, 10000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:01:30, 123549598 , 0, 10, 10000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:01:48, 118500055 , 0, 10, 10000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:02:02, 128919077 , 0, 10, 10000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:02:18, 124315260 , 0, 10, 10000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:02:29, 128448331 , 0, 10, 10000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:02:43, 120706051 , 0, 10, 10000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:02:54, 127411312 , 0, 10, 10000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:03:13, 119341280 , 0, 10, 10000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:03:21, 124096623 , 0, 10, 10000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:03:39, 127684959 , 0, 10, 10000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:03:50, 117723748 , 0, 10, 10000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:04:06, 128297400 , 0, 10, 10000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:04:20, 121089356 , 0, 10, 10000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:04:35, 123739811 , 0, 10, 10000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:04:46, 130480236 , 0, 10, 10000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:05:05, 110297010 , 0, 10, 10000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:05:16, 114263687 , 0, 10, 10000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:05:32, 122778442 , 0, 10, 10000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:05:45, 128310236 , 0, 10, 10000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:06:04, 125055860 , 0, 10, 10000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:06:17, 129815321 , 0, 10, 10000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:06:34, 129213840 , 0, 10, 10000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:06:53, 124942682 , 0, 10, 10000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:07:12, 129367315 , 0, 10, 10000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:07:25, 122707858 , 0, 10, 10000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:07:40, 129949611 , 0, 10, 10000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:07:53, 130307108 , 0, 10, 10000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:08:11, 127462463 , 0, 10, 10000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:08:22, 123175067 , 0, 10, 10000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:08:40, 124651140 , 0, 10, 10000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:08:55, 129867722 , 0, 10, 10000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:09:16, 125966095 , 0, 10, 10000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:09:30, 107304180 , 0, 10, 10000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:09:52, 126157780 , 0, 10, 10000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:10:06, 130767817 , 0, 10, 10000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:10:27, 127127241 , 0, 10, 10000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:10:40, 122636137 , 0, 10, 10000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:11:00, 124806503 , 0, 10, 10000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:11:14, 125000383 , 0, 10, 10000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:11:34, 127529132 , 0, 10, 10000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:11:50, 114710235 , 0, 10, 10000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:12:08, 129991196 , 0, 10, 10000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:12:19, 120381888 , 0, 10, 10000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:12:39, 117754279 , 0, 10, 10000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:12:52, 124950311 , 0, 10, 10000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:13:09, 129385580 , 0, 10, 10000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:13:23, 107990391 , 0, 10, 10000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:13:39, 132629639 , 0, 10, 10000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:13:49, 128074698 , 0, 10, 10000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:14:07, 134881944 , 0, 10, 10000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:14:20, 117786884 , 0, 10, 10000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:14:40, 123770816 , 0, 10, 10000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:14:52, 129662067 , 0, 10, 10000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:15:09, 120304300 , 0, 10, 10000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:15:23, 126842312 , 0, 10, 10000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:15:45, 123997779 , 0, 10, 10000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:15:59, 130843556 , 0, 10, 10000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:16:22, 115713206 , 0, 10, 10000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:16:37, 120828018 , 0, 10, 10000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:16:59, 117194818 , 0, 10, 10000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:17:10, 128843525 , 0, 10, 10000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:17:30, 129890603 , 0, 10, 10000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:17:42, 130255408 , 0, 10, 10000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:18:00, 125884242 , 0, 10, 10000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:18:08, 115738027 , 0, 10, 10000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:18:28, 106621740 , 0, 10, 10000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:18:42, 117846025 , 0, 10, 10000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:19:00, 130225717 , 0, 10, 10000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:19:12, 120696638 , 0, 10, 10000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:19:35, 122052546 , 0, 10, 10000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:19:49, 133131910 , 0, 10, 10000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:20:11, 126595295 , 0, 10, 10000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:20:24, 134205768 , 0, 10, 10000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:20:44, 124903203 , 0, 10, 10000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:20:57, 120836574 , 0, 10, 10000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:21:17, 116020095 , 0, 10, 10000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:21:31, 127898247 , 0, 10, 10000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:21:51, 128684088 , 0, 10, 10000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:22:06, 121563336 , 0, 10, 10000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:22:30, 116739310 , 0, 10, 10000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:22:45, 125077202 , 0, 10, 10000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:23:24, 135873539 , 0, 10, 10000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:23:54, 114597526 , 0, 10, 10000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:24:07, 128057058 , 0, 10, 10000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:24:18, 126426126 , 0, 10, 10000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:24:35, 120347703 , 0, 10, 10000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:24:48, 123119112 , 0, 10, 10000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:25:05, 129851706 , 0, 10, 10000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:25:17, 114705649 , 0, 10, 10000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:25:31, 128587744 , 0, 10, 10000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:25:41, 130358570 , 0, 10, 10000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:25:56, 124384906 , 0, 10, 10000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:26:07, 129349753 , 0, 10, 10000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:26:26, 130029329 , 0, 10, 10000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:26:33, 129512708 , 0, 10, 10000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:26:54, 130247132 , 0, 10, 10000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:27:01, 121810040 , 0, 10, 10000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:27:17, 129258914 , 0, 10, 10000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:27:23, 123060089 , 0, 10, 10000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:27:38, 125952857 , 0, 10, 10000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:27:47, 127153199 , 0, 10, 10000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:28:01, 117278158 , 0, 10, 10000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:28:08, 122366195 , 0, 10, 10000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:28:24, 120313539 , 0, 10, 10000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:28:32, 128385062 , 0, 10, 10000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:28:52, 131825001 , 0, 10, 10000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:29:04, 119308963 , 0, 10, 10000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:29:20, 135230977 , 0, 10, 10000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:29:33, 127405520 , 0, 10, 10000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:29:51, 130263246 , 0, 10, 10000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:30:02, 117324673 , 0, 10, 10000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:30:19, 114632777 , 0, 10, 10000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:30:34, 114567722 , 0, 10, 10000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:30:52, 131912426 , 0, 10, 10000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:31:03, 128602314 , 0, 10, 10000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:31:21, 128896284 , 0, 10, 10000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:31:35, 124041771 , 0, 10, 10000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:31:50, 127739437 , 0, 10, 10000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:32:03, 135051422 , 0, 10, 10000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:32:24, 136323567 , 0, 10, 10000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:32:37, 134046903 , 0, 10, 10000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:33:12, 131218085 , 0, 10, 10000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:33:32, 126541062 , 0, 10, 10000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:33:56, 126600465 , 0, 10, 10000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:34:17, 123270583 , 0, 10, 10000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:34:41, 128076492 , 0, 10, 10000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:34:58, 129066715 , 0, 10, 10000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:35:19, 130769155 , 0, 10, 10000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:35:33, 130197445 , 0, 10, 10000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:35:54, 116318199 , 0, 10, 10000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:36:08, 129095391 , 0, 10, 10000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:36:26, 133387618 , 0, 10, 10000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:36:40, 131507386 , 0, 10, 10000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:37:03, 132324690 , 0, 10, 10000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:37:21, 123368980 , 0, 10, 10000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:37:45, 125806494 , 0, 10, 10000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:38:06, 125165436 , 0, 10, 10000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:38:34, 128073197 , 0, 10, 10000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:38:48, 110642494 , 0, 10, 10000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:39:12, 129400470 , 0, 10, 10000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:39:23, 129273822 , 0, 10, 10000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:39:40, 135738578 , 0, 10, 10000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:39:54, 125603975 , 0, 10, 10000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:40:20, 134751662 , 0, 10, 10000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:40:45, 130551869 , 0, 10, 10000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:41:01, 128419657 , 0, 10, 10000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:41:25, 115293257 , 0, 10, 10000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:41:48, 123774713 , 0, 10, 10000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:42:07, 133320495 , 0, 10, 10000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:42:37, 124704293 , 0, 10, 10000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:42:59, 109702511 , 0, 10, 10000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:43:19, 127659170 , 0, 10, 10000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:43:38, 120846074 , 0, 10, 10000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:44:06, 115909880 , 0, 10, 10000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:44:21, 129416583 , 0, 10, 10000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:44:42, 124705526 , 0, 10, 10000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:44:55, 127971590 , 0, 10, 10000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:45:18, 115335020 , 0, 10, 10000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:45:35, 126939912 , 0, 10, 10000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:46:02, 123641678 , 0, 10, 10000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:46:23, 125255565 , 0, 10, 10000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:46:53, 128953905 , 0, 10, 10000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:47:12, 129609427 , 0, 10, 10000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:47:30, 128608549 , 0, 10, 10000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:47:51, 128037133 , 0, 10, 10000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:48:13, 123843068 , 0, 10, 10000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:48:29, 122477946 , 0, 10, 10000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:48:48, 125025549 , 0, 10, 10000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:49:04, 129836622 , 0, 10, 10000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:49:41, 114422396 , 0, 10, 10000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:49:53, 125659064 , 0, 10, 10000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:50:10, 128811275 , 0, 10, 10000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:50:20, 127229703 , 0, 10, 10000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:50:38, 120242861 , 0, 10, 10000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:50:46, 132778878 , 0, 10, 10000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:50:58, 95183640 , 0, 10, 10000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:51:02, 101289358 , 0, 10, 10000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:51:13, 125870432 , 0, 10, 10000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:51:19, 116280870 , 0, 10, 10000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:51:35, 130017076 , 0, 10, 10000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:51:43, 130206285 , 0, 10, 10000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:51:58, 125416600 , 0, 10, 10000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:52:06, 115971409 , 0, 10, 10000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:52:20, 111585825 , 0, 10, 10000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:52:28, 105330850 , 0, 10, 10000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:52:41, 120647406 , 0, 10, 10000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:52:49, 104822946 , 0, 10, 10000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:53:01, 117305350 , 0, 10, 10000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:53:10, 120818798 , 0, 10, 10000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:53:24, 137185819 , 0, 10, 10000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:53:34, 136539806 , 0, 10, 10000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:53:48, 131601316 , 0, 10, 10000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:53:57, 130641298 , 0, 10, 10000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:54:13, 126037622 , 0, 10, 10000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:54:25, 109116243 , 0, 10, 10000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:54:45, 118172046 , 0, 10, 10000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:55:00, 130568100 , 0, 10, 10000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:55:24, 125144287 , 0, 10, 10000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:55:40, 128561394 , 0, 10, 10000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 05:56:00, 122301175 , 0, 10, 10000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:56:18, 130470264 , 0, 10, 10000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 05:56:38, 129832577 , 0, 10, 10000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:56:54, 130504087 , 0, 10, 10000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 05:57:18, 137207261 , 0, 10, 10000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:57:46, 131091410 , 0, 10, 10000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 05:58:04, 124707359 , 0, 10, 10000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:58:22, 124582955 , 0, 10, 10000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 05:58:51, 130922137 , 0, 10, 10000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:59:13, 131721962 , 0, 10, 10000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 05:59:47, 130375012 , 0, 10, 10000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:00:16, 131737985 , 0, 10, 10000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:00:54, 118573106 , 0, 10, 10000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:01:20, 129862330 , 0, 10, 10000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:01:43, 128995388 , 0, 10, 10000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:02:07, 129916833 , 0, 10, 10000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:02:44, 129341792 , 0, 10, 10000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:02:51, 129062409 , 0, 10, 10000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:03:09, 133050192 , 0, 10, 10000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:03:23, 129429195 , 0, 10, 10000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:03:51, 131484872 , 0, 10, 10000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:04:23, 131694074 , 0, 10, 10000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:05:06, 115597018 , 0, 10, 10000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:05:26, 128535999 , 0, 10, 10000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:05:49, 127133813 , 0, 10, 10000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:06:07, 130629091 , 0, 10, 10000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:06:38, 116901303 , 0, 10, 10000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:07:07, 129255243 , 0, 10, 10000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:07:32, 136456600 , 0, 10, 10000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:07:58, 132139246 , 0, 10, 10000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:08:22, 131894535 , 0, 10, 10000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:08:51, 118822918 , 0, 10, 10000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:09:09, 130618148 , 0, 10, 10000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:09:32, 130313629 , 0, 10, 10000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:10:07, 119186490 , 0, 10, 10000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:10:27, 128265408 , 0, 10, 10000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:10:59, 109201050 , 0, 10, 10000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:11:34, 125918085 , 0, 10, 10000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:12:02, 113253775 , 0, 10, 10000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:12:34, 118850149 , 0, 10, 10000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:13:11, 126901575 , 0, 10, 10000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:13:30, 128607921 , 0, 10, 10000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:13:48, 128244153 , 0, 10, 10000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:14:02, 109126908 , 0, 10, 10000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:14:21, 130187265 , 0, 10, 10000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:14:49, 123018838 , 0, 10, 10000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:15:49, 102488464 , 0, 10, 10000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:16:25, 105672211 , 0, 10, 10000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:17:01, 106417325 , 0, 10, 10000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:17:26, 132351073 , 0, 10, 10000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:17:49, 134962544 , 0, 10, 10000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:18:08, 123515040 , 0, 10, 10000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:18:21, 119912441 , 0, 10, 10000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:18:29, 128852482 , 0, 10, 10000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:18:49, 81447227 , 0, 10, 10000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:18:54, 85329431 , 0, 10, 10000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:19:05, 92842536 , 0, 10, 10000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:19:12, 92210813 , 0, 10, 10000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:19:23, 101912438 , 0, 10, 10000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:19:29, 108411137 , 0, 10, 10000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:19:43, 120111149 , 0, 10, 10000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:19:51, 127317577 , 0, 10, 10000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:20:06, 129081363 , 0, 10, 10000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:20:17, 131005492 , 0, 10, 10000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:20:52, 126586492 , 0, 10, 10000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:20:59, 113780685 , 0, 10, 10000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:21:12, 90891091 , 0, 10, 10000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:21:19, 84504714 , 0, 10, 10000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:21:29, 92102781 , 0, 10, 10000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:21:37, 89938655 , 0, 10, 10000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:21:51, 94615737 , 0, 10, 10000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:21:58, 98123601 , 0, 10, 10000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:22:09, 98171184 , 0, 10, 10000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:22:17, 95946134 , 0, 10, 10000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:22:32, 99901750 , 0, 10, 10000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:22:41, 86958856 , 0, 10, 10000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:22:55, 95479388 , 0, 10, 10000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:23:04, 78727946 , 0, 10, 10000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:23:16, 81492736 , 0, 10, 10000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:23:26, 81789161 , 0, 10, 10000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:23:42, 91420859 , 0, 10, 10000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:23:54, 91169437 , 0, 10, 10000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:24:14, 80219496 , 0, 10, 10000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:24:26, 90909294 , 0, 10, 10000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:24:45, 102926309 , 0, 10, 10000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:25:00, 102550262 , 0, 10, 10000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:25:24, 112647532 , 0, 10, 10000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:25:43, 104307130 , 0, 10, 10000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:26:11, 117930274 , 0, 10, 10000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:26:38, 126598844 , 0, 10, 10000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:27:11, 131145884 , 0, 10, 10000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:27:43, 125147383 , 0, 10, 10000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:28:23, 126316297 , 0, 10, 10000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:28:51, 119250092 , 0, 10, 10000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:29:45, 129704255 , 0, 10, 10000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:30:10, 123561290 , 0, 10, 10000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:30:53, 122254579 , 0, 10, 10000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:31:12, 116272247 , 0, 10, 10000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:31:37, 116985666 , 0, 10, 10000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:32:00, 116996313 , 0, 10, 10000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:32:36, 125198266 , 0, 10, 10000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:32:56, 126628182 , 0, 10, 10000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:33:30, 128637000 , 0, 10, 10000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:33:46, 122017236 , 0, 10, 10000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:35:06, 132278966 , 0, 10, 10000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:36:01, 130113437 , 0, 10, 10000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:36:53, 130530072 , 0, 10, 10000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:37:26, 71267193 , 0, 10, 10000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:38:11, 101913204 , 0, 10, 10000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:38:22, 112747954 , 0, 10, 10000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:38:43, 131856021 , 0, 10, 10000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:38:55, 133693922 , 0, 10, 10000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:39:31, 134766328 , 0, 10, 10000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:39:47, 125932270 , 0, 10, 10000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:40:23, 126850046 , 0, 10, 10000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:41:32, 123946870 , 0, 10, 10000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:42:23, 104740679 , 0, 10, 10000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:42:59, 80781968 , 0, 10, 10000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:43:27, 118525928 , 0, 10, 10000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:43:55, 127728908 , 0, 10, 10000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:44:20, 128260001 , 0, 10, 10000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:44:35, 136192757 , 0, 10, 10000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:45:09, 120796802 , 0, 10, 10000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:45:25, 83682599 , 0, 10, 10000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:45:45, 117319170 , 0, 10, 10000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:46:07, 117435790 , 0, 10, 10000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:46:36, 134001665 , 0, 10, 10000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:47:14, 132226208 , 0, 10, 10000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:48:05, 114884868 , 0, 10, 10000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:48:50, 129143469 , 0, 10, 10000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:49:42, 91109349 , 0, 10, 10000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:50:11, 124807051 , 0, 10, 10000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:50:46, 102707742 , 0, 10, 10000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:50:59, 102665548 , 0, 10, 10000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:51:18, 102969597 , 0, 10, 10000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:51:31, 105815987 , 0, 10, 10000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:51:50, 106242624 , 0, 10, 10000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:52:01, 99987756 , 0, 10, 10000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:52:15, 92930953 , 0, 10, 10000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:52:23, 99670894 , 0, 10, 10000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:52:37, 104961794 , 0, 10, 10000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:52:45, 112186999 , 0, 10, 10000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:52:59, 96637532 , 0, 10, 10000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:53:06, 82294973 , 0, 10, 10000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:53:16, 70160303 , 0, 10, 10000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:53:20, 72499748 , 0, 10, 10000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:53:30, 74534729 , 0, 10, 10000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:53:36, 75769113 , 0, 10, 10000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:53:46, 79590134 , 0, 10, 10000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:53:52, 75902697 , 0, 10, 10000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:54:02, 80515598 , 0, 10, 10000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:54:07, 22416159 , 0, 10, 10000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:54:16, 23088274 , 0, 10, 10000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:54:18, 21366518 , 0, 10, 10000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:54:25, 25512352 , 0, 10, 10000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:54:27, 24679486 , 0, 10, 10000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:54:34, 27841407 , 0, 10, 10000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:54:36, 28741888 , 0, 10, 10000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:54:44, 33352217 , 0, 10, 10000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:54:47, 35602173 , 0, 10, 10000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:54:55, 38907542 , 0, 10, 10000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:54:59, 39918429 , 0, 10, 10000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:55:07, 46606795 , 0, 10, 10000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:55:13, 42205833 , 0, 10, 10000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:55:23, 49419419 , 0, 10, 10000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:55:32, 49333467 , 0, 10, 10000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:55:44, 50697262 , 0, 10, 10000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:55:52, 59769142 , 0, 10, 10000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 06:56:05, 65881113 , 0, 10, 10000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:56:16, 71347596 , 0, 10, 10000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 06:56:31, 76094414 , 0, 10, 10000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:56:43, 80202849 , 0, 10, 10000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 06:57:00, 83754100 , 0, 10, 10000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:57:18, 100558009 , 0, 10, 10000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 06:57:42, 93495310 , 0, 10, 10000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:58:07, 106338738 , 0, 10, 10000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 06:58:40, 109115938 , 0, 10, 10000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:59:11, 130083443 , 0, 10, 10000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 06:59:57, 133482380 , 0, 10, 10000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:00:29, 128336827 , 0, 10, 10000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:01:05, 128706063 , 0, 10, 10000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:01:45, 126135507 , 0, 10, 10000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:02:32, 129194278 , 0, 10, 10000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:02:51, 112638838 , 0, 10, 10000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:03:44, 127380032 , 0, 10, 10000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:04:37, 125379470 , 0, 10, 10000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:05:08, 126261402 , 0, 10, 10000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:05:32, 123125527 , 0, 10, 10000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:06:15, 120149434 , 0, 10, 10000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:07:18, 128584176 , 0, 10, 10000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:08:11, 130001365 , 0, 10, 10000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:08:42, 107623524 , 0, 10, 10000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:09:16, 122327961 , 0, 10, 10000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:09:47, 130550680 , 0, 10, 10000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:10:19, 131068347 , 0, 10, 10000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:10:57, 122243043 , 0, 10, 10000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:11:48, 129461782 , 0, 10, 10000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:12:03, 136792080 , 0, 10, 10000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:12:44, 108865530 , 0, 10, 10000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:13:28, 120133482 , 0, 10, 10000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:14:47, 144378933 , 0, 10, 10000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:16:01, 85662624 , 0, 10, 10000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:16:31, 67358374 , 0, 10, 10000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:16:44, 64151114 , 0, 10, 10000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:17:01, 81469557 , 0, 10, 10000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:17:15, 101487914 , 0, 10, 10000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:17:38, 128982794 , 0, 10, 10000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:17:53, 127769156 , 0, 10, 10000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:18:17, 128518000 , 0, 10, 10000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:19:06, 125457776 , 0, 10, 10000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:19:46, 127570051 , 0, 10, 10000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:20:16, 99979587 , 0, 10, 10000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:21:33, 119893039 , 0, 10, 10000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:22:51, 90885578 , 0, 10, 10000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:23:51, 48899846 , 0, 10, 10000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:24:02, 48362913 , 0, 10, 10000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:24:17, 71091089 , 0, 10, 10000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:24:32, 91701197 , 0, 10, 10000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:24:52, 105079580 , 0, 10, 10000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:25:07, 111638865 , 0, 10, 10000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:25:32, 113179101 , 0, 10, 10000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:25:48, 113373991 , 0, 10, 10000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:26:10, 119761359 , 0, 10, 10000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:26:25, 128300263 , 0, 10, 10000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:26:47, 108534329 , 0, 10, 10000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:26:58, 84655000 , 0, 10, 10000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:27:11, 76170346 , 0, 10, 10000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:27:16, 77643281 , 0, 10, 10000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:27:26, 16373074 , 0, 10, 10000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:27:29, 15041935 , 0, 10, 10000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:27:35, 17022123 , 0, 10, 10000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:27:36, 18437414 , 0, 10, 10000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:27:43, 19356291 , 0, 10, 10000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:27:45, 19613935 , 0, 10, 10000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:27:51, 20075137 , 0, 10, 10000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:27:53, 19589493 , 0, 10, 10000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:28:00, 21013813 , 0, 10, 10000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:28:02, 23602959 , 0, 10, 10000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:28:09, 24817899 , 0, 10, 10000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:28:11, 24918559 , 0, 10, 10000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:28:18, 26402589 , 0, 10, 10000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:28:20, 27955682 , 0, 10, 10000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:28:28, 32454041 , 0, 10, 10000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:28:32, 32227198 , 0, 10, 10000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:28:40, 38872846 , 0, 10, 10000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:28:44, 40516418 , 0, 10, 10000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:28:52, 40295514 , 0, 10, 10000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:28:57, 45377993 , 0, 10, 10000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:29:11, 44735664 , 0, 10, 10000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:29:17, 43868645 , 0, 10, 10000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:29:28, 49917201 , 0, 10, 10000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:29:36, 57917591 , 0, 10, 10000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:29:49, 60426292 , 0, 10, 10000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:29:58, 54864629 , 0, 10, 10000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:30:14, 62958514 , 0, 10, 10000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:30:23, 72461931 , 0, 10, 10000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:30:44, 79803751 , 0, 10, 10000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:31:00, 79429459 , 0, 10, 10000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:31:22, 91607634 , 0, 10, 10000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:31:47, 93002851 , 0, 10, 10000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:32:09, 97858544 , 0, 10, 10000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:32:40, 109183549 , 0, 10, 10000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:33:18, 112648969 , 0, 10, 10000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:33:49, 105272260 , 0, 10, 10000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:34:27, 120695663 , 0, 10, 10000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:35:02, 131257402 , 0, 10, 10000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:35:47, 128790111 , 0, 10, 10000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:36:30, 124776040 , 0, 10, 10000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:37:29, 121936485 , 0, 10, 10000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:38:05, 125946558 , 0, 10, 10000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:38:51, 125243766 , 0, 10, 10000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:39:37, 118978608 , 0, 10, 10000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:40:47, 113666701 , 0, 10, 10000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:41:46, 128597562 , 0, 10, 10000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:42:23, 112998512 , 0, 10, 10000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:42:58, 101488483 , 0, 10, 10000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:43:43, 124353869 , 0, 10, 10000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:44:11, 95431293 , 0, 10, 10000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:44:39, 123213992 , 0, 10, 10000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:45:06, 131423324 , 0, 10, 10000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:45:53, 127948004 , 0, 10, 10000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:47:04, 129725100 , 0, 10, 10000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:47:34, 127674579 , 0, 10, 10000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:48:13, 102281103 , 0, 10, 10000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:49:08, 110770140 , 0, 10, 10000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:50:10, 116488183 , 0, 10, 10000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:51:24, 106328266 , 0, 10, 10000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:51:34, 83013060 , 0, 10, 10000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:52:07, 100423395 , 0, 10, 10000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:52:40, 120091384 , 0, 10, 10000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 07:53:13, 127785032 , 0, 10, 10000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:53:51, 115427553 , 0, 10, 10000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 07:54:57, 114256568 , 0, 10, 10000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:55:21, 112411172 , 0, 10, 10000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 07:56:13, 111634025 , 0, 10, 10000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:57:25, 143720126 , 0, 10, 10000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 07:59:13, 76726247 , 0, 10, 10000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:59:39, 67283711 , 0, 10, 10000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 07:59:52, 35346784 , 0, 10, 10000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 07:59:56, 40488159 , 0, 10, 10000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:00:08, 61062397 , 0, 11, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:00:21, 80839504 , 0, 11, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:00:43, 104931499 , 0, 11, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:01:02, 116032911 , 0, 11, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:01:29, 127621478 , 0, 11, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:01:52, 131273635 , 0, 11, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:02:17, 129407367 , 0, 11, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:02:36, 120031392 , 0, 11, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:03:00, 84317344 , 0, 11, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:03:08, 82179216 , 0, 11, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:03:22, 81505821 , 0, 11, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:03:26, 79574949 , 0, 11, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:03:35, 22182483 , 0, 11, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:03:37, 22958545 , 0, 11, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:03:43, 25780752 , 0, 11, 1000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:03:45, 26286034 , 0, 11, 1000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:03:52, 32230051 , 0, 11, 1000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:03:54, 35333786 , 0, 11, 1000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:04:01, 42793021 , 0, 11, 1000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:04:03, 46595234 , 0, 11, 1000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:04:11, 35804420 , 0, 11, 1000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:04:14, 36703735 , 0, 11, 1000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:04:21, 36894113 , 0, 11, 1000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:04:24, 37997566 , 0, 11, 1000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:04:31, 41674902 , 0, 11, 1000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:04:34, 46687875 , 0, 11, 1000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:04:42, 44541775 , 0, 11, 1000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:04:44, 40476978 , 0, 11, 1000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:04:52, 46482890 , 0, 11, 1000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:04:55, 48364167 , 0, 11, 1000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:05:03, 50975851 , 0, 11, 1000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:05:06, 53218360 , 0, 11, 1000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:05:14, 55052125 , 0, 11, 1000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:05:18, 56607729 , 0, 11, 1000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:05:27, 51548761 , 0, 11, 1000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:05:31, 54075582 , 0, 11, 1000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:05:40, 65212547 , 0, 11, 1000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:05:46, 58924475 , 0, 11, 1000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:05:55, 63742503 , 0, 11, 1000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:05:59, 54969973 , 0, 11, 1000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:06:08, 60994575 , 0, 11, 1000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:06:13, 64468361 , 0, 11, 1000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:06:22, 68395581 , 0, 11, 1000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:06:28, 69932137 , 0, 11, 1000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:06:39, 72527596 , 0, 11, 1000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:06:44, 72165146 , 0, 11, 1000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:06:56, 74738798 , 0, 11, 1000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:07:01, 79549273 , 0, 11, 1000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:07:12, 80000355 , 0, 11, 1000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:07:18, 68026124 , 0, 11, 1000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:07:29, 73385754 , 0, 11, 1000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:07:36, 77081282 , 0, 11, 1000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:07:47, 83369778 , 0, 11, 1000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:07:53, 86444112 , 0, 11, 1000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:08:06, 91371690 , 0, 11, 1000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:08:12, 93251507 , 0, 11, 1000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:08:27, 97542813 , 0, 11, 1000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:08:37, 107017746 , 0, 11, 1000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:08:51, 102844240 , 0, 11, 1000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:09:01, 95438302 , 0, 11, 1000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:09:14, 98319919 , 0, 11, 1000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:09:24, 101720064 , 0, 11, 1000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:09:39, 107768467 , 0, 11, 1000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:09:50, 112720321 , 0, 11, 1000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:10:05, 121050227 , 0, 11, 1000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:10:15, 129160716 , 0, 11, 1000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:10:33, 116116066 , 0, 11, 1000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:10:46, 119516462 , 0, 11, 1000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:11:03, 127612398 , 0, 11, 1000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:11:15, 131294252 , 0, 11, 1000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:11:34, 119547808 , 0, 11, 1000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:11:49, 124726450 , 0, 11, 1000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:12:08, 129710332 , 0, 11, 1000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:12:21, 130582388 , 0, 11, 1000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:12:41, 130182133 , 0, 11, 1000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:12:55, 129993627 , 0, 11, 1000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:13:14, 119411273 , 0, 11, 1000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:13:31, 118387919 , 0, 11, 1000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:13:51, 124609826 , 0, 11, 1000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:14:06, 128818271 , 0, 11, 1000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:14:31, 124115638 , 0, 11, 1000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:14:46, 128134358 , 0, 11, 1000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:15:08, 125291332 , 0, 11, 1000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:15:24, 128249286 , 0, 11, 1000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:15:45, 126451593 , 0, 11, 1000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:16:03, 128999525 , 0, 11, 1000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:16:21, 129267722 , 0, 11, 1000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:16:33, 119467972 , 0, 11, 1000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:16:57, 126017112 , 0, 11, 1000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:17:11, 128279380 , 0, 11, 1000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:17:35, 119602167 , 0, 11, 1000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:17:55, 122429253 , 0, 11, 1000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:18:16, 121710564 , 0, 11, 1000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:18:29, 122518510 , 0, 11, 1000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:18:42, 126807906 , 0, 11, 1000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:18:55, 127356486 , 0, 11, 1000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:19:16, 126679916 , 0, 11, 1000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:19:29, 126304276 , 0, 11, 1000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:19:45, 125634473 , 0, 11, 1000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:19:56, 122100475 , 0, 11, 1000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:20:17, 128671058 , 0, 11, 1000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:20:31, 128200329 , 0, 11, 1000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:20:51, 126563733 , 0, 11, 1000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:21:07, 119964005 , 0, 11, 1000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:21:27, 121922006 , 0, 11, 1000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:21:42, 120929803 , 0, 11, 1000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:22:02, 115566652 , 0, 11, 1000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:22:15, 116487044 , 0, 11, 1000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:22:36, 123504816 , 0, 11, 1000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:22:50, 119982411 , 0, 11, 1000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:23:13, 128530018 , 0, 11, 1000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:23:30, 122578234 , 0, 11, 1000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:23:49, 128302327 , 0, 11, 1000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:24:02, 125601462 , 0, 11, 1000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:24:24, 128835269 , 0, 11, 1000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:24:41, 126110532 , 0, 11, 1000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:25:01, 127786108 , 0, 11, 1000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:25:19, 122756022 , 0, 11, 1000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:25:41, 125088359 , 0, 11, 1000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:25:58, 121833913 , 0, 11, 1000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:26:21, 120491573 , 0, 11, 1000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:26:36, 124365571 , 0, 11, 1000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:26:57, 124299748 , 0, 11, 1000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:27:10, 126433359 , 0, 11, 1000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:27:26, 125465950 , 0, 11, 1000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:27:40, 128184318 , 0, 11, 1000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:28:06, 122221021 , 0, 11, 1000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:28:21, 126906813 , 0, 11, 1000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:28:45, 128163831 , 0, 11, 1000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:29:01, 127578152 , 0, 11, 1000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:29:21, 116456212 , 0, 11, 1000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:29:34, 124363716 , 0, 11, 1000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:29:55, 125107008 , 0, 11, 1000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:30:11, 128510765 , 0, 11, 1000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:30:32, 127517647 , 0, 11, 1000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:30:50, 123989467 , 0, 11, 1000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:31:12, 126016945 , 0, 11, 1000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:31:33, 127096998 , 0, 11, 1000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:32:00, 128170773 , 0, 11, 1000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:32:16, 129943734 , 0, 11, 1000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:32:43, 128813277 , 0, 11, 1000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:33:02, 129721535 , 0, 11, 1000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:33:29, 129219804 , 0, 11, 1000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:33:47, 116151120 , 0, 11, 1000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:34:08, 117975495 , 0, 11, 1000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:34:24, 122511227 , 0, 11, 1000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:34:44, 132226047 , 0, 11, 1000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:35:01, 127525027 , 0, 11, 1000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:35:23, 122829357 , 0, 11, 1000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:35:39, 127622715 , 0, 11, 1000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:36:02, 128008872 , 0, 11, 1000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:36:19, 125269040 , 0, 11, 1000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:36:44, 125134136 , 0, 11, 1000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:36:57, 128981353 , 0, 11, 1000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:37:25, 131182611 , 0, 11, 1000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:37:43, 113726684 , 0, 11, 1000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:38:06, 117646490 , 0, 11, 1000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:38:23, 122335924 , 0, 11, 1000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:38:45, 131621270 , 0, 11, 1000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:39:04, 130618539 , 0, 11, 1000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:39:30, 128559827 , 0, 11, 1000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:39:48, 129222241 , 0, 11, 1000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:40:14, 130160133 , 0, 11, 1000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:40:38, 124459941 , 0, 11, 1000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:41:04, 134461523 , 0, 11, 1000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:41:27, 114540079 , 0, 11, 1000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:41:50, 113007879 , 0, 11, 1000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:42:11, 118722575 , 0, 11, 1000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:42:35, 127277502 , 0, 11, 1000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:42:56, 132402360 , 0, 11, 1000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:43:28, 126571666 , 0, 11, 1000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:43:47, 131215348 , 0, 11, 1000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:44:12, 130541105 , 0, 11, 1000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:44:29, 124018725 , 0, 11, 1000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:44:48, 129733496 , 0, 11, 1000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:45:11, 124727587 , 0, 11, 1000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:45:39, 130883598 , 0, 11, 1000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:45:55, 128790592 , 0, 11, 1000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:46:22, 123052772 , 0, 11, 1000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:46:29, 126325355 , 0, 11, 1000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:46:55, 130359427 , 0, 11, 1000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:47:13, 125073782 , 0, 11, 1000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:47:29, 125332184 , 0, 11, 1000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:47:42, 128440675 , 0, 11, 1000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:48:01, 124291292 , 0, 11, 1000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:48:15, 128305281 , 0, 11, 1000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:48:36, 121941324 , 0, 11, 1000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:48:51, 126798190 , 0, 11, 1000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:49:13, 124532526 , 0, 11, 1000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:49:32, 128370065 , 0, 11, 1000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:49:58, 120813008 , 0, 11, 1000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:50:13, 125423469 , 0, 11, 1000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:50:34, 129668888 , 0, 11, 1000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:50:50, 122493908 , 0, 11, 1000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:51:08, 130480281 , 0, 11, 1000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:51:27, 125830927 , 0, 11, 1000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:51:51, 125825043 , 0, 11, 1000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:52:04, 129908069 , 0, 11, 1000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:52:29, 119511315 , 0, 11, 1000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:52:45, 112022633 , 0, 11, 1000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:53:07, 119343370 , 0, 11, 1000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:53:26, 124547224 , 0, 11, 1000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:53:51, 126767819 , 0, 11, 1000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:54:11, 122095335 , 0, 11, 1000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:54:40, 129679137 , 0, 11, 1000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:55:02, 123022811 , 0, 11, 1000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:55:24, 123098108 , 0, 11, 1000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:55:37, 125628007 , 0, 11, 1000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 08:56:01, 128794219 , 0, 11, 1000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:56:24, 122581005 , 0, 11, 1000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 08:56:48, 121580429 , 0, 11, 1000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:57:08, 121437791 , 0, 11, 1000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 08:57:32, 126165115 , 0, 11, 1000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:57:55, 130544759 , 0, 11, 1000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 08:58:23, 129759724 , 0, 11, 1000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:59:15, 129240962 , 0, 11, 1000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 08:59:40, 128917897 , 0, 11, 1000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 08:59:58, 130683189 , 0, 11, 1000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:00:27, 119723950 , 0, 11, 1000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:00:55, 123772214 , 0, 11, 1000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:01:27, 130311389 , 0, 11, 1000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:01:49, 127926703 , 0, 11, 1000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:02:17, 128832500 , 0, 11, 1000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:02:40, 112417346 , 0, 11, 1000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:03:06, 119255725 , 0, 11, 1000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:03:29, 125881718 , 0, 11, 1000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:03:58, 127385416 , 0, 11, 1000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:04:27, 127858412 , 0, 11, 1000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:05:07, 128290394 , 0, 11, 1000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:05:25, 116947721 , 0, 11, 1000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:05:52, 128267220 , 0, 11, 1000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:06:18, 123940895 , 0, 11, 1000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:06:53, 129906279 , 0, 11, 1000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:07:20, 132120735 , 0, 11, 1000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:07:54, 119926296 , 0, 11, 1000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:08:22, 117334708 , 0, 11, 1000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:08:52, 122906327 , 0, 11, 1000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:09:19, 129582938 , 0, 11, 1000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:09:57, 131272469 , 0, 11, 1000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:10:32, 127810300 , 0, 11, 1000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:11:09, 115437981 , 0, 11, 1000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:11:32, 122915342 , 0, 11, 1000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:12:01, 127891722 , 0, 11, 1000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:12:29, 126944529 , 0, 11, 1000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:13:05, 129361896 , 0, 11, 1000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:13:35, 121712910 , 0, 11, 1000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:14:04, 119519646 , 0, 11, 1000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:14:29, 120237650 , 0, 11, 1000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:15:04, 130122977 , 0, 11, 1000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:15:34, 127720239 , 0, 11, 1000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:16:10, 118896411 , 0, 11, 1000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:16:36, 127036403 , 0, 11, 1000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:17:10, 127715652 , 0, 11, 1000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:17:41, 134963772 , 0, 11, 1000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:18:43, 130577917 , 0, 11, 1000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:19:08, 130463243 , 0, 11, 1000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:19:42, 126159446 , 0, 11, 1000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:20:07, 130138820 , 0, 11, 1000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:20:37, 125806974 , 0, 11, 1000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:21:01, 119202873 , 0, 11, 1000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:21:28, 126410474 , 0, 11, 1000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:21:49, 129041329 , 0, 11, 1000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:22:16, 125537419 , 0, 11, 1000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:22:33, 125502130 , 0, 11, 1000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:22:55, 122895489 , 0, 11, 1000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:23:42, 126949819 , 0, 11, 1000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:24:01, 126678620 , 0, 11, 1000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:24:16, 129539616 , 0, 11, 1000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:24:41, 127639719 , 0, 11, 1000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:25:02, 128744237 , 0, 11, 1000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:25:36, 126329986 , 0, 11, 1000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:25:55, 112810799 , 0, 11, 1000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:26:15, 119599491 , 0, 11, 1000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:26:26, 118792018 , 0, 11, 1000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:26:45, 130082252 , 0, 11, 1000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:27:03, 120853146 , 0, 11, 1000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:27:18, 130323810 , 0, 11, 1000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:27:36, 122816965 , 0, 11, 1000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:27:52, 102426421 , 0, 11, 1000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:28:01, 106244649 , 0, 11, 1000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:28:16, 119503700 , 0, 11, 1000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:28:28, 125445299 , 0, 11, 1000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:28:45, 130537012 , 0, 11, 1000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:28:58, 128255829 , 0, 11, 1000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:29:15, 119946585 , 0, 11, 1000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:29:31, 123374840 , 0, 11, 1000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:29:56, 120635839 , 0, 11, 1000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:30:11, 127268968 , 0, 11, 1000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:30:37, 122543281 , 0, 11, 1000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:30:47, 132475282 , 0, 11, 1000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:31:10, 117772046 , 0, 11, 1000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:31:29, 124156692 , 0, 11, 1000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:31:55, 116059621 , 0, 11, 1000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:32:11, 114108950 , 0, 11, 1000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:32:30, 124425083 , 0, 11, 1000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:32:52, 126921152 , 0, 11, 1000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:33:25, 122926149 , 0, 11, 1000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:33:50, 132912688 , 0, 11, 1000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:34:24, 132974866 , 0, 11, 1000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:34:55, 130976229 , 0, 11, 1000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:35:34, 130976298 , 0, 11, 1000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:36:02, 120149565 , 0, 11, 1000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:36:30, 129513757 , 0, 11, 1000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:37:00, 117029879 , 0, 11, 1000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:37:35, 129242353 , 0, 11, 1000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:38:06, 105381846 , 0, 11, 1000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:38:33, 122050200 , 0, 11, 1000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:39:00, 131494698 , 0, 11, 1000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:39:39, 125325519 , 0, 11, 1000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:40:13, 132366771 , 0, 11, 1000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:40:50, 130867256 , 0, 11, 1000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:41:19, 123145098 , 0, 11, 1000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:41:56, 124251089 , 0, 11, 1000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:42:42, 130796745 , 0, 11, 1000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:43:20, 131689991 , 0, 11, 1000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:43:55, 109666609 , 0, 11, 1000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:44:31, 130262206 , 0, 11, 1000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:44:57, 106067753 , 0, 11, 1000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:45:26, 107286754 , 0, 11, 1000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:45:56, 124165558 , 0, 11, 1000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:46:43, 130533844 , 0, 11, 1000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:47:31, 122819363 , 0, 11, 1000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:48:14, 129120988 , 0, 11, 1000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:48:54, 123961789 , 0, 11, 1000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:49:30, 128763337 , 0, 11, 1000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:49:55, 128113144 , 0, 11, 1000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:50:32, 113282386 , 0, 11, 1000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:51:10, 134926809 , 0, 11, 1000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:51:55, 116947942 , 0, 11, 1000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:52:23, 122239666 , 0, 11, 1000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 09:52:53, 124976057 , 0, 11, 1000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:53:07, 130890369 , 0, 11, 1000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 09:54:18, 126089903 , 0, 11, 1000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:54:56, 128338926 , 0, 11, 1000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 09:55:51, 126397401 , 0, 11, 1000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:56:19, 129348131 , 0, 11, 1000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 09:57:13, 131736900 , 0, 11, 1000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:57:50, 101384990 , 0, 11, 1000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 09:58:21, 118239186 , 0, 11, 1000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:58:52, 131320298 , 0, 11, 1000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 09:59:37, 124219402 , 0, 11, 1000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:00:02, 103054547 , 0, 11, 1000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:00:28, 114458580 , 0, 11, 1000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:00:54, 128354868 , 0, 11, 1000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:01:17, 127313052 , 0, 11, 1000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:01:49, 137832521 , 0, 11, 1000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:02:46, 133012876 , 0, 11, 1000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:03:00, 123647395 , 0, 11, 1000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:03:17, 98406685 , 0, 11, 1000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:03:23, 96884775 , 0, 11, 1000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:03:34, 110713221 , 0, 11, 1000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:03:44, 116075776 , 0, 11, 1000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:03:59, 129138138 , 0, 11, 1000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:04:11, 121578609 , 0, 11, 1000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:04:37, 127650886 , 0, 11, 1000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:04:52, 122643163 , 0, 11, 1000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:05:17, 119194610 , 0, 11, 1000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:05:30, 127678085 , 0, 11, 1000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:05:54, 122237249 , 0, 11, 1000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:06:05, 128865782 , 0, 11, 1000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:06:24, 126577083 , 0, 11, 1000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:06:35, 121017654 , 0, 11, 1000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:06:56, 128876880 , 0, 11, 1000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:07:07, 133052642 , 0, 11, 1000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:07:29, 123985724 , 0, 11, 1000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:07:37, 128706807 , 0, 11, 1000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:07:55, 101883507 , 0, 11, 1000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:08:06, 103095303 , 0, 11, 1000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:08:19, 95117108 , 0, 11, 1000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:08:32, 125934287 , 0, 11, 1000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:08:56, 128155324 , 0, 11, 1000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:09:11, 129987974 , 0, 11, 1000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:09:37, 100472333 , 0, 11, 1000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:09:53, 123876125 , 0, 11, 1000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:10:23, 129635761 , 0, 11, 1000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:10:47, 122560687 , 0, 11, 1000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:11:07, 123348189 , 0, 11, 1000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:11:17, 118957094 , 0, 11, 1000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:11:49, 124666868 , 0, 11, 1000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:12:21, 120754013 , 0, 11, 1000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:12:50, 113571495 , 0, 11, 1000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:13:18, 122617420 , 0, 11, 1000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:14:01, 112698651 , 0, 11, 1000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:14:35, 115716451 , 0, 11, 1000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:15:18, 128060771 , 0, 11, 1000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:15:59, 130501316 , 0, 11, 1000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:17:26, 127971764 , 0, 11, 1000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:17:46, 127583313 , 0, 11, 1000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:18:12, 125287643 , 0, 11, 1000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:18:25, 122380761 , 0, 11, 1000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:18:49, 112737127 , 0, 11, 1000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:19:13, 129033641 , 0, 11, 1000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:19:37, 87153350 , 0, 11, 1000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:20:06, 88387844 , 0, 11, 1000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:20:46, 100080353 , 0, 11, 1000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:21:30, 124533391 , 0, 11, 1000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:22:25, 138344338 , 0, 11, 1000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:23:23, 131863175 , 0, 11, 1000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:24:26, 131671509 , 0, 11, 1000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:25:29, 126649254 , 0, 11, 1000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:26:19, 113300053 , 0, 11, 1000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:26:59, 127571953 , 0, 11, 1000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:27:26, 90871876 , 0, 11, 1000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:27:54, 103442444 , 0, 11, 1000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:28:45, 126015395 , 0, 11, 1000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:29:35, 133014666 , 0, 11, 1000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:30:39, 131032740 , 0, 11, 1000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:31:33, 131512751 , 0, 11, 1000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:32:53, 132199671 , 0, 11, 1000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:33:54, 128165456 , 0, 11, 1000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:34:50, 124355099 , 0, 11, 1000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:35:41, 128449984 , 0, 11, 1000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:36:24, 135414008 , 0, 11, 1000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:37:08, 129792145 , 0, 11, 1000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:37:48, 90932532 , 0, 11, 1000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:38:02, 125951130 , 0, 11, 1000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:38:39, 116735992 , 0, 11, 1000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:39:34, 107221286 , 0, 11, 1000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:40:33, 128014098 , 0, 11, 1000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:41:45, 112952588 , 0, 11, 1000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:42:57, 121256575 , 0, 11, 1000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:43:54, 124135745 , 0, 11, 1000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:45:04, 122850384 , 0, 11, 1000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:45:43, 125493300 , 0, 11, 1000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:46:10, 127410742 , 0, 11, 1000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:46:22, 126723469 , 0, 11, 1000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:46:41, 127579984 , 0, 11, 1000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:46:59, 128405523 , 0, 11, 1000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:47:22, 127419661 , 0, 11, 1000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:47:42, 125900129 , 0, 11, 1000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:48:04, 113537790 , 0, 11, 1000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:48:15, 97902781 , 0, 11, 1000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:48:25, 125078940 , 0, 11, 1000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:48:32, 129141526 , 0, 11, 1000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:48:44, 130170855 , 0, 11, 1000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:48:57, 117229526 , 0, 11, 1000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:49:09, 122438378 , 0, 11, 1000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:49:21, 129696183 , 0, 11, 1000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:49:39, 124523475 , 0, 11, 1000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:49:46, 134865822 , 0, 11, 1000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:50:28, 124461508 , 0, 11, 1000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:50:41, 134502633 , 0, 11, 1000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:51:10, 126801147 , 0, 11, 1000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:51:21, 117698266 , 0, 11, 1000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:51:57, 126507640 , 0, 11, 1000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:52:05, 127719443 , 0, 11, 1000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:52:31, 124064567 , 0, 11, 1000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:53:03, 122615751 , 0, 11, 1000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:53:15, 84206471 , 0, 11, 1000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:53:26, 83694658 , 0, 11, 1000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:53:37, 96229222 , 0, 11, 1000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:53:47, 105724125 , 0, 11, 1000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:54:20, 108967842 , 0, 11, 1000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:54:42, 110385109 , 0, 11, 1000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:55:11, 111264618 , 0, 11, 1000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:55:34, 112447180 , 0, 11, 1000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 10:56:06, 120390449 , 0, 11, 1000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:56:32, 128200132 , 0, 11, 1000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 10:57:08, 132487264 , 0, 11, 1000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:57:31, 106857182 , 0, 11, 1000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 10:57:59, 111073251 , 0, 11, 1000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:58:18, 98940097 , 0, 11, 1000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 10:58:39, 64136762 , 0, 11, 1000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:58:56, 50947327 , 0, 11, 1000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 10:59:14, 57227074 , 0, 11, 1000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:59:33, 61462165 , 0, 11, 1000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 10:59:54, 64665160 , 0, 11, 1000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:00:11, 60253864 , 0, 11, 1000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:00:33, 72154820 , 0, 11, 1000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:00:52, 69345860 , 0, 11, 1000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:01:15, 95275749 , 0, 11, 1000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:01:39, 114518378 , 0, 11, 1000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:02:16, 131520086 , 0, 11, 1000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:02:44, 116177414 , 0, 11, 1000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:03:15, 108622806 , 0, 11, 1000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:03:48, 78098379 , 0, 11, 1000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:04:29, 88610200 , 0, 11, 1000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:05:12, 119077612 , 0, 11, 1000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:06:06, 125693916 , 0, 11, 1000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:07:01, 145219916 , 0, 11, 1000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:08:14, 128561929 , 0, 11, 1000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:09:12, 120991217 , 0, 11, 1000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:09:49, 103222584 , 0, 11, 1000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:10:18, 108272524 , 0, 11, 1000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:11:06, 119193963 , 0, 11, 1000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:11:42, 118684469 , 0, 11, 1000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:12:10, 129457508 , 0, 11, 1000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:12:33, 129300289 , 0, 11, 1000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:14:21, 110684304 , 0, 11, 1000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:15:32, 117698910 , 0, 11, 1000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:16:58, 120269966 , 0, 11, 1000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:18:17, 116454132 , 0, 11, 1000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:20:07, 121357831 , 0, 11, 1000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:20:49, 112149774 , 0, 11, 1000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:21:27, 110910754 , 0, 11, 1000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:22:02, 116807508 , 0, 11, 1000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:22:53, 115033389 , 0, 11, 1000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:23:16, 122458829 , 0, 11, 1000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:23:45, 128830666 , 0, 11, 1000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:24:15, 107715600 , 0, 11, 1000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:25:36, 98213350 , 0, 11, 1000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:26:42, 109553263 , 0, 11, 1000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:28:07, 133492992 , 0, 11, 1000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:31:07, 99759987 , 0, 11, 1000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:32:11, 133101883 , 0, 11, 1000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:32:40, 112919140 , 0, 11, 1000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:33:01, 121557725 , 0, 11, 1000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:33:23, 125749521 , 0, 11, 1000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:33:53, 130986635 , 0, 11, 1000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:34:15, 123689478 , 0, 11, 1000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:34:47, 103180192 , 0, 11, 1000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:35:02, 111868162 , 0, 11, 1000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:35:16, 125480135 , 0, 11, 1000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:35:27, 127067142 , 0, 11, 1000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:35:45, 130193576 , 0, 11, 1000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:36:00, 128725281 , 0, 11, 1000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:36:22, 84761852 , 0, 11, 1000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:36:31, 85095507 , 0, 11, 1000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:36:43, 83011596 , 0, 11, 1000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:36:53, 84769205 , 0, 11, 1000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:37:09, 84703315 , 0, 11, 1000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:37:17, 80449985 , 0, 11, 1000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:37:32, 62187230 , 0, 11, 1000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:37:38, 38617506 , 0, 11, 1000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:37:46, 28012961 , 0, 11, 1000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:37:49, 28499748 , 0, 11, 1000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:37:56, 24688859 , 0, 11, 1000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:37:58, 25677104 , 0, 11, 1000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:38:06, 32576448 , 0, 11, 1000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:38:09, 32259965 , 0, 11, 1000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:38:17, 33335877 , 0, 11, 1000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:38:22, 34899962 , 0, 11, 1000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:38:30, 30179008 , 0, 11, 1000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:38:34, 33269248 , 0, 11, 1000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:38:43, 33954077 , 0, 11, 1000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:38:49, 29307550 , 0, 11, 1000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:38:59, 31741047 , 0, 11, 1000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:39:05, 37267521 , 0, 11, 1000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:39:18, 37546481 , 0, 11, 1000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:39:27, 36396071 , 0, 11, 1000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:39:40, 41005959 , 0, 11, 1000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:39:50, 46821837 , 0, 11, 1000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:40:06, 51877643 , 0, 11, 1000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:40:17, 54772936 , 0, 11, 1000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:40:36, 61202344 , 0, 11, 1000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:40:53, 74968039 , 0, 11, 1000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:41:16, 76107377 , 0, 11, 1000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:41:38, 65757706 , 0, 11, 1000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:42:07, 57014767 , 0, 11, 1000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:42:33, 61838128 , 0, 11, 1000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:43:00, 72569749 , 0, 11, 1000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:43:26, 89773190 , 0, 11, 1000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:43:54, 115036811 , 0, 11, 1000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:44:19, 104519662 , 0, 11, 1000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:44:48, 107127794 , 0, 11, 1000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:45:29, 106571132 , 0, 11, 1000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:46:16, 96594807 , 0, 11, 1000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:46:54, 111578972 , 0, 11, 1000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:47:29, 83370274 , 0, 11, 1000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:48:03, 116694976 , 0, 11, 1000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:48:57, 117534258 , 0, 11, 1000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:50:03, 127123744 , 0, 11, 1000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 11:51:21, 125892678 , 0, 11, 1000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:52:34, 123335150 , 0, 11, 1000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 11:53:22, 116910348 , 0, 11, 1000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:53:43, 124454885 , 0, 11, 1000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 11:54:15, 89820143 , 0, 11, 1000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:54:50, 103797702 , 0, 11, 1000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 11:55:47, 111955941 , 0, 11, 1000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:56:30, 117616169 , 0, 11, 1000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 11:57:02, 117525271 , 0, 11, 1000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:57:33, 128047598 , 0, 11, 1000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 11:58:46, 124319800 , 0, 11, 1000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:00:16, 118338328 , 0, 11, 1000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:02:00, 120795270 , 0, 11, 1000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:03:23, 108586805 , 0, 11, 1000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:04:38, 121090998 , 0, 11, 1000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:05:03, 125610081 , 0, 11, 1000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:05:49, 123540500 , 0, 11, 1000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:06:45, 122267790 , 0, 11, 1000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:07:38, 124085388 , 0, 11, 1000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:08:12, 127442003 , 0, 11, 1000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:08:49, 127673148 , 0, 11, 1000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:09:08, 127026648 , 0, 11, 1000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:11:18, 127087560 , 0, 11, 1000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:12:55, 120877840 , 0, 11, 1000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:14:47, 145036040 , 0, 11, 1000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:16:09, 90222575 , 0, 11, 1000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:16:48, 121640321 , 0, 11, 10000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:17:33, 85372377 , 0, 11, 10000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:18:10, 127934038 , 0, 11, 10000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:18:34, 92179478 , 0, 11, 10000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:19:12, 120584713 , 0, 11, 10000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:19:40, 128712257 , 0, 11, 10000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:20:11, 129508638 , 0, 11, 10000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:20:23, 129736681 , 0, 11, 10000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:20:44, 128651186 , 0, 11, 10000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:21:05, 121111777 , 0, 11, 10000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:21:20, 123376287 , 0, 11, 10000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:21:32, 130249942 , 0, 11, 10000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:21:57, 127705041 , 0, 11, 10000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:22:15, 129127642 , 0, 11, 10000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:22:46, 129294084 , 0, 11, 10000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:23:14, 122744292 , 0, 11, 10000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:23:40, 119014605 , 0, 11, 10000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:23:54, 122835551 , 0, 11, 10000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:24:17, 121156978 , 0, 11, 10000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:24:36, 109858744 , 0, 11, 10000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:24:54, 78042429 , 0, 11, 10000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:25:04, 60537087 , 0, 11, 10000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:25:15, 53645461 , 0, 11, 10000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:25:21, 52958193 , 0, 11, 10000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:25:30, 50265119 , 0, 11, 10000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:25:37, 52442302 , 0, 11, 10000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:25:47, 63235530 , 0, 11, 10000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:25:52, 60890520 , 0, 11, 10000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:26:01, 75196676 , 0, 11, 10000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:26:05, 77229394 , 0, 11, 10000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:26:14, 79785525 , 0, 11, 10000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:26:18, 82125666 , 0, 11, 10000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:26:29, 80756040 , 0, 11, 10000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:26:33, 79573389 , 0, 11, 10000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:26:42, 81290131 , 0, 11, 10000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:26:48, 82959416 , 0, 11, 10000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:26:58, 89465721 , 0, 11, 10000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:27:03, 94345245 , 0, 11, 10000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:27:14, 112752618 , 0, 11, 10000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:27:21, 113149921 , 0, 11, 10000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:27:32, 130465722 , 0, 11, 10000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:27:38, 130052377 , 0, 11, 10000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:27:49, 130337897 , 0, 11, 10000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:27:55, 130512360 , 0, 11, 10000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:28:07, 129782960 , 0, 11, 10000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:28:15, 130045478 , 0, 11, 10000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:28:27, 121885704 , 0, 11, 10000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:28:33, 116456270 , 0, 11, 10000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:28:44, 128178032 , 0, 11, 10000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:28:51, 130563157 , 0, 11, 10000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:29:05, 130299251 , 0, 11, 10000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:29:11, 116839054 , 0, 11, 10000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:29:26, 119138744 , 0, 11, 10000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:29:33, 127385814 , 0, 11, 10000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:29:47, 112690643 , 0, 11, 10000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:29:55, 117251870 , 0, 11, 10000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:30:07, 123685503 , 0, 11, 10000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:30:16, 128668721 , 0, 11, 10000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:30:32, 126264503 , 0, 11, 10000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:30:42, 129941371 , 0, 11, 10000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:30:56, 129915516 , 0, 11, 10000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:31:07, 120709317 , 0, 11, 10000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:31:19, 131194690 , 0, 11, 10000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:31:28, 124120907 , 0, 11, 10000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:31:44, 113312038 , 0, 11, 10000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:31:56, 116439242 , 0, 11, 10000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:32:10, 124706549 , 0, 11, 10000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:32:21, 113166627 , 0, 11, 10000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:32:37, 117992383 , 0, 11, 10000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:32:49, 122707436 , 0, 11, 10000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:33:06, 130460544 , 0, 11, 10000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:33:21, 121782773 , 0, 11, 10000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:33:40, 129593770 , 0, 11, 10000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:33:50, 131383241 , 0, 11, 10000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:34:20, 120408761 , 0, 11, 10000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:34:33, 108115605 , 0, 11, 10000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:34:49, 114595045 , 0, 11, 10000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:35:00, 118176730 , 0, 11, 10000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:35:18, 127033337 , 0, 11, 10000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:35:32, 117751834 , 0, 11, 10000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:35:52, 125703708 , 0, 11, 10000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:36:08, 128948328 , 0, 11, 10000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:36:28, 122071514 , 0, 11, 10000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:36:43, 127981047 , 0, 11, 10000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:37:04, 117093856 , 0, 11, 10000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:37:22, 129459510 , 0, 11, 10000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:37:44, 121843522 , 0, 11, 10000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:37:57, 122938071 , 0, 11, 10000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:38:19, 126322086 , 0, 11, 10000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:38:33, 130397596 , 0, 11, 10000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:38:53, 116969216 , 0, 11, 10000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:39:06, 119919886 , 0, 11, 10000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:39:25, 130373232 , 0, 11, 10000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:39:41, 121800713 , 0, 11, 10000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:40:01, 114907406 , 0, 11, 10000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:40:13, 118974489 , 0, 11, 10000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:40:31, 125092341 , 0, 11, 10000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:40:45, 129071103 , 0, 11, 10000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:41:05, 128222291 , 0, 11, 10000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:41:16, 129769725 , 0, 11, 10000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:41:36, 128194744 , 0, 11, 10000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:41:46, 129734294 , 0, 11, 10000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:41:59, 129799222 , 0, 11, 10000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:42:09, 128663485 , 0, 11, 10000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:42:26, 123266960 , 0, 11, 10000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:42:39, 126136302 , 0, 11, 10000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:42:57, 129478803 , 0, 11, 10000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:43:08, 103892821 , 0, 11, 10000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:43:23, 120341410 , 0, 11, 10000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:43:36, 118917116 , 0, 11, 10000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:43:52, 112362036 , 0, 11, 10000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:44:06, 116652424 , 0, 11, 10000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:44:23, 129952224 , 0, 11, 10000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:44:35, 130754647 , 0, 11, 10000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:44:58, 131025697 , 0, 11, 10000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:45:11, 129600997 , 0, 11, 10000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:45:27, 133700968 , 0, 11, 10000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:45:43, 128517505 , 0, 11, 10000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:46:04, 126002308 , 0, 11, 10000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:46:18, 127916509 , 0, 11, 10000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:46:38, 114728555 , 0, 11, 10000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:46:51, 119890718 , 0, 11, 10000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:47:10, 133822817 , 0, 11, 10000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:47:26, 130388728 , 0, 11, 10000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:47:46, 126873685 , 0, 11, 10000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:47:57, 127982759 , 0, 11, 10000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:48:18, 130025626 , 0, 11, 10000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:48:33, 129754526 , 0, 11, 10000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:48:50, 118343085 , 0, 11, 10000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:49:08, 127567710 , 0, 11, 10000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:49:28, 115915311 , 0, 11, 10000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:49:41, 121879778 , 0, 11, 10000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:50:02, 121867185 , 0, 11, 10000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:50:15, 116692258 , 0, 11, 10000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:50:34, 117117871 , 0, 11, 10000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:50:47, 120910688 , 0, 11, 10000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:51:08, 131987773 , 0, 11, 10000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:51:23, 128504024 , 0, 11, 10000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:51:42, 125000064 , 0, 11, 10000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:51:57, 129250574 , 0, 11, 10000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:52:20, 116908381 , 0, 11, 10000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:52:34, 121411280 , 0, 11, 10000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:52:54, 129949495 , 0, 11, 10000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:53:08, 120572482 , 0, 11, 10000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:53:28, 128694853 , 0, 11, 10000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:53:45, 111554253 , 0, 11, 10000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:54:06, 127213044 , 0, 11, 10000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:54:26, 127120655 , 0, 11, 10000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:54:49, 126351707 , 0, 11, 10000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:55:04, 123169763 , 0, 11, 10000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:55:26, 115157027 , 0, 11, 10000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:55:45, 126235909 , 0, 11, 10000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:56:10, 117078883 , 0, 11, 10000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:56:27, 121320765 , 0, 11, 10000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 12:56:50, 135208096 , 0, 11, 10000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:57:12, 109945691 , 0, 11, 10000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 12:57:34, 120514539 , 0, 11, 10000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:57:53, 118942562 , 0, 11, 10000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 12:58:21, 130113337 , 0, 11, 10000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:58:38, 130375499 , 0, 11, 10000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 12:59:01, 123689106 , 0, 11, 10000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:59:17, 126113356 , 0, 11, 10000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 12:59:38, 118170827 , 0, 11, 10000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 12:59:54, 128771271 , 0, 11, 10000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:00:21, 120368480 , 0, 11, 10000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:00:41, 126720029 , 0, 11, 10000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:01:11, 110412855 , 0, 11, 10000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:01:35, 118562053 , 0, 11, 10000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:02:01, 120138319 , 0, 11, 10000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:02:23, 132432365 , 0, 11, 10000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:02:51, 131096898 , 0, 11, 10000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:03:11, 131599783 , 0, 11, 10000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:03:34, 122795801 , 0, 11, 10000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:03:49, 131592982 , 0, 11, 10000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:04:14, 122923787 , 0, 11, 10000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:04:36, 122726409 , 0, 11, 10000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:04:56, 117892739 , 0, 11, 10000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:05:12, 123875032 , 0, 11, 10000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:05:34, 118482839 , 0, 11, 10000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:05:52, 124202633 , 0, 11, 10000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:06:14, 132677956 , 0, 11, 10000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:06:34, 130747085 , 0, 11, 10000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:06:55, 130660689 , 0, 11, 10000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:07:09, 128192656 , 0, 11, 10000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:07:27, 109138446 , 0, 11, 10000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:07:39, 117447876 , 0, 11, 10000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:07:57, 128858437 , 0, 11, 10000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:08:12, 128693178 , 0, 11, 10000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:08:36, 125249810 , 0, 11, 10000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:08:50, 115054395 , 0, 11, 10000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:09:09, 123448540 , 0, 11, 10000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:09:24, 115308332 , 0, 11, 10000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:09:45, 122808217 , 0, 11, 10000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:10:00, 115944324 , 0, 11, 10000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:10:23, 129688741 , 0, 11, 10000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:10:39, 117644643 , 0, 11, 10000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:10:59, 130116556 , 0, 11, 10000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:11:14, 129140262 , 0, 11, 10000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:11:37, 129936798 , 0, 11, 10000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:11:48, 119446800 , 0, 11, 10000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:12:10, 106824334 , 0, 11, 10000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:12:24, 115956525 , 0, 11, 10000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:12:45, 128085113 , 0, 11, 10000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:13:06, 124698905 , 0, 11, 10000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:13:29, 125851280 , 0, 11, 10000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:13:45, 122852174 , 0, 11, 10000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:14:12, 126650387 , 0, 11, 10000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:14:28, 129524250 , 0, 11, 10000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:14:50, 130849378 , 0, 11, 10000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:15:01, 121371201 , 0, 11, 10000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:15:18, 131290855 , 0, 11, 10000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:15:34, 130062343 , 0, 11, 10000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:15:51, 128333934 , 0, 11, 10000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:16:03, 129920569 , 0, 11, 10000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:16:29, 113909931 , 0, 11, 10000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:16:46, 125037419 , 0, 11, 10000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:17:12, 124788492 , 0, 11, 10000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:17:31, 127055102 , 0, 11, 10000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:17:59, 130559514 , 0, 11, 10000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:18:21, 130652423 , 0, 11, 10000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:18:47, 122067782 , 0, 11, 10000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:19:05, 126107293 , 0, 11, 10000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:19:30, 122589789 , 0, 11, 10000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:19:51, 116389602 , 0, 11, 10000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:20:16, 123131566 , 0, 11, 10000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:20:40, 124708418 , 0, 11, 10000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:21:25, 130238018 , 0, 11, 10000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:21:48, 123776209 , 0, 11, 10000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:22:22, 121798321 , 0, 11, 10000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:22:46, 131155472 , 0, 11, 10000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:23:15, 140117698 , 0, 11, 10000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:23:45, 115844292 , 0, 11, 10000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:24:17, 126255746 , 0, 11, 10000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:24:39, 128172713 , 0, 11, 10000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:25:12, 124982381 , 0, 11, 10000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:25:34, 112242424 , 0, 11, 10000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:26:03, 121131413 , 0, 11, 10000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:26:26, 133015829 , 0, 11, 10000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:27:00, 125743637 , 0, 11, 10000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:27:27, 127375511 , 0, 11, 10000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:28:11, 127502765 , 0, 11, 10000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:28:39, 128656182 , 0, 11, 10000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:29:20, 109631337 , 0, 11, 10000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:29:41, 120178235 , 0, 11, 10000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:30:04, 130521102 , 0, 11, 10000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:30:26, 130152257 , 0, 11, 10000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:30:47, 122968680 , 0, 11, 10000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:31:02, 121196613 , 0, 11, 10000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:31:31, 113715105 , 0, 11, 10000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:31:54, 128845594 , 0, 11, 10000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:32:18, 126327457 , 0, 11, 10000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:32:47, 126652674 , 0, 11, 10000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:33:23, 118682104 , 0, 11, 10000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:33:51, 126528437 , 0, 11, 10000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:34:30, 134482698 , 0, 11, 10000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:34:49, 129761551 , 0, 11, 10000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:35:09, 132828057 , 0, 11, 10000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:35:28, 133891033 , 0, 11, 10000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:35:56, 130994797 , 0, 11, 10000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:36:15, 127331935 , 0, 11, 10000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:36:45, 131013307 , 0, 11, 10000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:37:08, 109947889 , 0, 11, 10000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:37:29, 119686558 , 0, 11, 10000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:37:49, 127686311 , 0, 11, 10000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:38:13, 130011005 , 0, 11, 10000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:38:34, 121219713 , 0, 11, 10000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:38:55, 106260372 , 0, 11, 10000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:39:07, 117763557 , 0, 11, 10000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:39:24, 129052566 , 0, 11, 10000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:39:30, 115406368 , 0, 11, 10000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:39:59, 128435286 , 0, 11, 10000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:40:13, 125621435 , 0, 11, 10000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:40:30, 115399097 , 0, 11, 10000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:40:42, 115874710 , 0, 11, 10000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:40:56, 125913533 , 0, 11, 10000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:41:08, 129983286 , 0, 11, 10000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:41:26, 119592266 , 0, 11, 10000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:41:35, 128815162 , 0, 11, 10000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:41:53, 109422608 , 0, 11, 10000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:42:04, 116152672 , 0, 11, 10000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:42:22, 120580832 , 0, 11, 10000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:42:33, 122935481 , 0, 11, 10000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:42:50, 126088860 , 0, 11, 10000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:43:01, 123085075 , 0, 11, 10000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:43:20, 119473826 , 0, 11, 10000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:43:36, 120389820 , 0, 11, 10000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:43:58, 126215503 , 0, 11, 10000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:44:13, 133080018 , 0, 11, 10000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:44:40, 124422162 , 0, 11, 10000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:44:58, 114061614 , 0, 11, 10000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:45:18, 131044803 , 0, 11, 10000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:45:27, 129603614 , 0, 11, 10000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:45:56, 130532324 , 0, 11, 10000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:46:09, 131088806 , 0, 11, 10000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:46:27, 128236244 , 0, 11, 10000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:46:34, 130094691 , 0, 11, 10000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:46:49, 133212589 , 0, 11, 10000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:47:24, 131431712 , 0, 11, 10000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:47:54, 96613523 , 0, 11, 10000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:48:14, 123193129 , 0, 11, 10000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:48:45, 122116333 , 0, 11, 10000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:49:12, 127625419 , 0, 11, 10000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:49:40, 137641020 , 0, 11, 10000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:50:03, 130067586 , 0, 11, 10000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:51:12, 134050870 , 0, 11, 10000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:51:45, 122516498 , 0, 11, 10000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:52:19, 128274435 , 0, 11, 10000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:52:48, 126010501 , 0, 11, 10000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:53:36, 113239164 , 0, 11, 10000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:54:02, 121795540 , 0, 11, 10000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 13:54:45, 134230867 , 0, 11, 10000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:55:28, 131190954 , 0, 11, 10000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 13:56:20, 132107896 , 0, 11, 10000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:57:14, 128079462 , 0, 11, 10000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 13:57:41, 134040919 , 0, 11, 10000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:57:57, 134456563 , 0, 11, 10000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 13:58:21, 127435086 , 0, 11, 10000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:58:48, 129944727 , 0, 11, 10000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 13:59:06, 130996308 , 0, 11, 10000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:59:20, 131821266 , 0, 11, 10000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 13:59:41, 98979651 , 0, 11, 10000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:00:10, 109076830 , 0, 11, 10000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:00:45, 125474484 , 0, 11, 10000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:01:29, 134773377 , 0, 11, 10000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:02:25, 125217174 , 0, 11, 10000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:03:13, 109724966 , 0, 11, 10000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:03:51, 123831197 , 0, 11, 10000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:04:20, 120227900 , 0, 11, 10000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:04:50, 130338451 , 0, 11, 10000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:05:12, 125255032 , 0, 11, 10000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:05:37, 95705224 , 0, 11, 10000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:05:52, 105231329 , 0, 11, 10000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:06:21, 127352554 , 0, 11, 10000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:06:59, 129605840 , 0, 11, 10000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:07:46, 136207910 , 0, 11, 10000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:08:42, 127567539 , 0, 11, 10000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:09:29, 102556391 , 0, 11, 10000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:10:16, 120021761 , 0, 11, 10000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:10:48, 132083568 , 0, 11, 10000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:11:11, 130959558 , 0, 11, 10000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:11:40, 132095361 , 0, 11, 10000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:12:08, 114661231 , 0, 11, 10000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:12:34, 131047962 , 0, 11, 10000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:12:51, 129261680 , 0, 11, 10000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:13:09, 131414735 , 0, 11, 10000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:13:31, 127302116 , 0, 11, 10000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:14:01, 122440930 , 0, 11, 10000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:14:26, 126853348 , 0, 11, 10000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:14:49, 98708640 , 0, 11, 10000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:15:00, 108251245 , 0, 11, 10000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:15:16, 128945204 , 0, 11, 10000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:15:23, 128229353 , 0, 11, 10000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:15:41, 123512231 , 0, 11, 10000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:15:52, 118998436 , 0, 11, 10000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:16:03, 121616073 , 0, 11, 10000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:16:09, 128019815 , 0, 11, 10000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:16:23, 126965226 , 0, 11, 10000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:16:33, 121328302 , 0, 11, 10000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:16:45, 128490423 , 0, 11, 10000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:16:53, 129082632 , 0, 11, 10000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:17:05, 124486712 , 0, 11, 10000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:17:12, 130465983 , 0, 11, 10000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:17:28, 132535707 , 0, 11, 10000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:17:40, 129944901 , 0, 11, 10000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:17:58, 131176696 , 0, 11, 10000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:18:07, 131276182 , 0, 11, 10000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:18:22, 124422746 , 0, 11, 10000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:18:37, 124768265 , 0, 11, 10000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:18:52, 122995353 , 0, 11, 10000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:19:05, 126602544 , 0, 11, 10000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:19:23, 126254719 , 0, 11, 10000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:19:37, 126013713 , 0, 11, 10000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:19:55, 133995072 , 0, 11, 10000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:20:11, 119252757 , 0, 11, 10000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:20:31, 129079439 , 0, 11, 10000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:20:44, 137548470 , 0, 11, 10000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:21:10, 137840037 , 0, 11, 10000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:21:27, 123564472 , 0, 11, 10000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:21:48, 125649586 , 0, 11, 10000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:22:07, 129882951 , 0, 11, 10000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:22:36, 129943637 , 0, 11, 10000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:23:01, 129383940 , 0, 11, 10000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:23:46, 128393290 , 0, 11, 10000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:24:15, 113497984 , 0, 11, 10000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:24:33, 130075172 , 0, 11, 10000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:24:56, 126355179 , 0, 11, 10000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:25:34, 134619892 , 0, 11, 10000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:26:18, 129051807 , 0, 11, 10000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:26:48, 132295623 , 0, 11, 10000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:27:15, 129393039 , 0, 11, 10000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:27:30, 131901879 , 0, 11, 10000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:28:17, 129039812 , 0, 11, 10000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:28:49, 125195433 , 0, 11, 10000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:29:38, 136552259 , 0, 11, 10000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:30:48, 123029139 , 0, 11, 10000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:31:35, 134466949 , 0, 11, 10000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:32:41, 136990836 , 0, 11, 10000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:33:34, 106136816 , 0, 11, 10000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:34:18, 128215690 , 0, 11, 10000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:35:04, 127442008 , 0, 11, 10000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:36:19, 141264931 , 0, 11, 10000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:36:57, 112186762 , 0, 11, 10000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:38:16, 126319765 , 0, 11, 10000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:38:32, 96669347 , 0, 11, 10000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:39:14, 127565158 , 0, 11, 10000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:39:54, 129696908 , 0, 11, 10000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:41:00, 80831164 , 0, 11, 10000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:41:32, 85974192 , 0, 11, 10000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:42:12, 111073560 , 0, 11, 10000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:42:53, 130762988 , 0, 11, 10000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:43:59, 128783920 , 0, 11, 10000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:44:14, 128341822 , 0, 11, 10000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:44:50, 129848928 , 0, 11, 10000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:45:12, 129807120 , 0, 11, 10000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:45:42, 102657268 , 0, 11, 10000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:46:08, 118563829 , 0, 11, 10000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:47:04, 132006989 , 0, 11, 10000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:48:12, 111541703 , 0, 11, 10000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:48:57, 134822820 , 0, 11, 10000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:50:15, 96507035 , 0, 11, 10000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:51:00, 122376129 , 0, 11, 10000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:51:49, 135669880 , 0, 11, 10000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:52:40, 133176658 , 0, 11, 10000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:53:05, 133139381 , 0, 11, 10000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:53:33, 131615442 , 0, 11, 10000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:53:50, 131264041 , 0, 11, 10000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:54:24, 125356116 , 0, 11, 10000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:54:43, 93043727 , 0, 11, 10000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:54:53, 99051942 , 0, 11, 10000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:54:58, 119235595 , 0, 11, 10000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:55:12, 129585162 , 0, 11, 10000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:55:20, 129127696 , 0, 11, 10000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:55:44, 126586653 , 0, 11, 10000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:56:05, 125759530 , 0, 11, 10000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:56:21, 129096673 , 0, 11, 10000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:56:32, 123846891 , 0, 11, 10000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 14:56:48, 127563332 , 0, 11, 10000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:56:57, 127086100 , 0, 11, 10000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 14:57:15, 128428348 , 0, 11, 10000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:57:22, 135014533 , 0, 11, 10000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 14:58:30, 124181312 , 0, 11, 10000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:58:39, 118789594 , 0, 11, 10000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 14:59:04, 122691510 , 0, 11, 10000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:59:14, 129347137 , 0, 11, 10000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 14:59:30, 128809165 , 0, 11, 10000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:59:41, 128113250 , 0, 11, 10000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 14:59:53, 126421713 , 0, 11, 10000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:00:06, 129260348 , 0, 11, 10000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:00:22, 131087531 , 0, 11, 10000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:00:33, 123608365 , 0, 11, 10000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:00:50, 124453549 , 0, 11, 10000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:01:03, 134875850 , 0, 11, 10000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:01:30, 98943196 , 0, 11, 10000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:01:37, 86079744 , 0, 11, 10000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:01:48, 96647086 , 0, 11, 10000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:01:59, 101747612 , 0, 11, 10000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:02:14, 107587487 , 0, 11, 10000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:02:24, 122403311 , 0, 11, 10000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:02:43, 129505842 , 0, 11, 10000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:02:58, 127608327 , 0, 11, 10000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:03:20, 128182679 , 0, 11, 10000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:03:37, 130058794 , 0, 11, 10000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:04:02, 130750057 , 0, 11, 10000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:04:14, 128110252 , 0, 11, 10000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:04:49, 130651685 , 0, 11, 10000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:05:23, 128279319 , 0, 11, 10000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:05:55, 124226628 , 0, 11, 10000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:06:24, 127700613 , 0, 11, 10000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:06:44, 125206396 , 0, 11, 10000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:07:12, 124478382 , 0, 11, 10000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:07:45, 114246605 , 0, 11, 10000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:08:18, 128249231 , 0, 11, 10000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:08:49, 128830355 , 0, 11, 10000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:09:27, 125869915 , 0, 11, 10000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:09:48, 129284693 , 0, 11, 10000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:10:11, 123921370 , 0, 11, 10000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:10:49, 124332744 , 0, 11, 10000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:11:37, 122180113 , 0, 11, 10000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:12:39, 123637002 , 0, 11, 10000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:13:18, 125755178 , 0, 11, 10000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:14:07, 125454167 , 0, 11, 10000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:15:10, 129981444 , 0, 11, 10000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:16:15, 132870752 , 0, 11, 10000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:16:37, 129799431 , 0, 11, 10000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:17:20, 129844659 , 0, 11, 10000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:17:36, 132211363 , 0, 11, 10000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:18:08, 129838306 , 0, 11, 10000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:18:19, 130133940 , 0, 11, 10000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:19:03, 133743041 , 0, 11, 10000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:20:04, 134542670 , 0, 11, 10000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:20:57, 131250709 , 0, 11, 10000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:21:48, 133665069 , 0, 11, 10000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:23:19, 137475719 , 0, 11, 10000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:25:30, 133889002 , 0, 11, 10000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:26:24, 130941620 , 0, 11, 10000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:27:08, 116637107 , 0, 11, 10000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:28:27, 116869209 , 0, 11, 10000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:29:05, 106207113 , 0, 11, 10000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:29:53, 128613058 , 0, 11, 10000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:30:16, 127334827 , 0, 11, 10000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:31:38, 136831495 , 0, 11, 10000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:33:54, 139408084 , 0, 11, 10000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:36:06, 134568859 , 0, 11, 10000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:37:16, 91696379 , 0, 11, 10000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:38:25, 121881913 , 0, 11, 10000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:38:46, 116484054 , 0, 11, 10000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:39:17, 112256688 , 0, 11, 10000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:39:41, 124994061 , 0, 11, 10000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:40:09, 127085075 , 0, 11, 10000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:40:26, 126585445 , 0, 11, 10000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:41:00, 126776422 , 0, 11, 10000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:41:17, 126977329 , 0, 11, 10000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:41:35, 126306790 , 0, 11, 10000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:42:01, 126267417 , 0, 11, 10000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:42:28, 130864451 , 0, 11, 10000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:42:39, 124772316 , 0, 11, 10000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:42:59, 126249551 , 0, 11, 10000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:43:13, 69999539 , 0, 11, 10000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:43:27, 80762725 , 0, 11, 10000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:43:32, 90594950 , 0, 11, 10000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:43:43, 106065199 , 0, 11, 10000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:43:50, 112479310 , 0, 11, 10000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:44:07, 118327928 , 0, 11, 10000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:44:19, 119491941 , 0, 11, 10000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:44:35, 124316140 , 0, 11, 10000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:44:45, 123756504 , 0, 11, 10000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:45:03, 129401623 , 0, 11, 10000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:45:23, 128884697 , 0, 11, 10000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:45:43, 116701103 , 0, 11, 10000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:45:53, 91234559 , 0, 11, 10000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:46:05, 63916285 , 0, 11, 10000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:46:09, 61647737 , 0, 11, 10000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:46:20, 60957126 , 0, 11, 10000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:46:24, 51244770 , 0, 11, 10000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:46:33, 50968498 , 0, 11, 10000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:46:39, 54760284 , 0, 11, 10000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:46:50, 58503953 , 0, 11, 10000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:46:57, 59843409 , 0, 11, 10000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:47:10, 65276850 , 0, 11, 10000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:47:18, 67808567 , 0, 11, 10000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:47:33, 80240118 , 0, 11, 10000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:47:42, 84205044 , 0, 11, 10000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:47:59, 110254626 , 0, 11, 10000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:48:16, 124297935 , 0, 11, 10000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:48:40, 130015470 , 0, 11, 10000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:48:56, 124306020 , 0, 11, 10000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:49:20, 116754799 , 0, 11, 10000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:49:45, 135602995 , 0, 11, 10000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:50:27, 134443271 , 0, 11, 10000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:50:53, 134673404 , 0, 11, 10000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:51:34, 100896693 , 0, 11, 10000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:51:53, 113360413 , 0, 11, 10000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:52:24, 125546692 , 0, 11, 10000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:52:47, 109995330 , 0, 11, 10000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 15:53:17, 125293112 , 0, 11, 10000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:53:40, 127408417 , 0, 11, 10000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 15:54:13, 126700001 , 0, 11, 10000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:54:35, 127175342 , 0, 11, 10000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 15:55:04, 122535357 , 0, 11, 10000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:55:47, 121300826 , 0, 11, 10000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 15:57:17, 96665534 , 0, 11, 10000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:58:10, 120568895 , 0, 11, 10000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 15:58:57, 131089485 , 0, 11, 10000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 15:59:44, 135443616 , 0, 11, 10000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:00:26, 126364358 , 0, 11, 10000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:00:57, 129367155 , 0, 11, 10000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:01:32, 134416186 , 0, 11, 10000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:02:14, 128553699 , 0, 11, 10000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:02:55, 133539755 , 0, 11, 10000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:03:34, 129117716 , 0, 11, 10000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:04:26, 117039250 , 0, 11, 10000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:05:47, 113411121 , 0, 11, 10000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:07:18, 121679833 , 0, 11, 10000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:08:29, 110595297 , 0, 11, 10000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:09:41, 130919588 , 0, 11, 10000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:10:49, 104538154 , 0, 11, 10000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:11:35, 129416944 , 0, 11, 10000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:11:50, 111816144 , 0, 11, 10000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:13:00, 128857342 , 0, 11, 10000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:13:20, 117891256 , 0, 11, 10000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:14:31, 105750765 , 0, 11, 10000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:15:04, 122975563 , 0, 11, 10000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:15:41, 128228242 , 0, 11, 10000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:16:08, 85467980 , 0, 11, 10000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:17:04, 125644941 , 0, 11, 10000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:18:41, 97377377 , 0, 11, 10000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:19:51, 147647378 , 0, 11, 10000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:21:37, 83944274 , 0, 11, 10000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:22:07, 98356810 , 0, 12, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:22:30, 119223986 , 0, 12, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:23:05, 125029063 , 0, 12, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:23:29, 128382109 , 0, 12, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:24:03, 128794069 , 0, 12, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:24:09, 128545737 , 0, 12, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:24:31, 127274397 , 0, 12, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:24:49, 127541300 , 0, 12, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:25:35, 128783612 , 0, 12, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:25:54, 127650932 , 0, 12, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:26:13, 126722747 , 0, 12, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:26:31, 126824592 , 0, 12, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:26:50, 129635690 , 0, 12, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:27:04, 128522815 , 0, 12, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:27:31, 61883266 , 0, 12, 1000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:27:34, 73622298 , 0, 12, 1000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:27:47, 94272586 , 0, 12, 1000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:27:57, 101815271 , 0, 12, 1000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:28:11, 108976753 , 0, 12, 1000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:28:21, 114270346 , 0, 12, 1000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:28:36, 117557388 , 0, 12, 1000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:28:49, 118547570 , 0, 12, 1000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:29:04, 118130750 , 0, 12, 1000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:29:16, 119224530 , 0, 12, 1000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:29:35, 78765448 , 0, 12, 1000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:29:40, 55697669 , 0, 12, 1000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:29:48, 47394569 , 0, 12, 1000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:29:51, 48807466 , 0, 12, 1000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:29:58, 47410283 , 0, 12, 1000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:30:01, 48877784 , 0, 12, 1000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:30:09, 53255787 , 0, 12, 1000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:30:12, 52612290 , 0, 12, 1000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:30:20, 57411799 , 0, 12, 1000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:30:24, 58580585 , 0, 12, 1000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:30:32, 62783223 , 0, 12, 1000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:30:35, 65524558 , 0, 12, 1000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:30:44, 70385639 , 0, 12, 1000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:30:48, 71622676 , 0, 12, 1000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:30:57, 71017489 , 0, 12, 1000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:31:01, 72266545 , 0, 12, 1000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:31:11, 79258493 , 0, 12, 1000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:31:15, 80583761 , 0, 12, 1000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:31:25, 86326428 , 0, 12, 1000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:31:30, 91503985 , 0, 12, 1000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:31:41, 99615179 , 0, 12, 1000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:31:48, 102324609 , 0, 12, 1000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:32:00, 112042998 , 0, 12, 1000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:32:07, 115666338 , 0, 12, 1000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:32:19, 126072854 , 0, 12, 1000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:32:26, 127053615 , 0, 12, 1000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:32:39, 129971155 , 0, 12, 1000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:32:46, 129887687 , 0, 12, 1000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:33:01, 130229523 , 0, 12, 1000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:33:08, 130803341 , 0, 12, 1000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:33:19, 130935206 , 0, 12, 1000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:33:27, 130315062 , 0, 12, 1000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:33:43, 106933025 , 0, 12, 1000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:33:49, 112845911 , 0, 12, 1000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:34:00, 119749527 , 0, 12, 1000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:34:11, 128663910 , 0, 12, 1000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:34:25, 113024723 , 0, 12, 1000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:34:34, 113349107 , 0, 12, 1000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:34:49, 125361734 , 0, 12, 1000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:35:03, 129907931 , 0, 12, 1000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:35:21, 126768046 , 0, 12, 1000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:35:34, 127991505 , 0, 12, 1000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:35:55, 130936036 , 0, 12, 1000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:36:10, 127147800 , 0, 12, 1000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:36:25, 120420382 , 0, 12, 1000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:36:37, 118907695 , 0, 12, 1000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:36:55, 127386825 , 0, 12, 1000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:37:10, 129722012 , 0, 12, 1000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:37:32, 129059426 , 0, 12, 1000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:37:49, 124853725 , 0, 12, 1000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:38:14, 129794630 , 0, 12, 1000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:38:27, 124786565 , 0, 12, 1000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:39:02, 128318857 , 0, 12, 1000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:39:15, 131348918 , 0, 12, 1000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:39:33, 120236142 , 0, 12, 1000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:39:50, 126326513 , 0, 12, 1000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:40:12, 126583215 , 0, 12, 1000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:40:26, 119908487 , 0, 12, 1000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:40:46, 126500341 , 0, 12, 1000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:41:01, 128905074 , 0, 12, 1000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:41:25, 130297690 , 0, 12, 1000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:41:46, 122050524 , 0, 12, 1000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:41:58, 125987485 , 0, 12, 1000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:42:13, 128616631 , 0, 12, 1000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:42:32, 130549096 , 0, 12, 1000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:42:49, 127083601 , 0, 12, 1000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:43:06, 129450689 , 0, 12, 1000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:43:21, 123125008 , 0, 12, 1000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:43:39, 130014523 , 0, 12, 1000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:43:53, 131409428 , 0, 12, 1000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:44:14, 130048344 , 0, 12, 1000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:44:27, 130118073 , 0, 12, 1000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:44:45, 118392726 , 0, 12, 1000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:45:02, 123768286 , 0, 12, 1000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:45:21, 130779245 , 0, 12, 1000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:45:32, 133545312 , 0, 12, 1000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:45:51, 126221153 , 0, 12, 1000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:46:05, 128070820 , 0, 12, 1000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:46:27, 120987072 , 0, 12, 1000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:46:40, 126408970 , 0, 12, 1000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:47:00, 129913312 , 0, 12, 1000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:47:14, 127173203 , 0, 12, 1000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:47:37, 131201890 , 0, 12, 1000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:47:55, 128844697 , 0, 12, 1000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:48:17, 134685070 , 0, 12, 1000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:48:30, 129412216 , 0, 12, 1000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:48:53, 136922315 , 0, 12, 1000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:49:07, 107271041 , 0, 12, 1000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:49:29, 122430297 , 0, 12, 1000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:49:42, 117308615 , 0, 12, 1000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:50:02, 119053627 , 0, 12, 1000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:50:10, 125570679 , 0, 12, 1000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:50:33, 130217828 , 0, 12, 1000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:50:49, 127026956 , 0, 12, 1000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:51:11, 130228342 , 0, 12, 1000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:51:24, 130014025 , 0, 12, 1000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:51:48, 131177930 , 0, 12, 1000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:52:05, 127587811 , 0, 12, 1000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:52:28, 129924384 , 0, 12, 1000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:52:40, 132292191 , 0, 12, 1000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:53:01, 115134799 , 0, 12, 1000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:53:16, 124728981 , 0, 12, 1000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:53:37, 126599745 , 0, 12, 1000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:53:53, 132950648 , 0, 12, 1000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:54:22, 128506770 , 0, 12, 1000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:54:41, 115789240 , 0, 12, 1000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:55:06, 123177066 , 0, 12, 1000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:55:23, 127296515 , 0, 12, 1000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:55:48, 128564256 , 0, 12, 1000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:56:06, 122088043 , 0, 12, 1000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 16:56:28, 130568104 , 0, 12, 1000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:56:45, 129009719 , 0, 12, 1000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 16:57:05, 132965205 , 0, 12, 1000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:57:20, 116995240 , 0, 12, 1000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 16:57:38, 130698115 , 0, 12, 1000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:57:58, 127307429 , 0, 12, 1000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 16:58:22, 119344284 , 0, 12, 1000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:58:39, 122960312 , 0, 12, 1000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 16:59:05, 130707087 , 0, 12, 1000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:59:25, 123072972 , 0, 12, 1000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 16:59:48, 131003635 , 0, 12, 1000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:00:06, 132810013 , 0, 12, 1000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:00:38, 130663075 , 0, 12, 1000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:00:52, 120700516 , 0, 12, 1000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:01:20, 128018897 , 0, 12, 1000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:01:34, 132588849 , 0, 12, 1000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:02:00, 128560381 , 0, 12, 1000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:02:20, 126071735 , 0, 12, 1000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:02:48, 125714303 , 0, 12, 1000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:03:08, 128401161 , 0, 12, 1000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:03:35, 124826164 , 0, 12, 1000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:03:52, 130078014 , 0, 12, 1000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:04:20, 133725747 , 0, 12, 1000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:04:44, 123231991 , 0, 12, 1000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:05:20, 115391701 , 0, 12, 1000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:05:41, 125869148 , 0, 12, 1000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:06:05, 127678903 , 0, 12, 1000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:06:21, 128441335 , 0, 12, 1000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:06:46, 124219725 , 0, 12, 1000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:07:07, 130103854 , 0, 12, 1000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:07:36, 126926141 , 0, 12, 1000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:07:59, 130571071 , 0, 12, 1000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:08:25, 129951051 , 0, 12, 1000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:08:47, 125518543 , 0, 12, 1000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:09:12, 125435137 , 0, 12, 1000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:09:32, 126910764 , 0, 12, 1000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:10:05, 129654660 , 0, 12, 1000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:10:27, 128439175 , 0, 12, 1000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:10:51, 120820155 , 0, 12, 1000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:11:41, 130510448 , 0, 12, 1000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:12:07, 127999168 , 0, 12, 1000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:12:25, 132955742 , 0, 12, 1000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:12:50, 125603327 , 0, 12, 1000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:13:06, 129038096 , 0, 12, 1000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:13:23, 129749475 , 0, 12, 1000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:13:57, 131891577 , 0, 12, 1000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:14:16, 128763983 , 0, 12, 1000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:14:34, 123797810 , 0, 12, 1000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:14:50, 132397924 , 0, 12, 1000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:15:02, 122582963 , 0, 12, 1000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:15:16, 129969517 , 0, 12, 1000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:15:25, 128438636 , 0, 12, 1000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:15:46, 118707203 , 0, 12, 1000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:15:54, 119863825 , 0, 12, 1000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:16:13, 129546357 , 0, 12, 1000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:16:26, 132948033 , 0, 12, 1000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:16:51, 130240605 , 0, 12, 1000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:17:03, 124350696 , 0, 12, 1000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:17:23, 125682837 , 0, 12, 1000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:17:35, 119484095 , 0, 12, 1000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:17:54, 131066588 , 0, 12, 1000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:18:12, 121852028 , 0, 12, 1000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:18:33, 129834959 , 0, 12, 1000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:18:48, 130192018 , 0, 12, 1000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:19:07, 125667673 , 0, 12, 1000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:19:23, 119252618 , 0, 12, 1000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:19:44, 130792129 , 0, 12, 1000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:20:09, 133978308 , 0, 12, 1000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:20:37, 121079116 , 0, 12, 1000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:20:55, 103824985 , 0, 12, 1000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:21:20, 119271387 , 0, 12, 1000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:21:39, 123849172 , 0, 12, 1000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:22:04, 131302285 , 0, 12, 1000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:22:25, 123818250 , 0, 12, 1000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:22:52, 130241320 , 0, 12, 1000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:23:20, 128489706 , 0, 12, 1000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:23:46, 126064985 , 0, 12, 1000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:24:10, 130538405 , 0, 12, 1000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:24:43, 128566012 , 0, 12, 1000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:25:07, 116864534 , 0, 12, 1000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:25:37, 112301920 , 0, 12, 1000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:25:57, 114171422 , 0, 12, 1000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:26:23, 122664017 , 0, 12, 1000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:26:46, 121893530 , 0, 12, 1000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:27:19, 129775886 , 0, 12, 1000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:27:37, 131827458 , 0, 12, 1000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:28:01, 132865216 , 0, 12, 1000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:28:32, 127168477 , 0, 12, 1000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:29:07, 127289812 , 0, 12, 1000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:29:34, 128434129 , 0, 12, 1000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:30:05, 134288867 , 0, 12, 1000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:30:39, 132417693 , 0, 12, 1000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:31:12, 129978282 , 0, 12, 1000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:31:44, 124923754 , 0, 12, 1000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:32:19, 116341327 , 0, 12, 1000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:32:41, 121097873 , 0, 12, 1000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:33:13, 127089930 , 0, 12, 1000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:33:40, 126836273 , 0, 12, 1000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:34:18, 128059123 , 0, 12, 1000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:34:45, 128941531 , 0, 12, 1000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:35:19, 129455216 , 0, 12, 1000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:36:09, 121759670 , 0, 12, 1000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:36:42, 125236816 , 0, 12, 1000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:37:10, 123507805 , 0, 12, 1000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:37:42, 123172626 , 0, 12, 1000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:38:11, 128091465 , 0, 12, 1000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:38:48, 131242994 , 0, 12, 1000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:39:16, 128734374 , 0, 12, 1000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:39:57, 133458930 , 0, 12, 1000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:40:23, 120937005 , 0, 12, 1000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:40:54, 131902757 , 0, 12, 1000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:41:23, 131244996 , 0, 12, 1000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:41:58, 126789315 , 0, 12, 1000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:42:30, 133545396 , 0, 12, 1000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:43:05, 108614119 , 0, 12, 1000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:43:30, 114218660 , 0, 12, 1000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:43:58, 124719651 , 0, 12, 1000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:44:25, 132557492 , 0, 12, 1000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:45:02, 125198410 , 0, 12, 1000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:45:29, 124646671 , 0, 12, 1000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:46:05, 129787752 , 0, 12, 1000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:46:26, 131037382 , 0, 12, 1000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:46:52, 129483415 , 0, 12, 1000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:47:18, 129338948 , 0, 12, 1000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:47:51, 128196681 , 0, 12, 1000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:48:26, 128206145 , 0, 12, 1000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:48:58, 116187775 , 0, 12, 1000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:49:16, 122778476 , 0, 12, 1000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:49:41, 129844724 , 0, 12, 1000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:50:00, 130309586 , 0, 12, 1000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:50:25, 130702148 , 0, 12, 1000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:50:44, 128185803 , 0, 12, 1000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:51:07, 129721857 , 0, 12, 1000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:51:26, 119579678 , 0, 12, 1000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:51:48, 127433869 , 0, 12, 1000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:52:02, 131584941 , 0, 12, 1000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:52:22, 132021062 , 0, 12, 1000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:52:37, 129178617 , 0, 12, 1000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:52:57, 125961609 , 0, 12, 1000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:53:17, 129561767 , 0, 12, 1000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:53:44, 131650397 , 0, 12, 1000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:54:06, 123144849 , 0, 12, 1000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:54:28, 128792463 , 0, 12, 1000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:54:53, 112752662 , 0, 12, 1000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:55:12, 122145352 , 0, 12, 1000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:55:29, 126366612 , 0, 12, 1000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:55:57, 129687136 , 0, 12, 1000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:56:10, 120620462 , 0, 12, 1000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 17:56:28, 132370209 , 0, 12, 1000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:56:46, 132182772 , 0, 12, 1000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 17:57:04, 120605376 , 0, 12, 1000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:57:24, 123670096 , 0, 12, 1000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 17:57:51, 130374600 , 0, 12, 1000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:58:17, 111450000 , 0, 12, 1000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 17:58:40, 130726518 , 0, 12, 1000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:58:54, 106424897 , 0, 12, 1000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 17:59:17, 116514265 , 0, 12, 1000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 17:59:37, 122848393 , 0, 12, 1000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:00:02, 122625878 , 0, 12, 1000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:00:23, 128306243 , 0, 12, 1000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:00:52, 137474641 , 0, 12, 1000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:01:26, 130487455 , 0, 12, 1000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:02:01, 93279254 , 0, 12, 1000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:02:23, 99058571 , 0, 12, 1000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:02:52, 110202511 , 0, 12, 1000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:03:22, 118599077 , 0, 12, 1000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:03:57, 129936122 , 0, 12, 1000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:04:29, 123720353 , 0, 12, 1000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:05:07, 126754639 , 0, 12, 1000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:05:43, 126503954 , 0, 12, 1000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:06:27, 128199664 , 0, 12, 1000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:07:08, 127661634 , 0, 12, 1000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:07:48, 119992826 , 0, 12, 1000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:08:23, 106744363 , 0, 12, 1000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:08:58, 114305884 , 0, 12, 1000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:09:35, 122533795 , 0, 12, 1000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:10:18, 128207296 , 0, 12, 1000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:10:59, 127115767 , 0, 12, 1000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:11:53, 124587165 , 0, 12, 1000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:12:54, 126464544 , 0, 12, 1000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:13:48, 106302812 , 0, 12, 1000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:14:15, 116108017 , 0, 12, 1000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:14:54, 125742154 , 0, 12, 1000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:15:31, 124239814 , 0, 12, 1000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:16:21, 115619267 , 0, 12, 1000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:16:50, 123353038 , 0, 12, 1000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:17:33, 120869472 , 0, 12, 1000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:18:14, 118905227 , 0, 12, 1000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:19:00, 128667544 , 0, 12, 1000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:19:48, 130491615 , 0, 12, 1000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:20:43, 129959063 , 0, 12, 1000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:21:24, 113683436 , 0, 12, 1000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:22:01, 134139632 , 0, 12, 1000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:22:48, 122831523 , 0, 12, 1000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:23:39, 121191548 , 0, 12, 1000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:24:12, 129437315 , 0, 12, 1000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:24:42, 128122529 , 0, 12, 1000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:25:23, 119040908 , 0, 12, 1000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:26:07, 119567525 , 0, 12, 1000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:26:45, 124460657 , 0, 12, 1000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:27:44, 131620433 , 0, 12, 1000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:28:42, 109154109 , 0, 12, 1000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:29:28, 123522229 , 0, 12, 1000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:29:59, 132623777 , 0, 12, 1000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:30:41, 130398959 , 0, 12, 1000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:31:22, 130862829 , 0, 12, 1000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:32:04, 129540037 , 0, 12, 1000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:32:26, 112918947 , 0, 12, 1000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:32:55, 122123274 , 0, 12, 1000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:33:22, 129640897 , 0, 12, 1000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:33:53, 129393706 , 0, 12, 1000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:34:19, 130263400 , 0, 12, 1000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:34:50, 128709663 , 0, 12, 1000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:35:19, 131120243 , 0, 12, 1000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:35:56, 127100112 , 0, 12, 1000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:36:22, 105315961 , 0, 12, 1000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:36:41, 112263331 , 0, 12, 1000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:36:57, 116520328 , 0, 12, 1000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:37:20, 126207784 , 0, 12, 1000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:37:38, 128110859 , 0, 12, 1000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:38:02, 127635159 , 0, 12, 1000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:38:27, 125397159 , 0, 12, 1000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:38:56, 125266506 , 0, 12, 1000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:39:14, 128601183 , 0, 12, 1000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:39:36, 128241163 , 0, 12, 1000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:39:51, 126887013 , 0, 12, 1000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:40:17, 127983504 , 0, 12, 1000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:40:25, 131112080 , 0, 12, 1000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:40:51, 116481067 , 0, 12, 1000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:41:08, 109238853 , 0, 12, 1000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:41:22, 120329662 , 0, 12, 1000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:41:32, 132104596 , 0, 12, 1000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:41:51, 112922797 , 0, 12, 1000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:42:07, 118952507 , 0, 12, 1000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:42:35, 124904761 , 0, 12, 1000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:42:54, 129469743 , 0, 12, 1000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:43:21, 129256389 , 0, 12, 1000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:43:44, 129955483 , 0, 12, 1000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:44:13, 125121772 , 0, 12, 1000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:44:38, 120812323 , 0, 12, 1000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:45:05, 132222960 , 0, 12, 1000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:45:35, 129859564 , 0, 12, 1000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:46:07, 122297375 , 0, 12, 1000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:46:26, 126499167 , 0, 12, 1000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:46:59, 120485391 , 0, 12, 1000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:47:25, 120627839 , 0, 12, 1000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:48:01, 122894268 , 0, 12, 1000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:48:30, 114354791 , 0, 12, 1000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:48:58, 123954492 , 0, 12, 1000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:49:25, 103020841 , 0, 12, 1000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:49:58, 122840022 , 0, 12, 1000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:50:24, 131407523 , 0, 12, 1000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:50:55, 124089412 , 0, 12, 1000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:51:25, 114893782 , 0, 12, 1000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 18:52:04, 128263377 , 0, 12, 1000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:53:03, 122316654 , 0, 12, 1000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 18:53:30, 114156542 , 0, 12, 1000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:53:58, 92466789 , 0, 12, 1000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 18:54:40, 118629020 , 0, 12, 1000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:55:34, 118510539 , 0, 12, 1000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 18:56:29, 137219866 , 0, 12, 1000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:57:21, 132387954 , 0, 12, 1000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 18:58:50, 117872903 , 0, 12, 1000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 18:59:36, 132336646 , 0, 12, 1000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:00:28, 137938566 , 0, 12, 1000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:01:45, 126783954 , 0, 12, 1000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:02:32, 136604820 , 0, 12, 1000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:03:42, 103863321 , 0, 12, 1000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:04:27, 100369516 , 0, 12, 1000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:05:14, 112026216 , 0, 12, 1000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:06:25, 121995997 , 0, 12, 1000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:07:38, 112116879 , 0, 12, 1000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:08:37, 132252724 , 0, 12, 1000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:09:44, 132087449 , 0, 12, 1000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:10:46, 138977823 , 0, 12, 1000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:12:24, 132845908 , 0, 12, 1000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:13:49, 129686875 , 0, 12, 1000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:14:51, 125333150 , 0, 12, 1000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:15:49, 132697037 , 0, 12, 1000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:16:55, 102588312 , 0, 12, 1000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:17:41, 111580125 , 0, 12, 1000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:18:35, 126595036 , 0, 12, 1000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:20:14, 132539704 , 0, 12, 1000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:21:31, 106523236 , 0, 12, 1000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:22:19, 130825137 , 0, 12, 1000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:23:03, 136346957 , 0, 12, 1000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:24:09, 135710045 , 0, 12, 1000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:25:20, 134201448 , 0, 12, 1000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:26:37, 133399039 , 0, 12, 1000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:27:43, 109949402 , 0, 12, 1000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:28:29, 122626547 , 0, 12, 1000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:29:13, 129328413 , 0, 12, 1000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:30:02, 129510524 , 0, 12, 1000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:30:51, 129555475 , 0, 12, 1000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:31:52, 131132373 , 0, 12, 1000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:32:21, 100790317 , 0, 12, 1000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:32:40, 121374464 , 0, 12, 1000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:32:52, 125850474 , 0, 12, 1000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:33:17, 128322653 , 0, 12, 1000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:33:31, 127716284 , 0, 12, 1000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:33:46, 128409560 , 0, 12, 1000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:33:57, 113596136 , 0, 12, 1000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:34:12, 120979075 , 0, 12, 1000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:34:29, 122772445 , 0, 12, 1000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:34:57, 128892384 , 0, 12, 1000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:35:15, 125530987 , 0, 12, 1000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:35:33, 121316341 , 0, 12, 1000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:36:09, 127342499 , 0, 12, 1000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:36:31, 129913901 , 0, 12, 1000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:36:44, 128820176 , 0, 12, 1000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:37:04, 125492199 , 0, 12, 1000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:37:12, 131328166 , 0, 12, 1000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:37:34, 128273572 , 0, 12, 1000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:37:54, 127570288 , 0, 12, 1000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:38:14, 134062075 , 0, 12, 1000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:38:41, 131790910 , 0, 12, 1000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:39:07, 129310843 , 0, 12, 1000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:39:46, 129831027 , 0, 12, 1000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:40:19, 92373250 , 0, 12, 1000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:40:31, 89655129 , 0, 12, 1000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:40:44, 96055171 , 0, 12, 1000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:40:53, 103494850 , 0, 12, 1000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:41:11, 129797078 , 0, 12, 1000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:41:23, 128762868 , 0, 12, 1000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:41:45, 130287767 , 0, 12, 1000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:42:00, 118142270 , 0, 12, 1000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:42:19, 132375448 , 0, 12, 1000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:42:41, 121796065 , 0, 12, 1000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:43:06, 131816866 , 0, 12, 1000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:43:33, 124388638 , 0, 12, 1000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:44:16, 119879083 , 0, 12, 1000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:44:54, 126820637 , 0, 12, 1000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:45:46, 125670568 , 0, 12, 1000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:46:25, 126079592 , 0, 12, 1000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:47:04, 129494422 , 0, 12, 1000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:47:32, 135662481 , 0, 12, 1000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:49:00, 135803779 , 0, 12, 1000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:49:44, 120283538 , 0, 12, 1000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:50:30, 124044929 , 0, 12, 1000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:51:01, 133819282 , 0, 12, 1000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 19:51:31, 123270511 , 0, 12, 1000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:52:00, 132271890 , 0, 12, 1000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 19:52:49, 112345504 , 0, 12, 1000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:53:30, 95096380 , 0, 12, 1000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 19:54:11, 125153011 , 0, 12, 1000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:54:52, 128530574 , 0, 12, 1000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 19:55:17, 115449684 , 0, 12, 1000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:56:06, 121521285 , 0, 12, 1000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 19:57:16, 120388893 , 0, 12, 1000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:58:23, 116124155 , 0, 12, 1000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 19:59:46, 115000743 , 0, 12, 1000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:00:40, 117652092 , 0, 12, 1000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:01:32, 105692976 , 0, 12, 1000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:02:51, 127742522 , 0, 12, 1000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:04:22, 134656714 , 0, 12, 1000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:05:37, 81822867 , 0, 12, 1000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:06:31, 113991075 , 0, 12, 1000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:07:38, 125305797 , 0, 12, 1000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:09:02, 126071588 , 0, 12, 1000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:10:42, 133478763 , 0, 12, 1000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:12:28, 118825663 , 0, 12, 1000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:13:29, 128142028 , 0, 12, 1000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:15:49, 135425951 , 0, 12, 1000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:16:45, 71978384 , 0, 12, 1000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:17:09, 91143395 , 0, 12, 1000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:17:35, 129306447 , 0, 12, 1000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:18:04, 135625351 , 0, 12, 1000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:19:18, 132013323 , 0, 12, 1000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:20:25, 121719784 , 0, 12, 1000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:21:36, 126033995 , 0, 12, 1000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:23:25, 116121707 , 0, 12, 1000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:25:04, 133217918 , 0, 12, 1000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:26:29, 134804866 , 0, 12, 1000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:28:22, 130870456 , 0, 12, 1000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:29:29, 130394525 , 0, 12, 1000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:30:40, 119321216 , 0, 12, 1000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:31:11, 91437211 , 0, 12, 1000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:31:18, 94626425 , 0, 12, 1000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:31:36, 119705649 , 0, 12, 1000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:31:53, 128989184 , 0, 12, 1000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:32:13, 129246400 , 0, 12, 1000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:32:27, 110646730 , 0, 12, 1000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:32:46, 125945588 , 0, 12, 1000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:33:03, 129250231 , 0, 12, 1000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:33:22, 122509594 , 0, 12, 1000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:33:33, 128452431 , 0, 12, 1000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:34:09, 128451047 , 0, 12, 1000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:34:22, 128782554 , 0, 12, 1000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:34:39, 131080670 , 0, 12, 1000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:35:00, 124963129 , 0, 12, 1000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:35:24, 129422410 , 0, 12, 1000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:35:38, 126305268 , 0, 12, 1000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:36:29, 128363827 , 0, 12, 1000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:36:44, 128235612 , 0, 12, 1000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:37:00, 130274172 , 0, 12, 1000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:37:11, 127001229 , 0, 12, 1000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:37:29, 129867147 , 0, 12, 1000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:37:41, 126523975 , 0, 12, 1000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:38:18, 74096538 , 0, 12, 1000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:38:22, 88621020 , 0, 12, 1000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:38:34, 120043060 , 0, 12, 1000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:38:45, 129680740 , 0, 12, 1000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:39:01, 130161431 , 0, 12, 1000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:39:14, 128425808 , 0, 12, 1000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:39:34, 128328413 , 0, 12, 1000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:39:44, 113646023 , 0, 12, 1000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:40:43, 129135017 , 0, 12, 1000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:41:11, 125613013 , 0, 12, 1000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:41:44, 122851905 , 0, 12, 1000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:42:07, 129093487 , 0, 12, 1000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:42:26, 121448979 , 0, 12, 1000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:43:00, 108957491 , 0, 12, 1000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:43:30, 114147826 , 0, 12, 1000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:43:58, 118744439 , 0, 12, 1000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:44:45, 122696492 , 0, 12, 1000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:45:22, 123237392 , 0, 12, 1000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:46:05, 125572552 , 0, 12, 1000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:46:45, 128354905 , 0, 12, 1000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:47:37, 119027556 , 0, 12, 1000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:48:07, 123331996 , 0, 12, 1000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:48:53, 117859487 , 0, 12, 1000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:49:29, 109943105 , 0, 12, 1000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:50:12, 135464926 , 0, 12, 1000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:50:37, 126266273 , 0, 12, 1000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:50:58, 129790497 , 0, 12, 1000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:51:13, 104113693 , 0, 12, 1000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 20:51:57, 108367965 , 0, 12, 1000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:52:42, 114846113 , 0, 12, 1000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 20:53:33, 117756588 , 0, 12, 1000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:54:24, 113006347 , 0, 12, 1000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 20:55:23, 131747375 , 0, 12, 1000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:56:25, 127984226 , 0, 12, 1000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 20:57:31, 132083400 , 0, 12, 1000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:58:39, 128017597 , 0, 12, 1000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 20:59:24, 131016033 , 0, 12, 1000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 20:59:48, 127240763 , 0, 12, 1000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:00:40, 129831746 , 0, 12, 1000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:02:37, 125752148 , 0, 12, 1000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:03:50, 123760086 , 0, 12, 1000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:05:02, 132401250 , 0, 12, 1000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:06:27, 126013807 , 0, 12, 1000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:07:52, 117962056 , 0, 12, 1000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:10:13, 122565164 , 0, 12, 1000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:11:21, 118921214 , 0, 12, 1000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:12:33, 121811511 , 0, 12, 1000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:13:41, 122135278 , 0, 12, 1000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:14:23, 97196046 , 0, 12, 1000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:14:36, 105292983 , 0, 12, 1000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:14:57, 127478539 , 0, 12, 1000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:15:42, 120139698 , 0, 12, 1000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:17:40, 123651689 , 0, 12, 1000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:19:37, 105438819 , 0, 12, 1000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:21:06, 124415570 , 0, 12, 1000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:23:11, 109418332 , 0, 12, 1000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:24:39, 141673080 , 0, 12, 10000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:27:44, 107989474 , 0, 12, 10000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:28:35, 117480194 , 0, 12, 10000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:28:55, 129071958 , 0, 12, 10000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:29:11, 116659216 , 0, 12, 10000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:29:27, 110208334 , 0, 12, 10000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:29:46, 125088274 , 0, 12, 10000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:30:00, 127939255 , 0, 12, 10000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:30:39, 129965979 , 0, 12, 10000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:31:12, 129511434 , 0, 12, 10000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:31:45, 129585431 , 0, 12, 10000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:32:04, 129633050 , 0, 12, 10000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:32:28, 129257884 , 0, 12, 10000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:32:46, 130022540 , 0, 12, 10000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:33:25, 134549566 , 0, 12, 10000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:34:10, 124683148 , 0, 12, 10000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:34:40, 129798989 , 0, 12, 10000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:35:01, 129424175 , 0, 12, 10000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:35:19, 129458001 , 0, 12, 10000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:35:30, 95891114 , 0, 12, 10000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:35:47, 90144788 , 0, 12, 10000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:35:51, 91817479 , 0, 12, 10000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:36:00, 88372071 , 0, 12, 10000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:36:04, 86655792 , 0, 12, 10000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:36:14, 85993714 , 0, 12, 10000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:36:18, 82357635 , 0, 12, 10000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:36:28, 129950726 , 0, 12, 10000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:36:34, 129900892 , 0, 12, 10000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:36:47, 108228685 , 0, 12, 10000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:36:57, 125680833 , 0, 12, 10000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:37:09, 111785217 , 0, 12, 10000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:37:16, 115499091 , 0, 12, 10000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:37:27, 130274222 , 0, 12, 10000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:37:35, 124997652 , 0, 12, 10000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:37:52, 124914212 , 0, 12, 10000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:38:00, 123927149 , 0, 12, 10000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:38:15, 126975591 , 0, 12, 10000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:38:26, 127045682 , 0, 12, 10000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:38:44, 126782985 , 0, 12, 10000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:38:56, 125969300 , 0, 12, 10000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:39:19, 123304472 , 0, 12, 10000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:39:25, 130714745 , 0, 12, 10000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:39:57, 129825045 , 0, 12, 10000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:40:10, 124427454 , 0, 12, 10000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:40:28, 125731635 , 0, 12, 10000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:40:43, 124069054 , 0, 12, 10000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:41:00, 129236182 , 0, 12, 10000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:41:21, 130126401 , 0, 12, 10000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:41:50, 127546070 , 0, 12, 10000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:42:16, 126609492 , 0, 12, 10000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:42:50, 122718976 , 0, 12, 10000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:43:10, 120168359 , 0, 12, 10000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:43:34, 121470358 , 0, 12, 10000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:43:52, 119623634 , 0, 12, 10000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:44:12, 118609536 , 0, 12, 10000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:44:25, 101531987 , 0, 12, 10000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:44:43, 87708688 , 0, 12, 10000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:44:53, 82512906 , 0, 12, 10000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:45:06, 66780106 , 0, 12, 10000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:45:11, 51121681 , 0, 12, 10000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:45:21, 52531585 , 0, 12, 10000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:45:26, 53667682 , 0, 12, 10000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:45:36, 77876842 , 0, 12, 10000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:45:41, 93089884 , 0, 12, 10000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:45:53, 129586706 , 0, 12, 10000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:46:01, 130056336 , 0, 12, 10000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:46:13, 130037801 , 0, 12, 10000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:46:20, 129332729 , 0, 12, 10000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:46:32, 130283574 , 0, 12, 10000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:46:40, 130130271 , 0, 12, 10000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:46:52, 130187601 , 0, 12, 10000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:47:00, 129776400 , 0, 12, 10000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:47:14, 99487882 , 0, 12, 10000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:47:28, 102778351 , 0, 12, 10000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:47:40, 109387372 , 0, 12, 10000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:47:52, 115302946 , 0, 12, 10000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:48:07, 109160388 , 0, 12, 10000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:48:17, 119075201 , 0, 12, 10000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:48:30, 125636292 , 0, 12, 10000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:48:43, 99738309 , 0, 12, 10000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:49:00, 105586879 , 0, 12, 10000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:49:13, 112478589 , 0, 12, 10000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:49:31, 121649480 , 0, 12, 10000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:49:47, 128163429 , 0, 12, 10000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:50:08, 126435744 , 0, 12, 10000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:50:24, 140896851 , 0, 12, 10000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:51:00, 123685714 , 0, 12, 10000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:51:14, 143798760 , 0, 12, 10000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:51:37, 116615074 , 0, 12, 10000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:51:49, 120273921 , 0, 12, 10000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:52:08, 127807713 , 0, 12, 10000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:52:21, 114173335 , 0, 12, 10000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:52:46, 122789078 , 0, 12, 10000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:53:02, 125541103 , 0, 12, 10000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:53:18, 118434088 , 0, 12, 10000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:53:34, 121276877 , 0, 12, 10000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:53:53, 120337845 , 0, 12, 10000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:54:07, 125302421 , 0, 12, 10000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:54:28, 116516735 , 0, 12, 10000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:54:40, 117294097 , 0, 12, 10000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:54:58, 103032411 , 0, 12, 10000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:55:10, 106748069 , 0, 12, 10000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:55:26, 112688932 , 0, 12, 10000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:55:40, 117392016 , 0, 12, 10000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:55:59, 123011104 , 0, 12, 10000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:56:15, 114766476 , 0, 12, 10000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:56:35, 120783340 , 0, 12, 10000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:56:52, 126802165 , 0, 12, 10000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 21:57:14, 125351894 , 0, 12, 10000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:57:30, 129981656 , 0, 12, 10000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 21:57:54, 138907302 , 0, 12, 10000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:58:10, 137863426 , 0, 12, 10000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 21:58:28, 123967312 , 0, 12, 10000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:58:41, 104013515 , 0, 12, 10000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 21:58:57, 112558526 , 0, 12, 10000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:59:10, 118098174 , 0, 12, 10000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 21:59:30, 126371848 , 0, 12, 10000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 21:59:48, 131997218 , 0, 12, 10000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:00:14, 130427591 , 0, 12, 10000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:00:30, 121161200 , 0, 12, 10000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:00:52, 129543002 , 0, 12, 10000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:01:10, 124077150 , 0, 12, 10000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:01:49, 122317125 , 0, 12, 10000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:02:03, 111994362 , 0, 12, 10000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:02:21, 130961188 , 0, 12, 10000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:02:31, 107026827 , 0, 12, 10000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:02:47, 115087460 , 0, 12, 10000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:03:00, 121606563 , 0, 12, 10000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:03:21, 129580780 , 0, 12, 10000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:03:36, 127009370 , 0, 12, 10000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:03:57, 130991632 , 0, 12, 10000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:04:16, 125837142 , 0, 12, 10000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:04:37, 126467063 , 0, 12, 10000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:04:57, 130424013 , 0, 12, 10000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:05:16, 130107242 , 0, 12, 10000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:05:27, 127750802 , 0, 12, 10000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:05:46, 128169973 , 0, 12, 10000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:05:59, 109268830 , 0, 12, 10000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:06:17, 117736045 , 0, 12, 10000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:06:33, 123542438 , 0, 12, 10000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:06:54, 132436148 , 0, 12, 10000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:07:09, 130572049 , 0, 12, 10000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:07:32, 124766015 , 0, 12, 10000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:07:49, 130283496 , 0, 12, 10000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:08:16, 126085219 , 0, 12, 10000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:08:32, 124173070 , 0, 12, 10000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:09:01, 124168677 , 0, 12, 10000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:09:15, 129327851 , 0, 12, 10000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:09:32, 132112472 , 0, 12, 10000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:09:48, 109858537 , 0, 12, 10000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:10:09, 119608261 , 0, 12, 10000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:10:27, 126358355 , 0, 12, 10000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:10:50, 124330732 , 0, 12, 10000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:11:09, 113170538 , 0, 12, 10000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:11:32, 121922936 , 0, 12, 10000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:11:53, 128421832 , 0, 12, 10000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:12:25, 128307458 , 0, 12, 10000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:12:48, 123220248 , 0, 12, 10000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:13:17, 126174702 , 0, 12, 10000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:13:30, 117407959 , 0, 12, 10000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:13:48, 129808204 , 0, 12, 10000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:14:04, 114701247 , 0, 12, 10000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:14:28, 125325915 , 0, 12, 10000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:14:48, 121181396 , 0, 12, 10000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:15:12, 120617592 , 0, 12, 10000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:15:35, 125957071 , 0, 12, 10000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:16:01, 118382828 , 0, 12, 10000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:16:23, 125030582 , 0, 12, 10000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:16:47, 121211054 , 0, 12, 10000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:17:09, 127885143 , 0, 12, 10000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:17:42, 122303421 , 0, 12, 10000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:17:59, 130073927 , 0, 12, 10000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:18:23, 127350819 , 0, 12, 10000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:18:41, 125717667 , 0, 12, 10000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:19:09, 120765830 , 0, 12, 10000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:19:26, 127308372 , 0, 12, 10000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:19:46, 114251673 , 0, 12, 10000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:20:03, 120266370 , 0, 12, 10000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:20:25, 118003639 , 0, 12, 10000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:20:43, 124476450 , 0, 12, 10000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:21:08, 122643029 , 0, 12, 10000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:21:32, 120786018 , 0, 12, 10000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:21:53, 126104366 , 0, 12, 10000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:22:09, 129515802 , 0, 12, 10000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:22:25, 126996132 , 0, 12, 10000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:22:39, 126497004 , 0, 12, 10000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:22:58, 122752835 , 0, 12, 10000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:23:10, 124598667 , 0, 12, 10000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:23:31, 116574312 , 0, 12, 10000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:23:48, 121780567 , 0, 12, 10000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:24:09, 110392129 , 0, 12, 10000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:24:24, 114495941 , 0, 12, 10000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:24:42, 128387842 , 0, 12, 10000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:24:59, 118978925 , 0, 12, 10000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:25:22, 129818406 , 0, 12, 10000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:25:34, 128876312 , 0, 12, 10000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:25:53, 135943667 , 0, 12, 10000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:26:05, 126054836 , 0, 12, 10000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:26:23, 130171746 , 0, 12, 10000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:26:40, 122287654 , 0, 12, 10000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:26:59, 131084149 , 0, 12, 10000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:27:17, 120091290 , 0, 12, 10000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:27:39, 121422073 , 0, 12, 10000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:27:58, 129826799 , 0, 12, 10000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:28:24, 93232332 , 0, 12, 10000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:28:36, 100390506 , 0, 12, 10000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:28:58, 131087298 , 0, 12, 10000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:29:19, 129061563 , 0, 12, 10000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:29:39, 130042883 , 0, 12, 10000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:29:46, 133384975 , 0, 12, 10000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:30:00, 129353922 , 0, 12, 10000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:30:07, 121245127 , 0, 12, 10000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:30:29, 105169076 , 0, 12, 10000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:30:45, 118222249 , 0, 12, 10000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:31:09, 113698105 , 0, 12, 10000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:31:22, 123966878 , 0, 12, 10000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:31:47, 126948253 , 0, 12, 10000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:32:10, 127403333 , 0, 12, 10000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:32:39, 136861256 , 0, 12, 10000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:33:00, 106322319 , 0, 12, 10000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:33:30, 133473324 , 0, 12, 10000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:33:40, 102699007 , 0, 12, 10000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:34:05, 114799534 , 0, 12, 10000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:34:27, 125620965 , 0, 12, 10000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:34:58, 114655311 , 0, 12, 10000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:35:22, 124133239 , 0, 12, 10000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:35:54, 126602156 , 0, 12, 10000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:36:31, 127935275 , 0, 12, 10000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:37:05, 125769479 , 0, 12, 10000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:37:34, 128162829 , 0, 12, 10000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:38:06, 133336047 , 0, 12, 10000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:38:19, 122722622 , 0, 12, 10000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:38:44, 127986848 , 0, 12, 10000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:39:06, 98808480 , 0, 12, 10000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:39:37, 111388040 , 0, 12, 10000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:40:04, 121098727 , 0, 12, 10000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:40:38, 126401324 , 0, 12, 10000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:41:07, 127917049 , 0, 12, 10000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:41:52, 133075164 , 0, 12, 10000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:42:28, 123148460 , 0, 12, 10000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:43:01, 133338862 , 0, 12, 10000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:43:32, 130743656 , 0, 12, 10000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:44:08, 120387568 , 0, 12, 10000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:44:32, 110044680 , 0, 12, 10000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:45:05, 106072909 , 0, 12, 10000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:45:30, 114878924 , 0, 12, 10000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:46:00, 127765273 , 0, 12, 10000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:46:31, 128296673 , 0, 12, 10000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:47:10, 132067081 , 0, 12, 10000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:47:46, 129639081 , 0, 12, 10000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:48:21, 124746419 , 0, 12, 10000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:48:52, 131234891 , 0, 12, 10000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:49:28, 131891854 , 0, 12, 10000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:49:54, 126256035 , 0, 12, 10000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:50:28, 114293069 , 0, 12, 10000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:50:51, 129480931 , 0, 12, 10000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:51:24, 130895497 , 0, 12, 10000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:51:51, 123504519 , 0, 12, 10000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:52:24, 120555423 , 0, 12, 10000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:52:48, 127223738 , 0, 12, 10000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:53:21, 131065736 , 0, 12, 10000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:53:46, 118765654 , 0, 12, 10000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:54:09, 128255295 , 0, 12, 10000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:54:30, 130374868 , 0, 12, 10000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:54:54, 125734720 , 0, 12, 10000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:55:13, 131165159 , 0, 12, 10000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:55:38, 116985074 , 0, 12, 10000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:55:54, 107866511 , 0, 12, 10000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:56:14, 124397757 , 0, 12, 10000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:56:31, 123525767 , 0, 12, 10000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 22:56:50, 122410074 , 0, 12, 10000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:57:09, 117853635 , 0, 12, 10000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 22:57:32, 128675616 , 0, 12, 10000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:57:53, 126218961 , 0, 12, 10000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 22:58:18, 122709063 , 0, 12, 10000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:58:36, 125312709 , 0, 12, 10000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 22:58:59, 125329554 , 0, 12, 10000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:59:16, 131294318 , 0, 12, 10000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 22:59:41, 129112249 , 0, 12, 10000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 22:59:57, 129030570 , 0, 12, 10000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:00:18, 130173744 , 0, 12, 10000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:00:25, 130111189 , 0, 12, 10000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:00:40, 130018495 , 0, 12, 10000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:00:48, 134516511 , 0, 12, 10000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:01:11, 130355492 , 0, 12, 10000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:01:32, 130002144 , 0, 12, 10000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:01:57, 122674719 , 0, 12, 10000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:02:15, 97780277 , 0, 12, 10000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:02:38, 108976272 , 0, 12, 10000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:02:56, 116372373 , 0, 12, 10000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:03:45, 113470715 , 0, 12, 10000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:03:56, 120975613 , 0, 12, 10000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:04:13, 130074809 , 0, 12, 10000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:04:22, 134700308 , 0, 12, 10000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:04:42, 133298871 , 0, 12, 10000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:05:01, 125740673 , 0, 12, 10000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:05:22, 123787075 , 0, 12, 10000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:05:50, 128713558 , 0, 12, 10000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:06:23, 91376825 , 0, 12, 10000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:06:45, 102834294 , 0, 12, 10000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:07:14, 123680159 , 0, 12, 10000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:07:42, 126874521 , 0, 12, 10000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:08:20, 134827714 , 0, 12, 10000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:08:35, 125756850 , 0, 12, 10000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:09:16, 129099595 , 0, 12, 10000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:09:25, 128391415 , 0, 12, 10000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:09:50, 127150630 , 0, 12, 10000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:10:25, 124702330 , 0, 12, 10000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:11:02, 129490892 , 0, 12, 10000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:11:47, 101960108 , 0, 12, 10000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:12:25, 121395295 , 0, 12, 10000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:13:04, 128396970 , 0, 12, 10000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:14:02, 131678362 , 0, 12, 10000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:14:52, 129237922 , 0, 12, 10000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:15:47, 130245645 , 0, 12, 10000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:16:40, 128081978 , 0, 12, 10000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:17:12, 102682414 , 0, 12, 10000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:17:48, 120302496 , 0, 12, 10000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:18:25, 124406986 , 0, 12, 10000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:19:10, 131222991 , 0, 12, 10000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:19:59, 126749309 , 0, 12, 10000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:20:36, 128366167 , 0, 12, 10000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:21:23, 101660461 , 0, 12, 10000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:22:23, 111734058 , 0, 12, 10000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:23:07, 126135317 , 0, 12, 10000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:23:46, 127338287 , 0, 12, 10000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:24:40, 144757306 , 0, 12, 10000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:25:21, 134819697 , 0, 12, 10000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:25:55, 129714495 , 0, 12, 10000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:26:11, 120240425 , 0, 12, 10000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:26:47, 125917114 , 0, 12, 10000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:27:43, 132277461 , 0, 12, 10000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:28:51, 127129676 , 0, 12, 10000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:29:29, 126104307 , 0, 12, 10000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:30:17, 133826293 , 0, 12, 10000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:31:01, 106902096 , 0, 12, 10000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:31:40, 120025553 , 0, 12, 10000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:32:16, 135079777 , 0, 12, 10000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:32:57, 127422325 , 0, 12, 10000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:33:40, 131157382 , 0, 12, 10000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:34:25, 126275953 , 0, 12, 10000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:35:03, 129174793 , 0, 12, 10000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:35:51, 132189348 , 0, 12, 10000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:36:24, 132313266 , 0, 12, 10000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:36:55, 115910275 , 0, 12, 10000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:37:16, 125479693 , 0, 12, 10000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:37:41, 129650509 , 0, 12, 10000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:38:02, 126504349 , 0, 12, 10000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:38:23, 99988290 , 0, 12, 10000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:38:37, 106137267 , 0, 12, 10000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:39:00, 120152604 , 0, 12, 10000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:39:18, 126919369 , 0, 12, 10000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:39:43, 120518879 , 0, 12, 10000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:40:01, 122464793 , 0, 12, 10000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:40:25, 127074479 , 0, 12, 10000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:40:45, 126589526 , 0, 12, 10000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:41:09, 125877592 , 0, 12, 10000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:41:27, 130335232 , 0, 12, 10000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:42:22, 128728637 , 0, 12, 10000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:42:39, 121066029 , 0, 12, 10000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:43:07, 124567488 , 0, 12, 10000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:43:26, 122456536 , 0, 12, 10000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:43:55, 128082039 , 0, 12, 10000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:44:08, 127576270 , 0, 12, 10000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:44:25, 130947326 , 0, 12, 10000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:44:32, 100138862 , 0, 12, 10000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:44:43, 122753518 , 0, 12, 10000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:44:50, 130428429 , 0, 12, 10000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:45:05, 130134200 , 0, 12, 10000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:45:16, 128496130 , 0, 12, 10000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:45:32, 125815384 , 0, 12, 10000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:45:43, 119753672 , 0, 12, 10000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:46:00, 132273360 , 0, 12, 10000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:46:16, 128856222 , 0, 12, 10000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:46:38, 130119543 , 0, 12, 10000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:46:51, 129592045 , 0, 12, 10000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:47:07, 133252234 , 0, 12, 10000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:47:20, 133116151 , 0, 12, 10000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:47:45, 130022401 , 0, 12, 10000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:47:51, 141803454 , 0, 12, 10000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:48:18, 134480383 , 0, 12, 10000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:48:40, 97341881 , 0, 12, 10000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:48:58, 111965026 , 0, 12, 10000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:49:21, 129096902 , 0, 12, 10000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:49:55, 131778506 , 0, 12, 10000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:50:32, 127327772 , 0, 12, 10000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-22, 23:51:14, 133995966 , 0, 12, 10000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:51:28, 124519247 , 0, 12, 10000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-22, 23:52:21, 135405341 , 0, 12, 10000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:52:51, 130597020 , 0, 12, 10000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-22, 23:53:15, 97400287 , 0, 12, 10000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:53:32, 103141073 , 0, 12, 10000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-22, 23:54:15, 129633783 , 0, 12, 10000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:55:18, 122072263 , 0, 12, 10000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-22, 23:56:26, 125194382 , 0, 12, 10000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:57:36, 135064403 , 0, 12, 10000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-22, 23:59:39, 125577447 , 0, 12, 10000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:00:30, 133591187 , 0, 12, 10000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:01:41, 146313901 , 0, 12, 10000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:02:31, 111684207 , 0, 12, 10000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:03:52, 92869456 , 0, 12, 10000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:04:28, 106558768 , 0, 12, 10000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:05:05, 129338039 , 0, 12, 10000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:06:18, 93010228 , 0, 12, 10000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:07:17, 111504598 , 0, 12, 10000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:08:16, 125090877 , 0, 12, 10000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:09:30, 129703148 , 0, 12, 10000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:10:44, 125291439 , 0, 12, 10000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:11:56, 100596830 , 0, 12, 10000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:12:36, 133159868 , 0, 12, 10000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:13:15, 146164170 , 0, 12, 10000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:14:08, 140258327 , 0, 12, 10000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:15:00, 131939955 , 0, 12, 10000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:15:55, 128681787 , 0, 12, 10000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:16:49, 108742274 , 0, 12, 10000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:17:36, 90956072 , 0, 12, 10000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:18:34, 113512243 , 0, 12, 10000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:19:37, 128275222 , 0, 12, 10000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:21:24, 132455509 , 0, 12, 10000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:23:09, 132365533 , 0, 12, 10000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:24:35, 116712947 , 0, 12, 10000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:25:12, 131665219 , 0, 12, 10000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:25:40, 137378082 , 0, 12, 10000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:26:32, 137846642 , 0, 12, 10000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:27:37, 135300643 , 0, 12, 10000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:28:24, 129822087 , 0, 12, 10000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:29:19, 130268882 , 0, 12, 10000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:30:02, 81895671 , 0, 12, 10000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:30:42, 89927777 , 0, 12, 10000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:31:07, 98023569 , 0, 12, 10000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:31:39, 109867539 , 0, 12, 10000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:32:02, 127981533 , 0, 12, 10000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:32:26, 125414529 , 0, 12, 10000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:32:43, 132240374 , 0, 12, 10000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:33:05, 128787826 , 0, 12, 10000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:33:13, 130074241 , 0, 12, 10000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:33:27, 128295665 , 0, 12, 10000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:33:34, 126126934 , 0, 12, 10000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:33:47, 126534435 , 0, 12, 10000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:33:54, 128430045 , 0, 12, 10000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:34:09, 128964524 , 0, 12, 10000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:34:17, 124528416 , 0, 12, 10000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:34:28, 123151379 , 0, 12, 10000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:34:41, 130426165 , 0, 12, 10000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:34:57, 129058026 , 0, 12, 10000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:35:06, 122268092 , 0, 12, 10000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:35:20, 132640304 , 0, 12, 10000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:35:27, 127049649 , 0, 12, 10000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:35:59, 129744556 , 0, 12, 10000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:36:09, 125080738 , 0, 12, 10000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:36:22, 90102719 , 0, 12, 10000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:36:28, 99867838 , 0, 12, 10000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:36:39, 128979309 , 0, 12, 10000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:36:48, 129029180 , 0, 12, 10000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:37:03, 129486372 , 0, 12, 10000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:37:11, 130043989 , 0, 12, 10000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:37:28, 130261007 , 0, 12, 10000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:37:37, 130732905 , 0, 12, 10000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:37:54, 130538306 , 0, 12, 10000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:38:06, 125913046 , 0, 12, 10000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:38:37, 127625062 , 0, 12, 10000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:38:48, 129759273 , 0, 12, 10000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:39:04, 127223308 , 0, 12, 10000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:39:14, 136783872 , 0, 12, 10000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:39:38, 128905859 , 0, 12, 10000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:40:02, 124807199 , 0, 12, 10000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:40:39, 128805583 , 0, 12, 10000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:40:54, 132302081 , 0, 12, 10000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:41:23, 130580148 , 0, 12, 10000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:41:51, 129406301 , 0, 12, 10000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:42:17, 131265917 , 0, 12, 10000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:42:33, 131111200 , 0, 12, 10000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:43:08, 124254384 , 0, 12, 10000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:43:21, 128587882 , 0, 12, 10000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:43:47, 124834858 , 0, 12, 10000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:44:02, 131863415 , 0, 12, 10000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:44:30, 109903183 , 0, 12, 10000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:45:11, 129406041 , 0, 12, 10000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:46:22, 124271616 , 0, 12, 10000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:47:52, 108779748 , 0, 12, 10000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 00:49:17, 110050137 , 0, 12, 10000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:50:02, 130790921 , 0, 12, 10000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 00:51:24, 126120656 , 0, 12, 10000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:52:11, 111124846 , 0, 12, 10000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 00:53:39, 115816791 , 0, 12, 10000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:54:30, 110314012 , 0, 12, 10000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 00:55:15, 125437496 , 0, 12, 10000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:56:43, 125320384 , 0, 12, 10000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 00:58:34, 118325639 , 0, 12, 10000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 00:59:31, 131163332 , 0, 12, 10000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:00:49, 107668356 , 0, 12, 10000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:01:37, 129532724 , 0, 12, 10000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:02:21, 131351808 , 0, 12, 10000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:03:35, 136554838 , 0, 12, 10000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:04:55, 132977138 , 0, 12, 10000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:05:24, 123037983 , 0, 12, 10000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:07:27, 118302978 , 0, 12, 10000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:08:28, 104372120 , 0, 12, 10000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:09:26, 124426799 , 0, 12, 10000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:10:47, 129408449 , 0, 12, 10000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:12:40, 100577632 , 0, 12, 10000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:13:36, 129128083 , 0, 12, 10000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:14:34, 135661291 , 0, 12, 10000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:15:47, 137626459 , 0, 12, 10000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:16:55, 145237790 , 0, 12, 10000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:18:56, 134461287 , 0, 12, 10000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:19:47, 138719876 , 0, 12, 10000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:20:58, 91873463 , 0, 12, 10000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:22:15, 104778246 , 0, 12, 10000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:22:56, 128669190 , 0, 12, 10000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:23:29, 128070657 , 0, 12, 10000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:24:15, 132450358 , 0, 12, 10000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:25:17, 128490105 , 0, 12, 10000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:25:27, 127697892 , 0, 12, 10000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:26:03, 128799861 , 0, 12, 10000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:26:15, 128065470 , 0, 12, 10000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:26:33, 128595574 , 0, 12, 10000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:26:42, 129214782 , 0, 12, 10000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:26:58, 124381143 , 0, 12, 10000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:27:06, 116162499 , 0, 12, 10000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:27:59, 127537705 , 0, 12, 10000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:28:08, 120528793 , 0, 12, 10000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:28:20, 124548750 , 0, 12, 10000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:28:25, 123690529 , 0, 12, 10000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:28:40, 125276182 , 0, 12, 10000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:28:50, 124733652 , 0, 12, 10000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:29:07, 128673698 , 0, 12, 10000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:29:14, 122522173 , 0, 12, 10000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:29:29, 120546584 , 0, 12, 10000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:29:41, 118561502 , 0, 12, 10000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:29:52, 121214115 , 0, 12, 10000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:29:59, 123037209 , 0, 12, 10000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:30:17, 130104619 , 0, 12, 10000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:30:27, 128475389 , 0, 12, 10000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:30:42, 128282802 , 0, 12, 10000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:31:13, 60579754 , 0, 12, 10000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:31:22, 84639002 , 0, 12, 10000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:31:29, 95830349 , 0, 12, 10000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:31:41, 73472127 , 0, 12, 10000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:31:47, 68189398 , 0, 12, 10000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:31:59, 77289140 , 0, 12, 10000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:32:05, 73574914 , 0, 12, 10000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:32:19, 105642129 , 0, 12, 10000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:32:28, 119619555 , 0, 12, 10000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:32:44, 131973926 , 0, 12, 10000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:33:02, 129866672 , 0, 12, 10000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:33:23, 128591119 , 0, 12, 10000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:33:34, 133114329 , 0, 12, 10000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:33:54, 130465441 , 0, 12, 10000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:34:20, 110210091 , 0, 12, 10000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:34:46, 125761371 , 0, 12, 10000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:35:09, 126080768 , 0, 12, 10000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:35:40, 130159585 , 0, 12, 10000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:36:06, 134110964 , 0, 12, 10000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:36:37, 129846808 , 0, 12, 10000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:36:56, 139223791 , 0, 12, 10000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:37:44, 128559597 , 0, 12, 10000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:37:58, 136832065 , 0, 12, 10000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:38:37, 129598904 , 0, 12, 10000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:38:54, 90644969 , 0, 12, 10000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:40:15, 126005891 , 0, 12, 10000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:41:02, 132406192 , 0, 12, 10000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:41:56, 129215013 , 0, 12, 10000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:42:39, 134799114 , 0, 12, 10000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:43:31, 125161401 , 0, 12, 10000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:44:01, 134157400 , 0, 12, 10000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:45:09, 139064607 , 0, 12, 10000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:45:47, 132695553 , 0, 12, 10000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:46:43, 136626058 , 0, 12, 10000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:47:38, 114541911 , 0, 12, 10000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 01:48:37, 118799694 , 0, 12, 10000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:49:06, 131506445 , 0, 12, 10000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 01:49:56, 113114748 , 0, 12, 10000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:50:44, 133350967 , 0, 12, 10000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 01:52:05, 130674237 , 0, 12, 10000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:53:13, 135440115 , 0, 12, 10000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 01:54:44, 131742002 , 0, 12, 10000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:56:01, 130483003 , 0, 12, 10000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 01:57:31, 127070502 , 0, 12, 10000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 01:58:35, 112600187 , 0, 12, 10000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 02:00:23, 99300793 , 0, 12, 10000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:01:11, 128030085 , 0, 12, 10000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:01:49, 112307901 , 0, 12, 10000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:02:13, 128866797 , 0, 12, 10000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:02:38, 127192028 , 0, 12, 10000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 02:04:17, 125649448 , 0, 12, 10000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 02:05:48, 126006482 , 0, 12, 10000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 02:07:21, 119637312 , 0, 12, 10000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 02:10:37, 122928799 , 0, 13, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 02:13:04, 147025209 , 0, 13, 1000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 02:16:14, 94580198 , 0, 13, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 02:17:18, 109051918 , 0, 13, 1000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 02:18:40, 83928971 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:19:11, 92379909 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:19:36, 129032843 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:19:54, 128965198 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:20:04, 128950248 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:20:12, 129735901 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:20:25, 130131371 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:20:34, 128156846 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:20:54, 126972804 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:21:04, 129819406 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:21:14, 134206321 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:21:29, 124289775 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:21:40, 128114694 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:21:54, 125857402 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:22:04, 126037109 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:22:16, 126301245 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:22:27, 125384925 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:22:38, 127452754 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:23:05, 125808887 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:23:16, 125649557 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:23:27, 126636291 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:23:54, 124851128 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:24:04, 117486545 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:24:16, 122750151 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:24:29, 124847974 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:24:37, 127385429 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:24:44, 125099464 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:24:51, 117822497 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:25:02, 126403525 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:25:11, 122823992 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:25:21, 129075595 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:25:31, 125501425 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:25:38, 128943609 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:25:48, 121998627 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:25:56, 124026919 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:26:02, 127584055 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:26:10, 121932399 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:26:20, 122492185 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:26:27, 123237594 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:26:36, 123258368 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:26:45, 123278838 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:26:53, 123299639 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:01, 123331623 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:10, 124338613 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:17, 124410261 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:24, 122229005 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:31, 113329445 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:37, 93712911 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:41, 83715432 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:46, 76151821 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:50, 63836080 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:53, 45302319 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:56, 31275963 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:58, 10376000 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:27:59, 10949295 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:00, 6034141 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:02, 6034218 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:03, 6034225 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:04, 6034322 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:05, 6034391 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:06, 6034489 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:08, 6034525 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:09, 6034562 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:10, 6994398 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:11, 7008902 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:12, 7084776 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:13, 7168607 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:15, 7246301 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:16, 7321544 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:17, 7399229 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:18, 7475969 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:19, 7551832 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:21, 7633105 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:22, 7643370 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:23, 7643352 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:24, 7643362 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:25, 8635247 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:27, 8635202 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:28, 8635192 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:29, 8635233 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:30, 8635335 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:31, 8635313 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:33, 8635289 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:34, 8635368 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:35, 8635414 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:36, 8635384 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:37, 8635371 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:39, 8635447 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:40, 9403254 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:41, 9595195 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:42, 9595253 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:44, 9595293 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:45, 9595265 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:46, 9595301 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:47, 9595270 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:48, 9595285 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:50, 9595333 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:51, 9595326 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:52, 9595278 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:53, 9595332 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:55, 10235149 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:56, 10555116 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:57, 10555187 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:28:58, 10555146 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:00, 10555050 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:01, 10555150 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:02, 10555029 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:03, 10555055 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:05, 10555090 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:06, 10555125 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:07, 10555017 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:08, 10555036 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:09, 11450907 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:11, 11514912 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:12, 11514872 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:13, 11514884 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:14, 11514902 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:16, 11514857 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:17, 11514839 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:18, 11514843 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:20, 11514850 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:21, 11514942 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:22, 11514919 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:23, 11514870 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:25, 12474666 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:26, 12474653 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:27, 12474735 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:28, 12474687 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:30, 12474685 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:31, 12474663 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:32, 12474695 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:33, 12474733 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:35, 12474734 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:36, 12474692 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:37, 12474715 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:39, 12474755 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:40, 13434494 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:41, 13434494 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:42, 13434513 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:44, 13434489 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:45, 13434533 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:46, 13434542 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:48, 13434560 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:49, 13434464 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:50, 13434645 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:51, 13434637 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:53, 13434559 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:54, 13434503 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:55, 14394322 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:57, 14394338 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:58, 14394328 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:29:59, 14394354 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:00, 14394341 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:02, 14393992 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:03, 14394040 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:04, 14394003 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:06, 14393971 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:07, 14393975 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:08, 14393994 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:09, 15353758 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:11, 15353772 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:12, 15353790 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:13, 15353788 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:15, 15353783 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:16, 15353798 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:17, 15353779 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:19, 15353778 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:20, 15353816 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:21, 15353779 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:23, 15353787 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:24, 15417777 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:25, 16313663 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:27, 16313618 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:28, 16313595 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:29, 16313648 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:31, 16313668 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:32, 16313644 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:33, 16313665 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:34, 16313701 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:36, 16349807 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:37, 16349785 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:38, 16349789 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:40, 17310427 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:41, 17342413 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:42, 17342454 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:44, 17342489 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:45, 17342433 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:46, 17342500 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:48, 17342467 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:49, 17342433 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:50, 17342454 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:52, 17342468 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:53, 17342446 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:55, 17342435 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:56, 18302278 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:57, 18302251 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:30:59, 18302259 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:00, 18302272 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:01, 18302235 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:03, 18302231 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:04, 18302255 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:05, 18302288 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:07, 18302245 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:08, 18302271 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:09, 18302262 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:11, 19262082 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:12, 19262082 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:13, 19262088 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:15, 19262145 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:16, 19262118 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:18, 19262063 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:19, 19262078 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:20, 19262073 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:22, 19262067 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:23, 19262082 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:24, 19262068 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:26, 20221883 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:27, 20221919 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:29, 20221957 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:30, 20221905 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:31, 20221913 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:33, 20221870 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:34, 20221907 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:35, 20221898 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:37, 20221892 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:38, 20221910 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:40, 20221905 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:41, 21181729 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:42, 21181724 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:44, 21181735 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:45, 21181702 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:46, 21181699 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:48, 21181727 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:49, 21181752 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:51, 21181717 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:52, 21181711 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:53, 21181728 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:55, 21181686 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:56, 22141513 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:58, 22141561 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:31:59, 22141534 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:00, 22141572 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:02, 22141538 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:03, 22141570 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:04, 22141549 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:06, 22141513 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:07, 22141523 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:09, 22141538 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:10, 22141557 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:11, 23101330 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:13, 23101348 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:14, 23101350 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:16, 23101417 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:17, 23101409 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:18, 23101344 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:20, 23101335 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:21, 23101314 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:23, 23101371 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:24, 23101357 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:25, 23485288 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:27, 24061187 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:28, 24061151 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:30, 24061157 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:31, 24061154 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:32, 24061206 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:34, 24061171 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:35, 24061151 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:37, 24061126 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:38, 24061230 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:40, 24061144 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:41, 24765031 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:42, 25020978 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:44, 25020969 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:45, 25021044 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:47, 25020978 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:48, 25020959 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:49, 25021055 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:51, 25020959 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:52, 25021051 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:54, 25021013 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:55, 25020969 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:57, 26012845 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:58, 26012805 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:32:59, 26012775 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:01, 26012798 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:02, 26012796 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:04, 26012813 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:05, 26012817 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:07, 26012804 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:08, 26012787 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:09, 26012867 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:11, 26012768 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:12, 26972652 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:14, 26972581 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:15, 26972610 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:17, 26972588 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:18, 26972605 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:19, 26972613 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:21, 26972637 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:22, 26972609 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:24, 26972592 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:25, 26972637 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:27, 27932403 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:28, 27932480 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:30, 27932424 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:31, 27932438 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:32, 27932451 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:34, 27932425 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:35, 27932426 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:37, 27932424 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:38, 27932451 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:40, 27932436 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:41, 28316386 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:43, 28860264 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:44, 28860286 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:45, 28860248 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:47, 28860252 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:48, 28860261 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:50, 28860246 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:51, 28860288 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:53, 28860185 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:54, 28860293 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:56, 28860256 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:57, 29820079 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:33:59, 29820080 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:00, 29820085 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:01, 29820095 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:03, 29820107 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:04, 29820086 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:06, 29820092 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:07, 29820080 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:09, 29820073 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:10, 29820059 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:12, 30779869 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:13, 30779962 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:15, 30779957 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:16, 30779885 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:18, 30779885 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:19, 30779906 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:21, 30779914 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:22, 30779890 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:24, 30779905 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:25, 30779908 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:27, 31099865 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:28, 31739716 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:29, 31739710 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:31, 31739700 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:32, 31739750 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:34, 31739763 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:35, 31739750 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:37, 31739716 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:38, 31739719 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:40, 31739730 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:41, 31739722 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:43, 32699598 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:44, 32699531 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:46, 32699590 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:47, 32699612 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:49, 32699533 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:50, 32699567 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:52, 32699564 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:53, 32699560 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:55, 32699553 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:56, 32699528 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:58, 33659350 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:34:59, 33659368 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:01, 33659371 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:02, 33659369 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:04, 33659370 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:05, 33659318 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:07, 33659358 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:08, 33659397 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:10, 33659325 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:11, 33659363 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:13, 34651146 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:14, 34651151 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:16, 34651171 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:17, 34651150 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:19, 34651123 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:20, 34651136 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:22, 34651205 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:23, 34651149 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:25, 34651151 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:26, 34651179 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:28, 35610943 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:29, 35610970 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:31, 35611009 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:32, 35611001 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:34, 35610994 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:36, 35611024 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:37, 35610960 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:39, 35610963 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:40, 35610940 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:42, 35610956 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:43, 36570874 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:45, 36570810 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:46, 36570810 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:48, 36570828 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:49, 36570840 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:51, 36570798 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:52, 36570817 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:54, 36570834 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:55, 36570797 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:57, 36570784 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:35:58, 37530626 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:00, 37530624 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:01, 37530623 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:03, 37530622 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:05, 37530628 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:06, 37530658 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:08, 37530683 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:09, 37530609 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:11, 37530648 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:12, 37530619 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:14, 38490411 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:15, 38490423 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:17, 38490453 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:18, 38490435 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:20, 38490448 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:21, 38490446 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:23, 38490433 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:25, 38490434 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:26, 38490496 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:28, 38490424 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:29, 39450267 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:31, 39450255 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:32, 39450232 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:34, 39450266 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:35, 39450224 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:37, 39450240 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:38, 39450220 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:40, 39450253 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:42, 39450263 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:43, 39450272 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:45, 40378087 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:46, 40378038 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:48, 40378085 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:49, 40378098 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:51, 40378073 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:52, 40378091 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:54, 40378106 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:56, 40378071 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:57, 40378092 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:36:59, 41017982 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:00, 41337890 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:02, 41337859 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:03, 41337921 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:05, 41337920 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:07, 41337891 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:08, 41337900 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:10, 41337889 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:11, 41337917 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:13, 41337890 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:14, 42169711 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:16, 42297673 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:18, 42297749 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:19, 42297464 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:21, 42297446 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:22, 42297580 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:24, 42297487 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:25, 42297506 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:27, 42297608 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:29, 42297559 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:30, 43289393 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:32, 43289315 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:33, 43289342 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:35, 43289303 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:37, 43289345 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:38, 43289306 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:40, 43289317 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:41, 43289341 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:43, 43289355 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:44, 43289337 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:46, 44249154 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:48, 44249160 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:49, 44249147 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:51, 44249181 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:52, 44249150 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:54, 44249143 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:56, 44249125 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:57, 44249148 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:37:59, 44249145 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:00, 45176967 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:02, 45208983 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:04, 45208966 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:05, 45208949 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:07, 45208961 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:08, 45209026 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:10, 45208972 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:12, 45208959 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:13, 45208986 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:15, 45208990 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:16, 46136766 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:18, 46136785 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:20, 46136779 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:21, 46136785 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:23, 46136796 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:24, 46136833 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:26, 46136791 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:28, 46136782 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:29, 46136830 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:31, 47096612 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:33, 47096618 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:34, 47096609 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:36, 47096615 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:37, 47096607 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:39, 47096600 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:41, 47096676 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:42, 47096669 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:44, 47096604 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:46, 47096607 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:47, 48056416 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:49, 48056427 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:50, 48056397 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:52, 48056408 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:54, 48056402 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:55, 48056433 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:57, 48056446 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:38:59, 48056402 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:00, 48056483 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:02, 49016253 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:03, 49016226 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:05, 49016413 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:07, 49016508 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:08, 49016436 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:10, 49016425 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:12, 49016474 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:13, 49016426 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:15, 49016456 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:16, 49784305 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:18, 49976267 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:20, 49976260 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:21, 49976269 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:23, 49976230 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:25, 49976261 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:26, 49976236 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:28, 49976232 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:30, 49976282 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:31, 49976238 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:33, 50936046 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:35, 50936157 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:36, 50936056 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:38, 50936056 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:39, 50936041 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:41, 50936059 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:43, 50936098 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:44, 50936049 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:46, 50936067 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:48, 51895892 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:49, 51895926 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:51, 51895918 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:53, 51895896 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:54, 51895894 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:56, 51895903 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:58, 51895964 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:39:59, 51896225 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:01, 51895873 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:03, 52727746 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:04, 52855700 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:06, 52855725 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:08, 52855711 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:09, 52855709 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:11, 52855713 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:13, 52855728 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:14, 52855714 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:16, 52855774 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:18, 52855714 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:19, 53815561 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:21, 53815535 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:23, 53815522 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:24, 53815533 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:26, 53815556 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:28, 53815528 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:29, 53815535 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:31, 53815504 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:33, 53815549 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:34, 54775369 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:36, 54775406 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:38, 54775328 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:39, 54775313 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:41, 54775329 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:43, 54775345 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:44, 54775334 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:46, 54775375 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:48, 54775322 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:49, 55735189 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:51, 55735212 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:53, 55735222 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:54, 55735214 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:56, 55735190 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:58, 55735184 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:40:59, 55735128 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:01, 55735117 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:03, 55735168 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:05, 56694989 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:06, 56695007 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:08, 56695019 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:10, 56694991 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:11, 56694942 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:13, 56694955 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:15, 56694995 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:16, 56695008 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:18, 56694982 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:20, 57654796 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:21, 57654817 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:23, 57654783 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:25, 57654770 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:27, 57654828 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:28, 57654842 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:30, 57654796 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:32, 57654795 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:33, 57654803 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:35, 58614645 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:37, 58614614 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:39, 58614606 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:40, 58614593 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:42, 58614623 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:44, 58614651 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:45, 58614633 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:47, 58614584 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:49, 58614575 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:51, 59574428 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:52, 59574426 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:54, 59574435 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:56, 59574441 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:57, 59574414 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:41:59, 59574459 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:01, 59574418 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:03, 59574437 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:04, 59574445 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:06, 60534246 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:08, 60534278 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:09, 60534278 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:11, 60534302 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:13, 60534285 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:15, 60534256 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:16, 60534257 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:18, 60534322 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:20, 60534250 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:22, 61494070 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:23, 61494064 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:25, 61494045 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:27, 61494086 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:29, 61494104 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:30, 61494141 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:32, 61494131 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:34, 61494050 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:35, 61494057 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:37, 62453915 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:39, 62453861 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:41, 62453949 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:42, 62453923 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:44, 62453859 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:46, 62453913 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:48, 62453904 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:49, 62453972 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:51, 62581928 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:53, 63413695 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:55, 63413674 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:56, 63413694 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:42:58, 63413763 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:00, 63413674 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:02, 63413735 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:03, 63413693 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:05, 63413781 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:07, 63861646 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:09, 64373528 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:10, 64373582 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:12, 64373552 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:14, 64373497 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:16, 64373557 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:17, 64373561 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:19, 64373539 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:21, 64373502 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:23, 65077395 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:24, 65333368 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:26, 65333308 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:28, 65333339 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:30, 65333340 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:31, 65333406 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:33, 65333360 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:35, 65333426 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:37, 65333353 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:38, 66165216 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:40, 66293142 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:42, 66293149 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:44, 66293153 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:45, 66293153 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:47, 66293162 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:49, 66293140 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:51, 66293179 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:52, 66293186 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:54, 67252953 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:56, 67252985 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:58, 67252949 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:43:59, 67252973 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:01, 67252983 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:03, 67252992 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:05, 67253031 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:07, 67253064 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:08, 67252978 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:10, 68212766 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:12, 68212802 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:14, 68212842 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:15, 68212784 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:17, 68212798 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:19, 68212785 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:21, 68212825 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:23, 68212773 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:24, 68980640 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:26, 69172604 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:28, 69172649 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:30, 69172615 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:31, 69172605 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:33, 69172588 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:35, 69172603 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:37, 69172646 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:38, 69172615 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:40, 69940506 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:42, 70132400 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:44, 70132446 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:46, 70132439 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:47, 70132451 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:49, 70132434 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:51, 70132431 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:53, 70132447 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:55, 70132446 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:56, 71092248 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:44:58, 71092238 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:00, 71092291 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:02, 71092219 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:03, 71092213 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:05, 71092283 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:07, 71092270 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:09, 71092234 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:11, 71348240 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:12, 72052030 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:14, 72052044 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:16, 72052051 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:18, 72052035 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:20, 72052067 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:21, 72052091 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:23, 72052047 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:25, 72052062 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:27, 73011948 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:29, 73011921 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:30, 73011912 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:32, 73011849 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:34, 73011864 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:36, 73011883 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:38, 73011886 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:39, 73011897 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:41, 73075899 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:43, 73971661 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:45, 73971699 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:47, 73971675 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:48, 73971678 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:50, 73971680 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:52, 73971669 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:54, 73971721 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:56, 73971675 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:57, 74931536 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:45:59, 74931496 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:01, 74931508 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:03, 74931518 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:05, 74931530 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:07, 74931501 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:08, 74931494 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:10, 74931538 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:12, 75571379 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:14, 75891344 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:16, 75891315 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:17, 75891319 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:19, 75891324 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:21, 75891314 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:23, 75891324 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:25, 75891341 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:27, 75891342 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:28, 76851145 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:30, 76851136 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:32, 76851156 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:34, 76851230 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:36, 76851185 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:38, 76851127 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:39, 76851145 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:41, 76851163 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:43, 77810947 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:45, 77810952 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:47, 77810972 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:49, 77810936 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:50, 77810986 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:52, 77810950 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:54, 77810974 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:56, 77810989 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:46:58, 78002908 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:00, 78770788 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:01, 78770784 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:03, 78770774 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:05, 78770731 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:07, 78770793 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:09, 78770763 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:11, 78770798 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:12, 78770772 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:14, 79730585 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:16, 79730578 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:18, 79730582 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:20, 79730613 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:22, 79730659 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:23, 79730618 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:25, 79730626 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:27, 79730615 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:29, 80690381 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:31, 80690374 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:33, 80690419 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:35, 80690384 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:36, 80690383 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:38, 80690441 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:40, 80690377 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:42, 80690450 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:44, 81650204 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:46, 81650199 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:47, 81650229 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:49, 81650245 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:51, 81650270 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:53, 81650296 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:55, 81650239 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:57, 81650228 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:47:59, 81842168 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:00, 82610027 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:02, 82610086 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:04, 82610049 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:06, 82610053 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:08, 82610026 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:10, 82610074 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:12, 82610100 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:13, 82610035 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:15, 83569856 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:17, 83569863 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:19, 83569856 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:21, 83569893 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:23, 83569867 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:25, 83569867 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:27, 83569867 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:28, 83569853 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:30, 84529726 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:32, 84529686 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:34, 84529731 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:36, 84529688 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:38, 84529739 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:40, 84529735 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:42, 84529742 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:43, 84529697 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:45, 85489546 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:47, 85489511 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:49, 85489495 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:51, 85489490 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:53, 85489524 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:55, 85489550 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:57, 85489497 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:48:59, 85489509 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:00, 86449315 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:02, 86449357 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:04, 86449302 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:06, 86449303 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:08, 86449322 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:10, 86449326 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:12, 86449386 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:14, 86449255 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:15, 87217176 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:17, 87409110 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:19, 87409126 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:21, 87409122 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:23, 87409169 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:25, 87409167 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:27, 87409142 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:29, 87409184 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:31, 87409124 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:32, 88368923 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:34, 88368945 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:36, 88368949 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:38, 88368940 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:40, 88368983 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:42, 88368937 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:44, 88368939 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:46, 88368939 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:48, 89328736 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:50, 89328785 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:51, 89328782 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:53, 89328776 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:55, 89328771 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:57, 89328793 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:49:59, 89329053 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:01, 89328796 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:03, 90288650 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:05, 90288600 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:07, 90288616 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:09, 90288619 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:11, 90288661 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:12, 90288639 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:14, 90288615 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:16, 90288560 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:18, 91248403 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:20, 91248399 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:22, 91248423 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:24, 91248396 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:26, 91248477 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:28, 91248401 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:30, 91248414 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:32, 91248399 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:33, 92208242 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:35, 92208304 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:37, 92208207 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:39, 92208256 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:41, 92208267 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:43, 92208305 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:45, 92208301 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:47, 92208242 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:49, 93168076 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:51, 93168049 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:53, 93168036 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:55, 93168047 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:57, 93168104 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:50:59, 93168081 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:00, 93168038 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:02, 93168077 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:04, 94127906 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:06, 94127867 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:08, 94127879 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:10, 94127940 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:12, 94127873 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:14, 94127939 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:16, 94127914 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:18, 94127855 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:20, 95087687 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:22, 95087706 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:24, 95087677 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:26, 95087699 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:27, 95087721 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:29, 95087675 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:31, 95087693 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:33, 95087685 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:35, 96047520 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:37, 96047515 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:39, 96047543 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:41, 96047514 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:43, 96047489 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:45, 96047522 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:47, 96047562 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:49, 96047524 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:51, 97007303 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:53, 97007395 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:55, 97007329 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:57, 97007345 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:51:58, 97007377 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:00, 97007333 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:02, 97007302 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:04, 97007330 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:06, 100104266 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:08, 101300340 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:10, 105885708 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:12, 107783166 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:14, 110832766 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:16, 114263362 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:18, 116952500 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:20, 120747503 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:22, 122010923 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:24, 127221852 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:26, 127385354 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:29, 128792882 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:31, 128390774 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:34, 128757475 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:37, 128655738 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:39, 128654860 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:41, 128699516 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:43, 128549165 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:45, 128935295 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:48, 128351612 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:51, 128602225 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:54, 128556653 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:52:57, 127996694 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:00, 127828035 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:02, 127938806 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:04, 127935383 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:06, 128028337 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:08, 128055781 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:11, 128039339 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:13, 128086667 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:15, 128067886 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:17, 128019146 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:19, 128011121 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:21, 128107466 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:23, 128046371 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:25, 128123208 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:27, 128245838 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:29, 128274095 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:32, 128400910 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:34, 128474648 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:36, 128557265 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:38, 128611848 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:40, 128707694 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:42, 128735706 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:44, 128520904 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:47, 128720858 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:52, 127762439 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:55, 127793294 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:53:58, 128605779 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:00, 128658037 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:02, 128705773 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:05, 128764573 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:07, 128762399 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:09, 128747781 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:11, 128797770 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:13, 128886572 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:15, 128932025 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:17, 128940118 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:20, 128941348 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:22, 129002091 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:24, 128942661 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:26, 128936673 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:28, 128933788 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:30, 128929522 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:32, 128937601 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:35, 128748825 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:37, 128185950 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:41, 128302787 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:44, 128601986 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:47, 128675341 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:49, 128730515 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:51, 128738917 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:53, 128794557 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:55, 128837143 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:54:58, 128877624 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:00, 128826577 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:02, 128828569 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:04, 128830051 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:06, 128862502 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:09, 128884242 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:11, 128911731 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:13, 128923912 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:15, 128811072 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:18, 128846595 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:20, 128991407 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:22, 128983187 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:24, 128992978 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:26, 128995560 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:29, 128992758 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:31, 128949239 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:33, 128899755 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:35, 128880795 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:38, 128405101 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:41, 128429315 , 0, 13, 1000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 02:55:48, 7077 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:55:49, 82132 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:55:50, 178589 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:55:51, 260993 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:55:52, 333573 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:55:53, 410442 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:55:54, 481018 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:55:55, 555943 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:55:56, 632251 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:55:57, 714217 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:55:59, 791254 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:00, 864010 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:01, 945525 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:02, 1019508 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:03, 1101407 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:04, 1178961 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:05, 2167100 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:06, 2247469 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:07, 2343700 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:08, 2428530 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:09, 2507600 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:11, 2587420 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:12, 2668325 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:13, 2749220 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:14, 2822288 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:15, 2903558 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:16, 2985165 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:17, 3065022 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:18, 3147936 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:19, 4002561 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:20, 4194460 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:22, 4194577 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:23, 4194534 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:24, 4194419 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:25, 4194530 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:26, 4194414 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:27, 4194528 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:28, 4194528 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:29, 4194456 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:30, 4194424 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:32, 4194524 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:33, 4194492 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:34, 5186334 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:35, 5186325 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:36, 5186318 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:37, 5186289 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:38, 5186373 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:39, 5186325 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:40, 5186233 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:42, 5186283 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:43, 5186239 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:44, 5186300 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:45, 5186307 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:46, 5186275 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:47, 5186224 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:48, 6178109 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:49, 6178130 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:51, 6178017 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:52, 6178102 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:53, 6178139 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:54, 6178068 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:55, 6178083 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:56, 6178069 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:57, 6177972 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:56:58, 6177959 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:00, 6178026 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:01, 6177940 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:02, 6178045 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:03, 7169806 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:04, 7189888 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:05, 7266186 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:06, 7344962 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:07, 7425676 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:09, 7500508 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:10, 7581742 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:11, 7658282 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:12, 7735599 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:13, 7813433 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:14, 7813488 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:15, 7813457 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:16, 7813410 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:18, 8805344 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:19, 8805318 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:20, 8805331 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:21, 8805347 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:22, 8805317 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:23, 8805301 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:24, 8805297 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:25, 8805230 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:27, 8805308 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:28, 8805384 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:29, 8805316 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:30, 8805273 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:31, 8805328 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:32, 9765146 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:33, 9765206 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:35, 9765070 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:36, 9765055 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:37, 9765139 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:38, 9765084 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:39, 9765059 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:40, 9765096 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:41, 9765108 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:43, 9765095 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:44, 9765058 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:45, 9765081 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:46, 9765037 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:47, 10724939 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:48, 10724970 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:49, 10724947 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:51, 10724948 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:52, 10724997 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:53, 10724941 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:54, 10724985 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:55, 10724872 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:56, 10724967 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:57, 10724967 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:57:59, 10724898 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:00, 10724950 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:01, 10724875 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:02, 11684700 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:03, 11684720 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:04, 11684740 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:05, 11684719 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:07, 11684763 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:08, 11684719 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:09, 11684786 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:10, 11684790 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:11, 11684771 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:12, 11708330 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:13, 11708418 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:15, 11708447 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:16, 11708395 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:17, 12700253 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:18, 12700243 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:19, 12700186 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:20, 12700258 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:22, 12700166 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:23, 12700117 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:24, 12700269 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:25, 12700232 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:26, 12700244 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:27, 12700241 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:28, 12700220 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:30, 12700129 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:31, 12700193 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:32, 13659991 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:33, 13660060 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:34, 13659996 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:35, 13660048 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:37, 13660046 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:38, 13660041 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:39, 13659923 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:40, 13660068 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:41, 13660039 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:42, 13659990 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:43, 13660070 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:45, 13659995 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:46, 14171904 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:47, 14619860 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:48, 14619817 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:49, 14619857 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:50, 14619747 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:52, 14619821 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:53, 14619821 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:54, 14619801 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:55, 14619879 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:56, 14619829 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:57, 14619856 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:58:59, 14619814 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:00, 14619872 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:01, 15387671 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:02, 15579602 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:03, 15579623 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:04, 15579653 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:06, 15579594 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:07, 15579679 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:08, 15579573 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:09, 15579666 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:10, 15579686 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:11, 15579667 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:13, 15579586 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:14, 15579646 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:15, 15579658 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:16, 16571411 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:17, 16571507 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:18, 16571441 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:20, 16571489 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:21, 16571466 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:22, 16571457 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:23, 16571455 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:24, 16571500 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:25, 16571461 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:27, 16571413 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:28, 16571478 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:29, 16571463 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:30, 16571525 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:31, 17531288 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:32, 17531216 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:34, 17531277 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:35, 17531284 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:36, 17531270 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:37, 17531252 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:38, 17531324 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:39, 17531308 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:41, 17531321 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:42, 17531281 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:43, 17531252 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:44, 17531102 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:45, 17530980 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:46, 18490734 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:48, 18490789 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:49, 18490792 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:50, 18490753 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:51, 18490768 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:52, 18490814 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:53, 18490903 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:55, 18490876 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:56, 18490864 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:57, 18490933 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:58, 18490977 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 02:59:59, 18490821 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:01, 19194687 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:02, 19449509 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:03, 19449502 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:04, 19449543 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:05, 19449506 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:06, 19449503 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:08, 19449511 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:09, 19449449 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:10, 19449470 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:11, 19449492 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:12, 19449483 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:13, 19449521 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:15, 19449472 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:16, 20409324 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:17, 20409329 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:18, 20409332 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:19, 20409309 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:21, 20409329 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:22, 20409318 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:23, 20409326 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:24, 20409306 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:25, 20409306 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:26, 20409302 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:28, 20409254 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:29, 20409337 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:30, 20409290 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:31, 21369146 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:32, 21369118 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:34, 21369175 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:35, 21369103 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:36, 21369150 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:37, 21369169 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:38, 21369097 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:39, 21369099 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:41, 21369060 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:42, 21369132 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:43, 21369211 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:44, 21369127 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:45, 22328910 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:47, 22328936 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:48, 22328927 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:49, 22328927 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:50, 22328984 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:51, 22328963 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:53, 22328938 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:54, 22328928 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:55, 22329022 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:56, 22329006 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:57, 22328929 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:00:58, 22328955 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:00, 22328914 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:01, 23288807 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:02, 23288787 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:03, 23288786 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:04, 23288721 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:06, 23288778 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:07, 23288756 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:08, 23288790 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:09, 23288756 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:10, 23288714 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:12, 23288714 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:13, 23288755 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:14, 23288708 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:15, 23864646 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:16, 24248581 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:17, 24248556 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:19, 24248577 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:20, 24248570 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:21, 24248654 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:22, 24248553 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:23, 24248565 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:25, 24248586 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:26, 24248542 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:27, 24248520 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:28, 24248563 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:29, 24248544 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:31, 25208419 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:32, 25208403 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:33, 25208373 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:34, 25208371 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:35, 25208370 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:37, 25208383 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:38, 25208456 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:39, 25208407 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:40, 25208411 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:41, 25208346 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:43, 25208443 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:44, 25208402 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:45, 25400357 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:46, 26168177 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:47, 26168218 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:49, 26168239 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:50, 26168211 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:51, 26168218 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:52, 26168176 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:53, 26168162 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:55, 26168240 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:56, 26168204 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:57, 26168234 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:58, 26168215 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:01:59, 26168201 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:01, 27128038 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:02, 27127993 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:03, 27127998 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:04, 27128053 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:05, 27128015 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:07, 27128030 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:08, 27128023 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:09, 27127971 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:10, 27128073 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:11, 27127995 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:13, 27128020 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:14, 27128015 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:15, 27831843 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:16, 28087809 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:17, 28087906 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:19, 28087873 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:20, 28087812 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:21, 28087874 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:22, 28087861 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:23, 28087859 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:25, 28087846 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:26, 28087830 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:27, 28087850 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:28, 28087840 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:30, 28087848 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:31, 29047639 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:32, 29047640 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:33, 29047664 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:34, 29047620 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:36, 29047656 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:37, 29047672 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:38, 29047633 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:39, 29047627 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:40, 29047673 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:42, 29047669 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:43, 29047729 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:44, 29047609 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:45, 30007468 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:47, 30007532 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:48, 30007457 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:49, 30007462 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:50, 30007448 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:51, 30007533 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:53, 30007466 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:54, 30007461 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:55, 30007448 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:56, 30007446 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:57, 30007462 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:02:59, 30007445 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:00, 30935277 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:01, 30967285 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:02, 30967266 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:04, 30967225 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:05, 30967241 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:06, 30967267 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:07, 30967253 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:08, 30967343 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:10, 30967243 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:11, 30967276 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:12, 30967273 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:13, 30967361 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:14, 30967248 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:16, 31927082 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:17, 31927105 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:18, 31927123 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:19, 31927109 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:21, 31927082 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:22, 31927085 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:23, 31927046 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:24, 31927121 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:26, 31927081 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:27, 31927170 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:28, 31927147 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:29, 31927085 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:30, 32886932 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:32, 32886932 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:33, 32886875 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:34, 32886902 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:35, 32886874 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:37, 32886941 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:38, 32886887 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:39, 32886906 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:40, 32886943 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:42, 32886964 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:43, 32886901 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:44, 32886955 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:45, 33846714 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:46, 33846757 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:48, 33846708 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:49, 33846752 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:50, 33846809 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:51, 33846728 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:53, 33846710 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:54, 33846793 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:55, 33846695 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:56, 33846741 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:57, 33846748 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:03:59, 33846707 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:00, 34806528 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:01, 34806557 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:02, 34806534 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:04, 34806555 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:05, 34806560 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:06, 34806594 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:07, 34806562 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:09, 34806622 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:10, 34806540 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:11, 34806543 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:12, 34806526 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:13, 34806548 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:15, 35766380 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:16, 35766352 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:17, 35766375 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:18, 35766376 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:20, 35766357 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:21, 35766405 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:22, 35766351 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:23, 35766340 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:25, 35766327 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:26, 35766366 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:27, 35766350 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:28, 35766375 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:30, 36470229 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:31, 36726184 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:32, 36726162 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:33, 36726212 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:34, 36726171 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:36, 36726208 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:37, 36726218 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:38, 36726268 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:39, 36726173 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:41, 36726224 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:42, 36726160 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:43, 36726140 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:44, 37174038 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:46, 37686025 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:47, 37686028 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:48, 37685982 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:49, 37685966 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:51, 37685991 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:52, 37686002 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:53, 37686004 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:54, 37686063 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:56, 37685970 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:57, 37685981 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:58, 37686008 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:04:59, 37877921 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:01, 38645793 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:02, 38645764 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:03, 38645787 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:04, 38645773 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:06, 38645854 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:07, 38645812 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:08, 38645823 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:09, 38645789 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:11, 38645782 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:12, 38645783 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:13, 38645750 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:14, 38645813 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:16, 39605595 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:17, 39605670 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:18, 39605657 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:19, 39605580 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:21, 39605579 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:22, 39605627 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:23, 39605602 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:24, 39605581 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:26, 39605575 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:27, 39605673 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:28, 39605676 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:29, 39605672 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:31, 40565395 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:32, 40565454 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:33, 40565416 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:34, 40565430 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:36, 40565420 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:37, 40565435 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:38, 40565398 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:39, 40565460 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:41, 40565487 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:42, 40565440 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:43, 40565414 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:44, 40629467 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:46, 41525296 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:47, 41525203 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:48, 41525242 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:49, 41525257 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:51, 41525230 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:52, 41525289 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:53, 41525288 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:54, 41525233 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:56, 41525236 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:57, 41525248 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:58, 41525282 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:05:59, 41781163 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:01, 42485052 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:02, 42485030 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:03, 42485085 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:04, 42485073 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:06, 42485005 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:07, 42485127 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:08, 42485014 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:10, 42485060 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:11, 42485059 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:12, 42485048 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:13, 42485063 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:15, 42868978 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:16, 43444891 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:17, 43444852 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:18, 43444833 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:20, 43444918 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:21, 43444848 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:22, 43444858 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:23, 43444883 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:25, 43444912 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:26, 43444871 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:27, 43444855 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:28, 43444829 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:30, 43764862 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:31, 44404671 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:32, 44404692 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:34, 44404766 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:35, 44404691 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:36, 44404689 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:37, 44404696 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:39, 44404764 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:40, 44404695 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:41, 44404704 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:42, 44404688 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:44, 44404669 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:45, 45300554 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:46, 45364475 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:47, 45364498 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:49, 45364555 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:50, 45364503 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:51, 45364469 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:53, 45364547 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:54, 45364496 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:55, 45364535 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:56, 45364506 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:58, 45364576 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:06:59, 45364519 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:00, 46324342 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:01, 46324318 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:03, 46324285 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:04, 46324303 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:05, 46324355 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:07, 46324332 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:08, 46324330 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:09, 46324349 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:10, 46324349 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:12, 46324275 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:13, 46324373 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:14, 46324324 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:16, 47284133 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:17, 47284125 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:18, 47284163 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:19, 47284107 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:21, 47284158 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:22, 47284088 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:23, 47284100 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:24, 47284162 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:26, 47284134 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:27, 47284146 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:28, 47284122 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:30, 47412146 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:31, 48243949 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:32, 48244026 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:33, 48243962 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:35, 48243932 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:36, 48243938 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:37, 48243927 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:39, 48243943 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:40, 48243959 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:41, 48243973 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:42, 48243992 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:44, 48243941 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:45, 48883815 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:46, 49203774 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:48, 49203772 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:49, 49203765 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:50, 49203743 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:51, 49203742 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:53, 49203776 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:54, 49203834 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:55, 49203836 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:56, 49203755 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:58, 49203763 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:07:59, 49203795 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:00, 50163553 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:02, 50163562 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:03, 50163532 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:04, 50163569 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:06, 50163572 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:07, 50163614 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:08, 50163601 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:09, 50163605 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:11, 50163579 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:12, 50163583 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:13, 50163575 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:15, 50163579 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:16, 51123391 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:17, 51123442 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:18, 51123374 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:20, 51123384 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:21, 51123402 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:22, 51123444 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:24, 51123392 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:25, 51123447 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:26, 51123411 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:27, 51123366 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:29, 51123415 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:30, 51827280 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:31, 52083233 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:33, 52083177 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:34, 52083226 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:35, 52083185 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:36, 52083201 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:38, 52083212 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:39, 52083241 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:40, 52083295 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:42, 52083198 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:43, 52083178 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:44, 52083201 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:46, 53043054 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:47, 53043003 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:48, 53043043 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:49, 53043031 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:51, 53043100 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:52, 53043041 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:53, 53043065 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:55, 53043068 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:56, 53043051 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:57, 53043062 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:08:59, 53043057 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:00, 53299017 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:01, 54002787 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:02, 54002840 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:04, 54002866 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:05, 54002818 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:06, 54002868 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:08, 54002861 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:09, 54002883 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:10, 54002851 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:11, 54002881 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:13, 54002821 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:14, 54002835 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:15, 54962645 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:17, 54962685 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:18, 54962678 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:19, 54962640 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:21, 54962709 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:22, 54962657 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:23, 54962745 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:24, 54962683 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:26, 54962664 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:27, 54962717 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:28, 54962647 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:30, 54962657 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:31, 55922471 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:32, 55922496 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:34, 55922505 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:35, 55922543 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:36, 55922487 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:38, 55922475 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:39, 55922490 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:40, 55922472 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:41, 55922480 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:43, 55922441 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:44, 55922500 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:45, 56882318 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:47, 56882269 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:48, 56882252 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:49, 56882293 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:51, 56882271 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:52, 56882301 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:53, 56882290 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:55, 56882298 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:56, 56882394 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:57, 56882294 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:09:58, 56882332 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:00, 56882597 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:01, 57842146 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:02, 57842093 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:04, 57842123 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:05, 57842089 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:06, 57842075 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:08, 57842113 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:09, 57842175 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:10, 57842100 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:12, 57842153 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:13, 57842126 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:14, 57842123 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:16, 58801986 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:17, 58801936 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:18, 58801925 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:20, 58801967 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:21, 58801951 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:22, 58801978 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:23, 58801927 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:25, 58801904 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:26, 58801900 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:27, 58801936 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:29, 58801953 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:30, 58801888 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:31, 59761740 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:33, 59761755 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:34, 59761841 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:35, 59761731 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:37, 59761751 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:38, 59761748 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:39, 59761798 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:41, 59761737 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:42, 59761741 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:43, 59761714 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:45, 59761740 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:46, 60721578 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:47, 60721590 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:49, 60721529 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:50, 60721571 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:51, 60721549 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:52, 60721583 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:54, 60721600 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:55, 60721516 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:56, 60721545 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:58, 60721565 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:10:59, 60721554 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:00, 61681353 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:02, 61681384 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:03, 61681389 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:04, 61681373 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:06, 61681354 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:07, 61681361 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:08, 61681399 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:10, 61681386 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:11, 61681339 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:12, 61681399 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:14, 61681364 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:15, 62065309 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:16, 62641184 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:18, 62641188 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:19, 62641172 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:20, 62641170 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:22, 62641160 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:23, 62641176 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:24, 62641189 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:26, 62641206 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:27, 62641229 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:28, 62641160 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:30, 62641194 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:31, 63601029 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:32, 63601015 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:34, 63601018 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:35, 63601021 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:36, 63601018 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:38, 63601003 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:39, 63600970 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:40, 63600988 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:42, 63600996 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:43, 63600996 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:44, 63600965 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:46, 64560831 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:47, 64560887 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:48, 64560852 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:50, 64560892 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:51, 64560814 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:52, 64560849 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:54, 64560801 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:55, 64560787 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:56, 64560810 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:58, 64560842 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:11:59, 64560873 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:00, 65136717 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:02, 65520669 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:03, 65520628 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:04, 65520657 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:06, 65520614 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:07, 65520701 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:08, 65520611 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:10, 65520655 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:11, 65520648 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:12, 65520710 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:14, 65520617 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:15, 65520644 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:16, 66480414 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:18, 66480444 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:19, 66480492 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:20, 66480471 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:22, 66480487 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:23, 66480463 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:25, 66480495 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:26, 66480455 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:27, 66480475 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:29, 66480472 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:30, 66480437 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:31, 67440239 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:33, 67440286 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:34, 67440294 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:35, 67440230 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:37, 67440272 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:38, 67440270 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:39, 67440325 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:41, 67440249 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:42, 67440265 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:43, 67440313 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:45, 67440280 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:46, 68400057 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:47, 68400124 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:49, 68400080 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:50, 68400079 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:51, 68400123 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:53, 68400069 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:54, 68400160 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:56, 68400083 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:57, 68400055 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:12:58, 68400097 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:00, 68400095 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:01, 69359901 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:02, 69359936 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:04, 69359890 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:05, 69359886 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:06, 69359924 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:08, 69359906 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:09, 69359923 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:10, 69359886 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:12, 69359922 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:13, 69359902 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:14, 69359948 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:16, 70319752 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:17, 70319726 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:18, 70319727 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:20, 70319670 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:21, 70319749 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:23, 70319729 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:24, 70319743 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:25, 70319695 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:27, 70319714 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:28, 70319710 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:29, 70319793 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:31, 71279607 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:32, 71279483 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:33, 71279559 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:35, 71279504 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:36, 71279588 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:37, 71279566 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:39, 71279548 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:40, 71279560 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:42, 71279588 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:43, 71279603 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:44, 71279523 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:46, 72239376 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:47, 72239384 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:48, 72239337 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:50, 72239340 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:51, 72239337 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:52, 72239335 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:54, 72239382 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:55, 72239375 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:57, 72239401 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:58, 72239455 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:13:59, 72239367 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:01, 73167205 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:02, 73199172 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:03, 73199162 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:05, 73199159 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:06, 73199188 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:07, 73199174 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:09, 73199195 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:10, 73199154 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:12, 73199185 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:13, 73199217 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:14, 73199132 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:16, 73391150 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:17, 74159015 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:18, 74159005 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:20, 74158962 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:21, 74158973 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:23, 74159017 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:24, 74158992 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:25, 74158989 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:27, 74158968 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:28, 74158999 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:29, 74158997 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:31, 74158967 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:32, 75118853 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:33, 75118845 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:35, 75118782 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:36, 75118786 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:38, 75118778 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:39, 75118810 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:40, 75118816 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:42, 75118853 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:43, 75118813 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:44, 75118809 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:46, 75118814 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:47, 76078656 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:49, 76078620 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:50, 76078638 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:51, 76078600 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:53, 76078622 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:54, 76078615 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:55, 76078641 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:57, 76078653 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:14:58, 76078631 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:00, 76079881 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:01, 76078809 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:02, 77038504 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:04, 77038421 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:05, 77038446 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:06, 77038465 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:08, 77038466 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:09, 77038437 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:11, 77038408 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:12, 77038431 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:13, 77038386 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:15, 77038444 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:16, 77038450 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:18, 77998238 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:19, 77998250 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:20, 77998257 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:22, 77998292 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:23, 77998247 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:24, 77998236 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:26, 77998266 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:27, 77998318 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:29, 77998260 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:30, 77998285 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:31, 77998300 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:33, 78958092 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:34, 78958064 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:35, 78958142 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:37, 78958066 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:38, 78958148 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:40, 78958065 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:41, 78958079 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:42, 78958081 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:44, 78958127 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:45, 78958067 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:47, 78958071 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:48, 79917884 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:49, 79917910 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:51, 79917898 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:52, 79917931 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:53, 79917891 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:55, 79917851 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:56, 79917902 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:58, 79917916 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:15:59, 79917856 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:00, 79917874 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:02, 79981859 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:03, 80877725 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:05, 80877746 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:06, 80877711 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:07, 80877714 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:09, 80877712 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:10, 80877728 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:12, 80877735 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:13, 80877704 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:14, 80877688 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:16, 80877732 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:17, 81453606 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:18, 81837523 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:20, 81837542 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:21, 81837566 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:23, 81837467 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:24, 81837535 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:25, 81837517 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:27, 81837517 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:28, 81837515 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:30, 81837538 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:31, 81837529 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:32, 82093498 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:34, 82797328 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:35, 82797390 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:37, 82797341 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:38, 82797361 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:39, 82797363 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:41, 82797343 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:42, 82797318 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:44, 82797396 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:45, 82797362 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:46, 82797364 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:48, 83757177 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:49, 83757132 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:51, 83757149 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:52, 83757159 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:53, 83757127 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:55, 83757154 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:56, 83757128 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:58, 83757134 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:16:59, 83757157 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:00, 83757181 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:02, 83757184 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:03, 84716968 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:05, 84716930 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:06, 84716957 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:07, 84716964 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:09, 84717030 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:10, 84716959 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:12, 84716960 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:13, 84716960 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:14, 84717045 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:16, 84716992 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:17, 84972951 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:19, 85676793 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:20, 85676757 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:22, 85676849 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:23, 85676786 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:24, 85676752 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:26, 85676757 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:27, 85676797 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:29, 85676829 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:30, 85676804 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:31, 85676762 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:33, 85996759 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:34, 86636598 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:36, 86636607 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:37, 86636634 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:38, 86636593 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:40, 86636610 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:41, 86636631 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:43, 86636612 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:44, 86636602 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:45, 86636610 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:47, 86636580 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:48, 87596420 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:50, 87596449 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:51, 87596419 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:52, 87596451 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:54, 87596427 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:55, 87596418 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:57, 87596414 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:17:58, 87596489 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:00, 87596500 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:01, 87596475 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:02, 87596418 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:04, 88556226 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:05, 88556219 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:07, 88556298 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:08, 88556202 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:10, 88556273 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:11, 88556223 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:12, 88556266 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:14, 88556229 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:15, 88556214 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:17, 88556257 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:18, 89260073 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:19, 89516055 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:21, 89516075 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:22, 89516077 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:24, 89516053 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:25, 89516073 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:27, 89516083 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:28, 89516105 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:29, 89516041 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:31, 89516037 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:32, 89516071 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:34, 90475873 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:35, 90475903 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:36, 90475851 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:38, 90475873 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:39, 90475865 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:41, 90475828 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:42, 90475867 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:44, 90475885 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:45, 90475893 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:46, 90475868 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:48, 90795763 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:49, 91435725 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:51, 91435719 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:52, 91435707 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:53, 91435673 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:55, 91435762 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:56, 91435728 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:58, 91435686 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:18:59, 91435656 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:01, 91435672 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:02, 91435652 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:03, 92363526 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:05, 92395521 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:06, 92395501 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:08, 92395515 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:09, 92395477 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:11, 92395491 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:12, 92395522 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:13, 92395493 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:15, 92395480 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:16, 92395477 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:18, 92395503 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:19, 93355290 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:21, 93355300 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:22, 93355343 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:24, 93355317 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:25, 93355329 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:26, 93355301 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:28, 93355318 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:29, 93355299 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:31, 93355322 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:32, 93355321 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:34, 93931212 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:35, 94315163 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:36, 94315156 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:38, 94315173 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:39, 94315158 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:41, 94315133 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:42, 94315100 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:44, 94315139 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:45, 94315139 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:46, 94315185 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:48, 94315165 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:49, 95274950 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:51, 95274936 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:52, 95274944 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:54, 95274965 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:55, 95274945 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:57, 95274930 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:58, 95274955 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:19:59, 95274366 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:01, 95274977 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:02, 95274982 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:04, 95850853 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:05, 96234773 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:07, 96234790 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:08, 96234788 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:09, 96234878 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:11, 96234744 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:12, 96234823 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:14, 96234842 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:15, 96234802 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:17, 96234818 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:18, 96234772 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:20, 97194557 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:21, 97194592 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:22, 97194583 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:24, 97194583 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:25, 97194641 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:27, 97194570 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:28, 97194562 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:30, 97194654 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:31, 97194625 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:33, 97194593 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:34, 97834494 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:35, 98154450 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:37, 98154423 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:38, 98154466 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:40, 98154397 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:41, 98154449 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:43, 98154399 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:44, 98154403 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:46, 98154464 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:47, 98154386 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:48, 98154366 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:50, 101246817 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:51, 105654547 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:53, 110074269 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:54, 114602504 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:56, 118502778 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:57, 123032995 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:20:59, 127647471 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:01, 129741604 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:03, 129593808 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:05, 129116243 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:07, 129084491 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:09, 129061457 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:11, 128949469 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:12, 128897765 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:14, 128939003 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:16, 128737278 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:18, 128725392 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:21, 128920107 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:23, 129052266 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:25, 128858563 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:27, 128950794 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:29, 128860748 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:30, 128947360 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:32, 128886221 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:33, 128967402 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:35, 128885671 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:36, 128966093 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:38, 128939558 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:40, 129023055 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:41, 128941155 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:43, 129020296 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:44, 128934648 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:46, 129008722 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:48, 128960809 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:49, 129007006 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:51, 128816123 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:52, 128867911 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:54, 128995521 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:56, 128933596 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:57, 129048672 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:21:59, 129003409 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:00, 128880278 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:02, 128933837 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:04, 128930915 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:05, 128902782 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:07, 129011198 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:08, 129069668 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:10, 129121266 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:12, 128943072 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:15, 128919266 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:19, 128727662 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:21, 128467402 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:24, 128086958 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:25, 128102438 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:27, 128230174 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:28, 128192232 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:30, 128168797 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:32, 128190523 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:33, 128328602 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:35, 128330867 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:37, 128386875 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:38, 128528497 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:40, 128539819 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:42, 128519848 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:43, 128589987 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:45, 128623472 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:47, 128683478 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:48, 128768468 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:50, 128805089 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:52, 128829138 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:53, 128791491 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:55, 128806062 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:22:57, 128749461 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:00, 128684053 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:02, 128261714 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:05, 128518615 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:07, 128518175 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:08, 128683277 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:10, 128660422 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:12, 128535605 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:13, 128521804 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:15, 128624030 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:17, 128638564 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:18, 128642185 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:20, 128643631 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:22, 128783360 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:23, 128789517 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:25, 128793812 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:27, 128866747 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:29, 129010982 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:30, 129054758 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:32, 129076219 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:34, 129148302 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:35, 129114630 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:37, 129210461 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:39, 129210287 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:40, 129110494 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:42, 129091491 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:44, 129068920 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:45, 129191935 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:47, 129154539 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:49, 129031027 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:51, 129082858 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:53, 128853999 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:55, 128781209 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:23:58, 7238 , 0, 13, 1000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 03:24:04, 6592 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:05, 82131 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:06, 237854 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:07, 284160 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:08, 345269 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:09, 434409 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:10, 495353 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:11, 563159 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:12, 634170 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:13, 708607 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:14, 776679 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:15, 841973 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:16, 883708 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:17, 955222 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:18, 1085566 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:20, 1160524 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:21, 1228921 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:22, 1266505 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:23, 1330549 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:24, 1388201 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:25, 1449595 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:26, 1506298 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:27, 1562308 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:28, 1631829 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:29, 1693245 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:30, 1748007 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:31, 1898539 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:33, 1956162 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:34, 2021248 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:35, 2090344 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:36, 2124622 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:37, 2189098 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:38, 2244980 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:39, 2322331 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:40, 2383584 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:41, 2425135 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:42, 2491421 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:43, 2551970 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:44, 2618743 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:46, 2678249 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:47, 2735109 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:48, 2774590 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:49, 2989660 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:50, 3056639 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:51, 3120276 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:52, 3183920 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:53, 3246873 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:54, 3308523 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:55, 3368330 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:57, 3419452 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:58, 3476331 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:24:59, 3531823 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:00, 3585138 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:01, 3662002 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:02, 3740158 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:03, 3789927 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:04, 3834345 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:05, 3912548 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:06, 3922774 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:07, 4136082 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:09, 4188053 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:10, 4234491 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:11, 4293171 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:12, 4369934 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:13, 4444180 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:14, 4516717 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:15, 4587714 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:16, 4650891 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:17, 4708145 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:18, 4745365 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:20, 4779111 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:21, 4836961 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:22, 4899521 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:23, 4961353 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:24, 5019920 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:25, 5078745 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:26, 5135965 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:27, 5206427 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:28, 5281305 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:30, 5351673 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:31, 5402275 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:32, 5451807 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:33, 5489843 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:34, 5555905 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:35, 5849556 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:36, 5869826 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:37, 5960079 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:38, 6024979 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:40, 6068957 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:41, 6174685 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:42, 6208429 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:43, 6277428 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:44, 6375086 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:45, 6400993 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:46, 6473640 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:47, 6568907 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:48, 6605198 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:50, 6662252 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:51, 6662320 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:52, 6728767 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:53, 6796853 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:54, 6839678 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:55, 6903851 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:56, 6988545 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:57, 7070092 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:25:58, 7125936 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:00, 7177166 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:01, 7233367 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:02, 7305171 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:03, 7379099 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:04, 7451670 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:05, 7522621 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:06, 7591929 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:07, 7659751 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:08, 7724958 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:10, 7772486 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:11, 7772459 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:12, 7843201 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:13, 8142618 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:14, 8285027 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:15, 8335255 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:16, 8439309 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:17, 8453228 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:19, 8589911 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:20, 8589888 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:21, 8736548 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:22, 8737880 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:23, 8875267 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:24, 8881211 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:25, 9017934 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:26, 9019751 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:28, 9155183 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:29, 9165176 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:30, 9287160 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:31, 9314009 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:32, 9415604 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:33, 9494617 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:34, 9540545 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:35, 9612535 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:37, 9626893 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:38, 9626934 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:39, 9723675 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:40, 9772333 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:41, 9852203 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:42, 9911963 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:43, 9957903 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:44, 10026289 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:46, 10104302 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:47, 10144325 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:48, 10194431 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:49, 10269056 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:50, 10279318 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:51, 10279359 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:52, 10279274 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:53, 10325677 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:55, 10369162 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:56, 10428347 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:57, 10499515 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:58, 10541299 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:26:59, 10596091 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:00, 10659646 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:01, 10700257 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:02, 10763833 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:04, 10814094 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:05, 10856080 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:06, 10917133 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:07, 11939437 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:08, 11953207 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:09, 11953206 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:10, 11953200 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:11, 11953179 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:13, 11953202 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:14, 11953128 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:15, 12017130 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:16, 12064923 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:17, 12113627 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:18, 12189748 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:19, 12234500 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:21, 12293638 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:22, 12365568 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:23, 12401272 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:24, 12477405 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:25, 12525021 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:26, 12584287 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:27, 12649084 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:28, 12649077 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:30, 12649120 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:31, 12649090 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:32, 12649089 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:33, 12649137 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:34, 12649093 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:35, 12671005 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:36, 12716695 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:38, 12776246 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:39, 13834009 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:40, 13876807 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:41, 13919634 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:42, 14002531 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:43, 14050462 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:44, 14111320 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:46, 14184656 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:47, 14223762 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:48, 14223794 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:49, 14223726 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:50, 14223794 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:51, 14223798 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:52, 14249742 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:54, 14309548 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:55, 14368275 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:56, 14408995 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:57, 14483076 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:58, 14529782 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:27:59, 14577425 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:00, 14639302 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:02, 14677629 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:03, 14748941 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:04, 14784834 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:05, 14784820 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:06, 14784867 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:07, 15009631 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:08, 15777526 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:10, 15777461 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:11, 15777446 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:12, 15777485 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:13, 15777532 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:14, 15777457 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:15, 15777471 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:16, 15777496 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:18, 15777541 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:19, 15777492 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:20, 15777485 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:21, 15777478 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:22, 15777508 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:23, 15777475 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:25, 15777440 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:26, 15777485 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:27, 15777528 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:28, 15777492 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:29, 15777435 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:30, 15777490 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:31, 15777555 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:33, 15777439 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:34, 15777450 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:35, 15777472 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:36, 15777417 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:37, 16513324 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:38, 16769309 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:39, 16769319 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:41, 16769278 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:42, 16769247 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:43, 16769304 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:44, 16769263 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:45, 16769296 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:46, 16769287 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:48, 16769357 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:49, 16769282 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:50, 16769312 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:51, 16769229 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:52, 16769300 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:53, 16769259 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:54, 16769260 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:56, 16769278 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:57, 16769262 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:58, 16769276 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:28:59, 16769246 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:00, 16769295 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:01, 16769288 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:03, 16769324 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:04, 16769297 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:05, 16769318 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:06, 16769279 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:07, 16769337 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:08, 17761084 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:09, 17761117 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:11, 17761156 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:12, 17761078 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:13, 17761105 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:14, 17761093 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:15, 17761130 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:16, 17761044 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:18, 17761104 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:19, 17761105 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:20, 17761109 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:21, 17761120 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:22, 17761073 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:23, 17761080 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:24, 17761147 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:26, 17761088 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:27, 17761057 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:28, 17761162 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:29, 17761079 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:30, 17761085 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:31, 17761103 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:33, 17764010 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:34, 17819166 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:35, 17835523 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:36, 18316260 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:37, 18828056 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:38, 18828107 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:40, 18828119 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:41, 18828096 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:42, 18828164 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:43, 18828169 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:44, 18828147 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:45, 18828064 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:46, 18828142 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:48, 18828085 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:49, 18828126 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:50, 18828178 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:51, 18828136 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:52, 18828137 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:53, 18828134 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:55, 18828123 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:56, 18828101 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:57, 18828120 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:58, 18828155 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:29:59, 18829434 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:00, 18829367 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:02, 18828111 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:03, 18828133 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:04, 18828158 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:05, 18828103 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:06, 19787984 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:07, 19787977 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:09, 19787963 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:10, 19787973 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:11, 19788035 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:12, 19787884 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:13, 19787820 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:14, 19787882 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:16, 19787891 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:17, 19787850 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:18, 19787803 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:19, 19787847 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:20, 19787831 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:21, 19787892 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:23, 19787906 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:24, 19787866 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:25, 19787845 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:26, 19787859 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:27, 19787892 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:28, 19787873 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:29, 19787873 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:31, 19787840 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:32, 19787925 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:33, 19787923 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:34, 19787836 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:35, 19787856 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:36, 20747676 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:38, 20747704 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:39, 20747700 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:40, 20747676 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:41, 20747714 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:42, 20747714 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:43, 20747721 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:45, 20747690 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:46, 20747686 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:47, 20747695 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:48, 20747745 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:49, 20747782 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:51, 20747670 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:52, 20747708 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:53, 20747670 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:54, 20747648 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:55, 20747665 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:56, 20747664 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:58, 20747691 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:30:59, 20747685 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:00, 20747706 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:01, 20747712 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:02, 20747672 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:03, 20747808 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:05, 21771701 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:06, 21771700 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:07, 21771690 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:08, 21771751 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:09, 21771666 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:10, 21771678 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:12, 21771633 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:13, 21771696 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:14, 21771703 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:15, 21771737 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:16, 21771670 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:17, 21771757 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:19, 21771666 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:20, 21771691 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:21, 21771658 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:22, 21771720 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:23, 21771716 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:24, 21771662 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:26, 21771688 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:27, 21771647 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:28, 21771638 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:29, 21771651 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:30, 21771637 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:31, 21771715 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:33, 21771623 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:34, 21771681 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:35, 22731422 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:36, 22731478 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:37, 22731485 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:38, 22731482 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:40, 22731500 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:41, 22731491 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:42, 22731543 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:43, 22731448 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:44, 22731495 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:45, 22731485 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:47, 22731437 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:48, 22731495 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:49, 22731493 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:50, 22731479 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:51, 22731496 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:53, 22731532 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:54, 22731445 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:55, 22731554 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:56, 22731524 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:57, 22731527 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:31:58, 22731506 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:00, 22731471 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:01, 22731500 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:02, 22731513 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:03, 22731481 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:04, 22731523 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:05, 23691362 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:07, 23691311 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:08, 23691277 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:09, 23691335 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:10, 23691337 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:11, 23691262 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:12, 23691317 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:14, 23691348 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:15, 23691341 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:16, 23691337 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:17, 23691313 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:18, 23691338 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:19, 23691310 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:21, 23691347 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:22, 23691261 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:23, 23691399 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:24, 23691300 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:25, 23691263 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:27, 23691299 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:28, 23691285 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:29, 23691280 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:30, 23691275 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:31, 23691315 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:32, 23691369 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:34, 24727792 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:35, 24742722 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:36, 24742705 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:37, 24742776 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:38, 24742745 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:39, 24751352 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:41, 24794230 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:42, 24856947 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:43, 24911279 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:44, 24955205 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:45, 25030273 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:47, 25074318 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:48, 25128690 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:49, 25185877 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:50, 25230925 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:51, 25300910 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:52, 25339336 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:54, 25339321 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:55, 25339336 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:56, 25339361 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:57, 25339342 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:32:58, 25341016 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:00, 25368758 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:01, 25368794 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:02, 25368784 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:03, 25368794 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:04, 25368764 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:05, 26361444 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:07, 26361419 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:08, 26361408 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:09, 26361409 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:10, 26361455 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:11, 26361421 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:13, 26361411 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:14, 26361400 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:15, 26361491 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:16, 26361408 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:17, 26361391 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:19, 26361397 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:20, 26361386 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:21, 26361395 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:22, 26361480 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:23, 26361375 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:24, 26361380 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:26, 26361419 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:27, 26361446 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:28, 26361406 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:29, 26361414 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:30, 26361425 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:32, 26361418 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:33, 26361392 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:34, 26361399 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:35, 27321256 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:36, 27321217 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:37, 27321189 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:39, 27321255 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:40, 27321224 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:41, 27321226 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:42, 27321222 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:43, 27321234 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:45, 27321185 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:46, 27321179 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:47, 27321248 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:48, 27321244 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:49, 27321265 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:51, 27321310 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:52, 27321234 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:53, 27321206 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:54, 27321207 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:55, 27321237 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:57, 27321226 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:58, 27321204 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:33:59, 27321182 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:00, 27321201 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:01, 27321235 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:02, 27321279 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:04, 28281048 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:05, 28281051 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:06, 28281014 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:07, 28281024 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:08, 28281049 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:10, 28280999 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:11, 28281085 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:12, 28281110 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:13, 28281054 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:14, 28281002 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:16, 28281036 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:17, 28281027 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:18, 28281057 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:19, 28281090 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:20, 28281038 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:22, 28281051 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:23, 28281034 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:24, 28281085 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:25, 28281003 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:26, 28281045 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:27, 28281030 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:29, 28281054 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:30, 28324833 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:31, 28363928 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:32, 28416650 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:33, 29443609 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:35, 29508277 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:36, 29556165 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:37, 29608907 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:38, 29678024 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:39, 29719652 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:41, 29761056 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:42, 29761028 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:43, 29761066 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:44, 29761020 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:45, 29761084 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:47, 29831610 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:48, 29870944 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:49, 29938710 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:50, 29979098 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:51, 30038220 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:53, 30091195 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:54, 30136627 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:55, 30202092 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:56, 30233270 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:57, 30233294 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:34:59, 30233287 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:00, 30233205 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:01, 30233179 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:02, 30233197 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:03, 30233161 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:05, 30233210 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:06, 30233178 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:07, 30233196 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:08, 31224953 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:09, 31225024 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:11, 31224955 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:12, 31224971 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:13, 31224970 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:14, 31224993 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:15, 31224986 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:17, 31224981 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:18, 31224959 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:19, 31224999 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:20, 31224954 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:21, 31225011 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:23, 31224990 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:24, 31225011 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:25, 31225017 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:26, 31224958 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:27, 31224994 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:29, 31225023 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:30, 31225021 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:31, 31224997 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:32, 31225045 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:33, 31225038 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:35, 31224948 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:36, 32120824 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:37, 32184723 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:38, 32184794 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:39, 32184741 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:41, 32184744 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:42, 32184769 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:43, 32184791 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:44, 32184697 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:45, 32184725 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:47, 32184741 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:48, 32184725 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:49, 32184730 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:50, 32184782 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:51, 32184738 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:53, 32184751 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:54, 32184755 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:55, 32184818 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:56, 32184740 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:57, 32184761 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:35:59, 32184722 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:00, 32184773 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:01, 32184721 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:02, 32184825 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:04, 32184758 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:05, 32184779 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:06, 33144557 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:07, 33144552 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:08, 33144576 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:10, 33144604 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:11, 33144574 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:12, 33144574 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:13, 33144633 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:14, 33144574 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:16, 33144536 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:17, 33144620 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:18, 33144588 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:19, 33144601 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:20, 33144562 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:22, 33144569 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:23, 33144530 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:24, 33144638 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:25, 33144522 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:26, 33144558 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:28, 33144595 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:29, 33144539 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:30, 33144543 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:31, 33144573 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:32, 33144578 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:34, 33144610 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:35, 33144544 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:36, 33144598 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:37, 34120826 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:38, 34194421 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:40, 34250568 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:41, 34293828 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:42, 34366165 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:43, 34409037 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:44, 34460737 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:46, 34530236 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:47, 34562394 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:48, 34562387 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:49, 34562306 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:51, 34562335 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:52, 34562304 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:53, 34562329 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:54, 34562361 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:55, 34562345 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:57, 34562286 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:58, 34562382 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:36:59, 34562326 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:00, 34562322 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:01, 34562312 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:03, 34562334 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:04, 34562407 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:05, 34562323 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:06, 34562333 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:08, 34562301 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:09, 35554133 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:10, 35554111 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:11, 35554092 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:12, 35554107 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:14, 35554127 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:15, 35554160 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:16, 35554171 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:17, 35554110 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:19, 35554106 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:20, 35554113 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:21, 35554123 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:22, 35554137 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:23, 35554157 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:25, 35554202 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:26, 35554157 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:27, 35554098 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:28, 35554171 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:29, 35554145 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:31, 35554166 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:32, 35554123 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:33, 35554133 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:34, 35554164 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:36, 35554158 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:37, 35810095 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:38, 36513912 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:39, 36513929 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:40, 36513938 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:42, 36513940 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:43, 36513990 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:44, 36513981 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:45, 36513915 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:47, 36513975 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:48, 36513942 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:49, 36513950 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:50, 36513908 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:51, 36513980 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:53, 36513970 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:54, 36513965 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:55, 36513976 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:56, 36513977 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:57, 36513965 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:37:59, 36513904 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:00, 36513986 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:01, 36513951 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:02, 36513917 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:04, 36513973 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:05, 36513926 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:06, 36513933 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:07, 36513922 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:08, 37473753 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:10, 37473761 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:11, 37473734 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:12, 37473789 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:13, 37473759 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:15, 37473717 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:16, 37473806 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:17, 37473798 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:18, 37473741 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:19, 37473809 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:21, 37473739 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:22, 37473736 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:23, 37473745 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:24, 37473827 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:25, 37473750 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:27, 37473800 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:28, 37473822 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:29, 37473804 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:30, 37473789 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:32, 37473770 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:33, 37473741 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:34, 37473787 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:35, 37473727 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:37, 37473753 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:38, 37473761 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:39, 37473755 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:40, 38433598 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:41, 38433568 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:43, 38433579 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:44, 38433636 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:45, 38433629 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:46, 38433578 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:48, 38433559 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:49, 38433633 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:50, 38433560 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:51, 38433559 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:53, 38433609 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:54, 38433554 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:55, 38433570 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:56, 38433611 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:57, 38433591 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:38:59, 38433603 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:00, 38433649 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:01, 38433607 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:02, 38433571 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:04, 38433560 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:05, 38433564 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:06, 38433539 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:07, 38433567 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:08, 39329395 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:10, 39393381 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:11, 39393376 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:12, 39393429 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:13, 39393422 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:15, 39393416 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:16, 39393370 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:17, 39393425 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:18, 39393421 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:20, 39393389 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:21, 39393370 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:22, 39393426 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:23, 39393470 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:24, 39393390 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:26, 39393454 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:27, 39393397 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:28, 39393388 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:29, 39393366 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:31, 39393350 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:32, 39393385 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:33, 39393436 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:34, 39393386 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:35, 39393395 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:37, 39393369 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:38, 39393363 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:39, 40353229 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:40, 40353212 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:42, 40353237 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:43, 40353212 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:44, 40353186 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:45, 40353204 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:47, 40353197 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:48, 40353224 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:49, 40353215 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:50, 40353184 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:51, 40353249 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:53, 40353165 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:54, 40353297 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:55, 40353233 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:56, 40353210 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:58, 40353190 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:39:59, 40353173 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:00, 40354424 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:01, 40353330 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:03, 40353295 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:04, 40353256 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:05, 40353293 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:06, 40353272 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:07, 40353248 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:09, 40353292 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:10, 40353230 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:11, 40481316 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:12, 41313119 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:14, 41313105 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:15, 41313050 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:16, 41313158 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:17, 41313051 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:19, 41313118 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:20, 41313055 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:21, 41313101 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:22, 41313114 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:24, 41313114 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:25, 41313125 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:26, 41313107 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:27, 41313118 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:28, 41313057 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:30, 41313138 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:31, 41313086 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:32, 41313047 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:33, 41313090 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:35, 41313080 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:36, 41313143 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:37, 41313145 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:38, 41313099 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:40, 41313102 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:41, 42272901 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:42, 42272924 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:43, 42272959 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:45, 42272978 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:46, 42272899 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:47, 42272862 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:48, 42272960 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:49, 42272967 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:51, 42272924 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:52, 42272880 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:53, 42272939 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:54, 42272865 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:56, 42272893 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:57, 42272905 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:58, 42272891 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:40:59, 42272898 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:01, 42272909 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:02, 42272898 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:03, 42272935 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:04, 42272951 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:06, 42272942 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:07, 42272863 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:08, 42272938 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:09, 42272885 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:10, 43232801 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:12, 43232756 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:13, 43232806 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:14, 43232802 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:15, 43232702 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:17, 43232752 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:18, 43232680 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:19, 43232732 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:20, 43232699 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:22, 43232793 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:23, 43232690 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:24, 43232706 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:25, 43232757 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:27, 43232720 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:28, 43232727 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:29, 43232700 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:30, 43232743 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:32, 43232717 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:33, 43232806 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:34, 43232715 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:35, 43232743 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:37, 43232669 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:38, 43232743 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:39, 43232773 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:40, 43232729 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:41, 43232727 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:43, 43232716 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:44, 44192507 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:45, 44192639 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:46, 44192558 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:48, 44192494 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:49, 44192564 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:50, 44192614 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:51, 44192541 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:53, 44192561 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:54, 44192523 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:55, 44192534 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:56, 44192583 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:58, 44192512 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:41:59, 44192534 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:00, 44192501 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:01, 44192557 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:03, 44192574 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:04, 44192498 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:05, 44192568 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:06, 44192538 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:08, 44192519 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:09, 44192535 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:10, 44192514 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:11, 44192577 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:13, 45152321 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:14, 45152394 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:15, 45152344 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:16, 45152334 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:18, 45152389 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:19, 45152321 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:20, 45152442 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:21, 45152337 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:23, 45152347 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:24, 45152411 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:25, 45152381 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:26, 45152358 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:28, 45152315 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:29, 45152337 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:30, 45152327 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:31, 45152345 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:33, 45152375 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:34, 45152372 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:35, 45152408 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:36, 45152388 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:38, 45152379 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:39, 45152368 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:40, 45152384 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:41, 45280338 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:43, 46112241 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:44, 46112205 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:45, 46112204 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:46, 46112162 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:48, 46112158 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:49, 46112163 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:50, 46112181 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:51, 46112167 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:53, 46112140 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:54, 46112160 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:55, 46112280 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:56, 46112180 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:58, 46112165 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:42:59, 46112163 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:00, 46112198 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:01, 46112213 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:03, 46112192 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:04, 46112167 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:05, 46112222 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:06, 46112216 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:08, 46112183 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:09, 46112166 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:10, 46112157 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:11, 46112137 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:12, 46176180 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:14, 47072034 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:15, 47071987 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:16, 47072027 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:17, 47072020 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:19, 47072035 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:20, 47071979 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:21, 47072000 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:23, 47072021 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:24, 47072013 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:25, 47071994 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:26, 47072072 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:28, 47071983 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:29, 47072025 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:30, 47071997 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:31, 47071948 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:33, 47072016 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:34, 47072035 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:35, 47071947 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:36, 47071990 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:38, 47072016 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:39, 47072010 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:40, 47071971 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:41, 47071982 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:43, 47071996 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:44, 48031876 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:45, 48031771 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:46, 48031851 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:48, 48031802 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:49, 48031873 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:50, 48031787 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:51, 48031810 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:53, 48031763 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:54, 48031773 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:55, 48031814 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:56, 48031841 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:58, 48031796 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:43:59, 48031793 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:00, 48031835 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:01, 48031773 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:03, 48031849 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:04, 48031830 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:05, 48031844 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:06, 48031824 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:08, 48031811 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:09, 48031826 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:10, 48031828 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:11, 48031799 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:13, 48991588 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:14, 48991654 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:15, 48991636 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:16, 48991600 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:18, 48991643 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:19, 48991614 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:20, 48991634 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:21, 48991615 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:23, 48991664 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:24, 48991643 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:25, 48991629 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:26, 48991627 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:28, 48991642 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:29, 48991669 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:30, 48991620 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:32, 48991685 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:33, 48991589 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:34, 48991589 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:35, 48991629 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:37, 48991631 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:38, 48991660 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:39, 48991653 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:40, 48991664 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:42, 48991589 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:43, 49375530 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:44, 49951427 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:45, 49951435 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:47, 49951413 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:48, 49951417 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:49, 49951431 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:50, 49951489 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:52, 49951417 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:53, 49951505 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:54, 49951421 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:55, 49951492 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:57, 49951428 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:58, 49951449 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:44:59, 49951507 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:00, 49951366 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:02, 49951381 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:03, 49951470 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:04, 49951426 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:05, 49951490 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:07, 49951409 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:08, 49951382 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:09, 49951379 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:11, 49951374 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:12, 49951396 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:13, 49951414 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:14, 49951354 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:16, 50911269 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:17, 50911228 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:18, 50911267 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:19, 50911214 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:21, 50911209 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:22, 50911284 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:23, 50911177 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:24, 50911230 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:26, 50911191 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:27, 50911303 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:28, 50911215 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:29, 50911289 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:31, 50911309 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:32, 50911194 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:33, 50911236 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:34, 50911214 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:36, 50911216 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:37, 50911251 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:38, 50911216 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:40, 50911223 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:41, 50911244 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:42, 50911267 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:43, 50911254 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:45, 51870996 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:46, 51871057 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:47, 51871056 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:48, 51871092 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:50, 51871037 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:51, 51870999 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:52, 51871013 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:53, 51871070 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:55, 51870995 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:56, 51871089 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:57, 51871034 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:45:59, 51871035 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:00, 51871076 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:01, 51871033 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:02, 51871124 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:04, 51871073 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:05, 51871002 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:06, 51870982 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:07, 51871109 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:09, 51871014 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:10, 51871031 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:11, 51871064 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:12, 51870987 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:14, 52318961 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:15, 52830823 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:16, 52830822 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:17, 52830877 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:19, 52830846 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:20, 52830854 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:21, 52830878 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:23, 52830831 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:24, 52830900 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:25, 52830837 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:26, 52830858 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:28, 52830832 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:29, 52830862 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:30, 52830843 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:31, 52830829 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:33, 52830837 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:34, 52830820 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:35, 52830807 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:36, 52830874 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:38, 52830877 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:39, 52830840 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:40, 52830909 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:42, 52830854 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:43, 52830856 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:44, 52830823 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:45, 53790691 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:47, 53790661 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:48, 53790673 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:49, 53790673 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:50, 53790659 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:52, 53790686 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:53, 53790685 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:54, 53790738 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:56, 53790615 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:57, 53790667 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:58, 53790660 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:46:59, 53790653 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:01, 53790699 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:02, 53790652 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:03, 53790674 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:04, 53790673 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:06, 53790654 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:07, 53790742 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:08, 53790682 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:10, 53790695 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:11, 53790667 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:12, 53790683 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:13, 53790668 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:15, 53790702 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:16, 54750494 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:17, 54750496 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:18, 54750451 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:20, 54750487 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:21, 54750463 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:22, 54750463 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:24, 54750462 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:25, 54750497 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:26, 54750559 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:27, 54750458 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:29, 54750466 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:30, 54750503 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:31, 54750531 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:32, 54750476 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:34, 54750469 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:35, 54750522 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:36, 54750476 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:38, 54750501 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:39, 54750507 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:40, 54750557 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:41, 54750518 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:43, 54750514 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:44, 54750510 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:45, 55710320 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:47, 55710325 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:48, 55710316 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:49, 55710309 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:50, 55710354 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:52, 55710297 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:53, 55710370 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:54, 55710361 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:56, 55710292 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:57, 55710339 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:58, 55710300 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:47:59, 55710301 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:01, 55710377 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:02, 55710364 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:03, 55710334 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:04, 55710314 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:06, 55710304 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:07, 55710325 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:08, 55710369 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:10, 55710373 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:11, 55710333 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:12, 55710306 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:13, 55710313 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:15, 55710310 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:16, 56670137 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:17, 56670118 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:19, 56670132 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:20, 56670134 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:21, 56670142 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:22, 56670199 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:24, 56670103 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:25, 56670179 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:26, 56670111 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:28, 56670117 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:29, 56670121 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:30, 56670133 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:31, 56670131 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:33, 56670101 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:34, 56670085 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:35, 56670181 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:37, 56670111 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:38, 56670168 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:39, 56670145 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:40, 56670116 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:42, 56670101 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:43, 56670120 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:44, 56670114 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:46, 56670158 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:47, 56670123 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:48, 57630010 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:49, 57629962 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:51, 57629987 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:52, 57629931 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:53, 57629961 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:54, 57629931 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:56, 57630021 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:57, 57629900 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:48:58, 57629925 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:00, 57629967 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:01, 57629939 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:02, 57629970 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:03, 57629917 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:05, 57629907 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:06, 57629931 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:07, 57629939 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:09, 57629907 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:10, 57629955 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:11, 57629924 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:13, 57629951 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:14, 57629922 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:15, 57629950 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:16, 58589751 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:18, 58589778 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:19, 58589773 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:20, 58589763 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:22, 58589791 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:23, 58589842 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:24, 58589731 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:25, 58589763 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:27, 58589728 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:28, 58589822 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:29, 58589769 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:31, 58589735 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:32, 58589800 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:33, 58589787 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:34, 58589707 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:36, 58589699 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:37, 58589778 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:38, 58589832 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:40, 58589717 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:41, 58589755 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:42, 58589721 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:43, 58589753 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:45, 58589719 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:46, 58589795 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:47, 59549651 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:49, 59549537 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:50, 59549586 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:51, 59549579 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:52, 59549604 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:54, 59549597 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:55, 59549596 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:56, 59549570 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:58, 59549567 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:49:59, 59549481 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:00, 59550738 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:01, 59549659 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:03, 59549585 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:04, 59549619 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:05, 59549565 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:07, 59549602 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:08, 59549613 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:09, 59549596 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:11, 59549688 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:12, 59549562 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:13, 59549611 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:14, 59549599 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:16, 59549659 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:17, 59549591 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:18, 59549630 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:20, 59933463 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:21, 60509433 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:22, 60509430 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:23, 60509354 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:25, 60509389 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:26, 60509390 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:27, 60509501 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:29, 60509386 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:30, 60509402 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:31, 60509388 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:32, 60509423 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:34, 60509397 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:35, 60509392 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:36, 60509381 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:38, 60509449 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:39, 60509431 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:40, 60509418 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:42, 60509386 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:43, 60509458 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:44, 60509389 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:45, 60509405 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:47, 60509422 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:48, 61277253 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:49, 61469288 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:51, 61469269 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:52, 61469252 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:53, 61469231 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:55, 61469217 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:56, 61469266 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:57, 61469243 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:50:58, 61469176 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:00, 61469279 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:01, 61469253 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:02, 61469323 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:04, 61469226 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:05, 61469295 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:06, 61469282 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:08, 61469227 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:09, 61469200 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:10, 61469294 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:11, 61469218 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:13, 61469288 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:14, 61469218 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:15, 61469239 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:17, 61469223 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:18, 61917119 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:19, 62429044 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:21, 62429092 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:22, 62429080 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:23, 62429044 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:24, 62429034 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:26, 62429114 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:27, 62429063 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:28, 62429053 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:30, 62429073 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:31, 62429035 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:32, 62429083 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:34, 62429013 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:35, 62429095 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:36, 62429076 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:37, 62429017 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:39, 62429040 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:40, 62429024 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:41, 62429036 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:43, 62429033 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:44, 62429048 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:45, 62429009 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:47, 62428984 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:48, 62429002 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:49, 62748990 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:50, 63388869 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:52, 63388850 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:53, 63388814 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:54, 63388875 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:56, 63426662 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:57, 63474547 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:51:58, 63538605 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:00, 63584389 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:01, 63621054 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:02, 63621077 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:04, 63621053 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:05, 63621116 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:06, 63621139 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:07, 63621163 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:09, 63621056 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:10, 63621072 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:11, 63621138 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:13, 63621091 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:14, 63621073 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:15, 63621067 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:17, 63621165 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:18, 63621066 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:19, 63621090 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:21, 63621076 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:22, 64612905 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:23, 64612876 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:24, 64612956 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:26, 64612955 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:27, 64612896 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:28, 64612918 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:30, 64612865 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:31, 64612980 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:32, 64612969 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:34, 64612958 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:35, 64612903 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:36, 64612959 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:38, 64612946 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:39, 64612896 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:40, 64612957 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:42, 64612872 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:43, 64612924 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:44, 64612925 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:45, 64612903 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:47, 64612928 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:48, 64612947 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:49, 64612915 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:51, 65572756 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:52, 65572757 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:53, 65572728 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:55, 65572760 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:56, 65572741 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:57, 65572674 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:52:58, 65572721 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:00, 65572674 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:01, 65572746 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:02, 65572751 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:04, 65572669 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:05, 65572699 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:06, 65572722 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:08, 65572688 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:09, 65572730 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:10, 65572719 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:12, 65572708 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:13, 65572694 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:14, 65572773 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:16, 65572726 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:17, 65572758 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:18, 65572727 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:19, 65572706 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:21, 66020678 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:22, 66532551 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:23, 66532547 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:25, 66532533 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:26, 66532538 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:27, 66532538 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:29, 66532509 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:30, 66532595 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:31, 66532574 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:33, 66532487 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:34, 66532528 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:35, 66532521 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:37, 66532526 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:38, 66532577 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:39, 66532563 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:41, 66532473 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:42, 66532570 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:43, 66532515 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:44, 66532538 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:46, 66532533 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:47, 66532567 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:48, 66532474 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:50, 66532501 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:51, 66532570 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:52, 66532499 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:54, 66724507 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:55, 67492300 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:56, 67492323 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:58, 67492345 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:53:59, 67492304 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:00, 67492352 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:02, 67492380 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:03, 67492376 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:04, 67492324 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:06, 67492297 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:07, 67492318 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:08, 67492324 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:09, 67492358 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:11, 67492316 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:12, 67492303 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:13, 67492305 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:15, 67492298 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:16, 67492346 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:17, 67492325 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:19, 67492373 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:20, 67492361 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:21, 67492358 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:23, 68452120 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:24, 68452147 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:25, 68452164 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:27, 68452210 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:28, 68452150 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:29, 68452165 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:31, 68452178 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:32, 68452164 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:33, 68452151 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:35, 68452143 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:36, 68452142 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:37, 68452151 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:38, 68452148 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:40, 68452128 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:41, 68452193 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:42, 68452245 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:44, 68452117 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:45, 68452155 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:46, 68452146 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:48, 68452185 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:49, 68452153 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:50, 68452170 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:52, 68452160 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:53, 69411954 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:54, 69412033 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:56, 69411950 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:57, 69411946 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:54:58, 69411993 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:00, 69411928 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:01, 69411921 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:02, 69411934 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:04, 69411932 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:05, 69411972 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:06, 69411933 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:08, 69411956 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:09, 69411955 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:10, 69411898 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:12, 69411935 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:13, 69411941 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:14, 69411927 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:15, 69411982 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:17, 69411965 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:18, 69411930 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:19, 69411980 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:21, 69412008 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:22, 69411962 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:23, 69411957 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:25, 70371754 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:26, 70371772 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:27, 70371744 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:29, 70371791 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:30, 70371756 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:31, 70371758 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:33, 70371810 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:34, 70371744 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:35, 70371785 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:37, 70371804 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:38, 70371729 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:39, 70371774 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:41, 70371779 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:42, 70371799 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:43, 70371749 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:45, 70371765 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:46, 70371766 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:47, 70371749 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:48, 70371742 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:50, 70371778 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:51, 70371785 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:52, 70371787 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:54, 70371738 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:55, 71331611 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:56, 71331581 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:58, 71331607 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:55:59, 71331588 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:00, 71331570 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:02, 71331608 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:03, 71331535 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:04, 71331563 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:06, 71331587 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:07, 71331573 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:08, 71331605 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:10, 71331556 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:11, 71331560 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:12, 71331598 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:14, 71331651 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:15, 71331536 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:16, 71331569 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:18, 71331578 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:19, 71331595 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:20, 71331570 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:22, 71331587 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:23, 71331616 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:24, 72291367 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:26, 72291417 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:27, 72291453 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:28, 72291414 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:30, 72291373 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:31, 72291360 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:32, 72291447 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:34, 72291419 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:35, 72291411 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:36, 72291420 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:38, 72291356 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:39, 72291379 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:40, 72291403 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:42, 72291368 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:43, 72291428 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:44, 72291393 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:46, 72291391 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:47, 72291419 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:48, 72291373 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:50, 72291411 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:51, 72291400 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:52, 72291379 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:54, 72291429 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:55, 73251232 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:56, 73251213 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:58, 73251176 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:56:59, 73251228 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:00, 73251170 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:02, 73251231 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:03, 73251184 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:04, 73251165 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:06, 73251215 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:07, 73251206 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:08, 73251200 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:10, 73251254 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:11, 73251188 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:12, 73251285 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:14, 73251225 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:15, 73251184 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:16, 73251222 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:18, 73251230 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:19, 73251170 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:20, 73251233 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:22, 73251198 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:23, 73251205 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:24, 73251199 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:26, 73251222 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:27, 74211048 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:28, 74211026 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:30, 74211045 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:31, 74211050 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:32, 74211021 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:34, 74211006 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:35, 74211021 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:37, 74211003 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:38, 74210992 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:39, 74210993 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:41, 74211059 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:42, 74211032 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:43, 74211002 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:45, 74211044 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:46, 74211051 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:47, 74211053 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:49, 74210996 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:50, 74211005 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:51, 74211002 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:53, 74211003 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:54, 74211026 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:55, 75170853 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:57, 75170852 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:58, 75170837 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:57:59, 75170826 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:01, 75170856 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:02, 75170884 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:03, 75170829 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:05, 75170849 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:06, 75170853 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:07, 75170850 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:09, 75170858 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:10, 75170879 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:11, 75170842 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:13, 75170841 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:14, 75170838 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:15, 75170858 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:17, 75170829 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:18, 75170864 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:19, 75170862 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:21, 75170862 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:22, 75170817 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:23, 75170797 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:25, 75234831 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:26, 76130699 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:27, 76130649 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:29, 76130643 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:30, 76130695 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:31, 76130720 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:33, 76130653 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:34, 76130663 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:35, 76130638 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:37, 76130642 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:38, 76130652 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:40, 76130669 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:41, 76130636 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:42, 76130650 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:44, 76130640 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:45, 76130616 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:46, 76130707 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:48, 76130630 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:49, 76130712 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:50, 76130699 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:52, 76130684 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:53, 76130705 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:54, 76130649 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:56, 76130679 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:57, 77090468 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:58:58, 77090434 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:00, 77090541 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:01, 77090461 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:02, 77090447 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:04, 77090443 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:05, 77090494 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:06, 77090455 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:08, 77090446 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:09, 77090483 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:10, 77090450 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:12, 77090448 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:13, 77090463 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:14, 77090565 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:16, 77090494 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:17, 77090433 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:19, 77090502 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:20, 77090463 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:21, 77090540 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:23, 77090501 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:24, 77090541 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:25, 77090518 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:27, 77090464 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:28, 78050260 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:29, 78050289 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:31, 78050254 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:32, 78050272 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:33, 78050266 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:35, 78050297 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:36, 78050286 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:37, 78050269 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:39, 78050283 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:40, 78050260 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:41, 78050322 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:43, 78050268 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:44, 78050339 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:46, 78050314 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:47, 78050275 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:48, 78050330 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:50, 78050256 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:51, 78050284 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:52, 78050327 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:54, 78050314 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:55, 78050289 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:56, 78626170 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:58, 79010123 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 03:59:59, 79011209 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:00, 79011304 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:02, 79010073 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:03, 79010091 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:04, 79010113 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:06, 79010074 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:07, 79010051 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:09, 79010064 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:10, 79010072 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:11, 79010111 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:13, 79010099 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:14, 79010121 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:15, 79010131 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:17, 79010096 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:18, 79010089 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:19, 79010067 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:21, 79010103 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:22, 79010082 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:23, 79010142 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:25, 79010092 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:26, 79010121 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:28, 79330037 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:29, 79969885 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:30, 79969922 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:32, 79969893 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:33, 79969908 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:34, 79969908 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:36, 79969947 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:37, 79969883 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:38, 79969898 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:40, 79969934 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:41, 79969981 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:42, 79969906 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:44, 79969907 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:45, 79969924 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:46, 79969979 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:48, 79969948 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:49, 79969964 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:51, 79969892 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:52, 79969917 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:53, 79969910 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:55, 79969888 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:56, 79969921 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:57, 79969963 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:00:59, 79969892 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:00, 80929714 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:01, 80929698 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:03, 80929704 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:04, 80929682 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:05, 80929690 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:07, 80929706 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:08, 80929727 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:10, 80929744 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:11, 80929721 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:12, 80929695 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:14, 80929721 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:15, 80929732 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:16, 80929711 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:18, 80929707 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:19, 80929703 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:20, 80929770 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:22, 80929699 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:23, 80929726 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:24, 80929718 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:26, 80929728 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:27, 80929725 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:29, 81761631 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:30, 81889504 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:31, 81889524 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:33, 81889546 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:34, 81889532 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:35, 81889513 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:37, 81889549 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:38, 81889562 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:39, 81889572 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:41, 81889538 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:42, 81889533 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:43, 81889582 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:45, 81889536 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:46, 81889513 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:48, 81889531 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:49, 81889531 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:50, 81889530 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:52, 81889559 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:53, 81889543 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:54, 81889539 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:56, 81889560 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:57, 81889588 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:01:58, 81889569 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:00, 82849412 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:01, 82849384 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:02, 82849339 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:04, 82849371 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:05, 82849324 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:07, 82849335 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:08, 82849364 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:09, 82849429 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:11, 82849348 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:12, 82849365 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:13, 82849354 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:15, 82849407 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:16, 82849362 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:17, 82849414 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:19, 82849356 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:20, 82849328 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:22, 82849366 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:23, 82849422 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:24, 82849370 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:26, 82849346 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:27, 82849365 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:28, 82849361 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:30, 82849315 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:31, 82849398 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:32, 83809185 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:34, 83809157 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:35, 83809137 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:37, 83809161 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:38, 83809162 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:39, 83809230 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:41, 83809218 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:42, 83809156 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:43, 83809175 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:45, 83809201 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:46, 83809181 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:48, 83809200 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:49, 83809133 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:50, 83809193 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:52, 83809125 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:53, 83809161 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:54, 83809161 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:56, 83809152 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:57, 83809172 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:02:58, 83809185 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:00, 83809173 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:01, 84768994 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:03, 84769039 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:04, 84768993 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:05, 84769017 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:07, 84768969 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:08, 84769024 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:09, 84768984 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:11, 84768982 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:12, 84768998 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:14, 84769007 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:15, 84769016 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:16, 84769007 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:18, 84768963 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:19, 84768992 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:20, 84769004 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:22, 84768978 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:23, 84768990 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:24, 84768988 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:26, 84769007 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:27, 84768962 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:29, 84768969 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:30, 85152921 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:31, 85728773 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:33, 85728830 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:34, 85728821 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:35, 85728807 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:37, 85728800 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:38, 85728866 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:40, 85728776 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:41, 85728790 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:42, 85728810 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:44, 85728804 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:45, 85728788 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:46, 85728795 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:48, 85728807 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:49, 85728794 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:51, 85728842 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:52, 85728831 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:53, 85728765 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:55, 85728844 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:56, 85728798 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:57, 85728819 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:03:59, 85728787 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:00, 85728800 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:02, 86176746 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:03, 86688630 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:04, 86688609 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:06, 86688601 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:07, 86688616 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:08, 86688593 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:10, 86688697 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:11, 86688664 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:13, 86688694 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:14, 86688593 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:15, 86688682 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:17, 86688652 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:18, 86688630 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:19, 86688635 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:21, 86688655 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:22, 86688607 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:24, 86688649 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:25, 86688605 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:26, 86688597 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:28, 86688631 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:29, 86688673 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:30, 86688611 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:32, 86688593 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:33, 87456487 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:35, 87648430 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:36, 87648415 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:37, 87648425 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:39, 87648418 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:40, 87648442 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:41, 87648420 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:43, 87648418 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:44, 87648417 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:46, 87648501 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:47, 87648461 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:48, 87648405 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:50, 87648419 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:51, 87648475 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:52, 87648430 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:54, 87648512 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:55, 87648472 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:57, 87648448 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:58, 87648472 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:04:59, 87648427 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:01, 87648446 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:02, 87904478 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:03, 88608351 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:05, 88608325 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:06, 88608321 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:08, 88608313 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:09, 88608321 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:10, 88608398 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:12, 88608351 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:13, 88608347 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:15, 88608310 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:16, 88608275 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:17, 88608313 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:19, 88608351 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:20, 88608388 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:21, 88608342 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:23, 88608316 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:24, 88608331 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:26, 88608313 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:27, 88608316 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:28, 88608307 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:30, 88608271 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:31, 88608311 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:33, 88608310 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:34, 89568199 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:35, 89568201 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:37, 89568167 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:38, 89568114 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:39, 89568130 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:41, 89568121 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:42, 89568167 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:44, 89568146 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:45, 89568105 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:46, 89568134 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:48, 89568205 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:49, 89568081 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:51, 89568153 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:52, 89568114 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:53, 89568140 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:55, 89568144 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:56, 89568134 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:57, 89568100 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:05:59, 89568136 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:00, 89568069 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:02, 89568133 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:03, 89568103 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:04, 89568129 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:06, 90336018 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:07, 90527980 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:09, 90527963 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:10, 90527983 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:11, 90527980 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:13, 90527970 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:14, 90528029 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:16, 90527952 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:17, 90527916 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:18, 90527985 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:20, 90527920 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:21, 90527945 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:22, 90527897 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:24, 90527947 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:25, 90527933 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:27, 90528010 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:28, 90527975 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:29, 90527960 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:31, 90527979 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:32, 90527982 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:34, 90527958 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:35, 91487726 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:36, 91487758 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:38, 91487773 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:39, 91487773 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:41, 91487780 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:42, 91487738 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:43, 91487776 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:45, 91487791 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:46, 91487813 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:48, 91487820 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:49, 91487720 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:50, 91487704 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:52, 91487726 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:53, 91487797 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:54, 91487797 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:56, 91487733 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:57, 91487746 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:06:59, 91487826 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:00, 91487809 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:01, 91487794 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:03, 91487761 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:04, 92063630 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:06, 92447532 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:07, 92447586 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:08, 92447618 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:10, 92447611 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:11, 92447600 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:13, 92447559 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:14, 92447583 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:15, 92447573 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:17, 92447596 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:18, 92447539 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:20, 92447633 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:21, 92447546 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:22, 92447668 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:24, 92447579 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:25, 92447585 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:26, 92447651 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:28, 92447572 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:29, 92447586 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:31, 92447587 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:32, 92447553 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:33, 92447598 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:35, 92447576 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:36, 93407375 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:38, 93407348 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:39, 93407337 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:40, 93407400 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:42, 93407406 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:43, 93407381 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:45, 93407394 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:46, 93407340 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:47, 93407355 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:49, 93407433 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:50, 93407400 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:52, 93407420 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:53, 93407387 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:54, 93407348 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:56, 93407411 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:57, 93407404 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:07:59, 93407426 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:00, 93407368 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:01, 93407458 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:03, 93407369 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:04, 93407416 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:06, 93407362 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:07, 94367217 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:08, 94367248 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:10, 94367238 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:11, 94367232 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:13, 94367248 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:14, 94367213 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:15, 94367218 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:17, 94367210 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:18, 94367249 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:20, 94367266 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:21, 94367258 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:22, 94367262 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:24, 94367187 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:25, 94367212 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:27, 94367196 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:28, 94367250 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:29, 94367251 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:31, 94367236 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:32, 94367253 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:34, 94367236 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:35, 94367143 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:36, 95327060 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:38, 95327088 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:39, 95327067 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:41, 95327058 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:42, 95327042 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:43, 95327036 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:45, 95327044 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:46, 95327042 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:48, 95327000 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:49, 95326988 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:50, 95326984 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:52, 95327025 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:53, 95327066 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:55, 95327075 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:56, 95327027 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:57, 95327076 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:08:59, 95327048 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:00, 95327035 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:02, 95327032 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:03, 95327099 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:04, 95327125 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:06, 95518936 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:07, 96286822 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:09, 96286847 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:10, 96286882 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:11, 96286852 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:13, 96286800 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:14, 96286852 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:16, 96286878 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:17, 96286848 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:18, 96286850 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:20, 96286789 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:21, 96286814 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:23, 96286839 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:24, 96286870 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:26, 96286833 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:27, 96286850 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:28, 96286864 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:30, 96286855 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:31, 96286815 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:33, 96286869 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:34, 96286824 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:35, 96286809 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:37, 96286849 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:38, 96286827 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:40, 97246757 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:41, 97246645 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:42, 97246656 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:44, 97246623 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:45, 97246641 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:47, 97246614 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:48, 97246602 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:49, 97246644 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:51, 97246689 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:52, 97246671 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:54, 97246711 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:55, 97246707 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:56, 97246700 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:58, 97246708 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:09:59, 97246709 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:01, 97246704 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:02, 97246722 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:04, 97246726 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:05, 97246679 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:06, 97246633 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:08, 98206417 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:09, 98206500 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:11, 98206525 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:12, 98206440 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:13, 98206430 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:15, 98206441 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:16, 98206430 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:18, 98206440 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:19, 98206445 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:20, 98206458 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:22, 98206482 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:23, 98206484 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:25, 98206448 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:26, 98206429 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:27, 98206469 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:29, 98206501 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:30, 98206494 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:32, 98206470 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:33, 98206432 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:35, 98206486 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:36, 98206453 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:37, 98206456 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:39, 99166264 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:40, 99166323 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:42, 99166315 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:43, 99166310 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:44, 99166286 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:46, 99166265 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:47, 99166285 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:49, 99166299 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:50, 99166389 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:52, 99166278 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:53, 99166334 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:54, 99166302 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:56, 99166289 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:57, 99166277 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:10:59, 99166251 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:00, 99166259 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:01, 99166336 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:03, 99166258 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:04, 99166224 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:06, 99166256 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:07, 99166266 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:09, 99166319 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:10, 100126134 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:11, 100126069 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:13, 100126124 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:14, 100126114 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:16, 100126113 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:17, 100126121 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:18, 100126089 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:20, 100126077 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:21, 100126063 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:23, 100126106 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:24, 100126196 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:26, 100126092 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:27, 100126140 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:28, 100126090 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:30, 100126039 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:31, 100126070 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:33, 100126160 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:34, 100126178 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:35, 100126113 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:37, 100126092 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:38, 100126078 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:40, 101085983 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:41, 101085945 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:43, 101085963 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:44, 101086024 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:45, 101085900 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:47, 101085940 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:48, 101085960 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:50, 101085956 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:51, 101085940 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:53, 101085902 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:54, 101085951 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:55, 101085950 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:57, 101085962 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:11:58, 101085946 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:00, 101085936 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:01, 101085855 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:03, 101085935 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:04, 101085940 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:05, 101085959 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:07, 101086007 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:08, 101085907 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:10, 102045775 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:11, 102045683 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:13, 102045773 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:14, 102045722 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:15, 102045680 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:17, 102045754 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:18, 102045702 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:20, 102045714 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:21, 102045755 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:22, 102045790 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:24, 102045832 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:25, 102045691 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:27, 102045747 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:28, 102045714 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:30, 102045732 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:31, 102045708 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:32, 102045728 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:34, 102045686 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:35, 102045720 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:37, 102045748 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:38, 102045779 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:40, 102045705 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:41, 103005552 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:42, 103005562 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:44, 103005532 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:45, 103005656 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:47, 103005539 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:48, 103005506 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:50, 103005621 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:51, 103005518 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:52, 103005552 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:54, 103005526 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:55, 103005492 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:57, 103005539 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:58, 103005495 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:12:59, 103005566 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:01, 103005515 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:02, 103005520 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:04, 103005529 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:05, 103005507 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:07, 103005510 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:08, 103005570 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:09, 103005555 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:11, 103005562 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:12, 103965392 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:14, 103965374 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:15, 103965328 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:17, 103965315 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:18, 103965385 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:19, 103965418 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:21, 103965398 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:22, 103965406 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:24, 103965389 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:25, 103965407 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:27, 103965393 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:28, 103965479 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:29, 103965328 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:31, 103965348 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:32, 103965372 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:34, 103965337 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:35, 103965371 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:37, 103965350 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:38, 103965380 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:39, 103965427 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:41, 104925220 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:42, 104925175 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:44, 104925166 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:45, 104925134 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:47, 104925188 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:48, 104925215 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:49, 104925238 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:51, 104925185 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:52, 104925238 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:54, 104925145 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:55, 104925168 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:57, 104925172 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:13:58, 104925124 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:00, 104925221 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:01, 104925184 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:02, 104925171 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:04, 104925238 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:05, 104925203 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:07, 104925212 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:08, 104925188 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:10, 104925203 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:11, 105885023 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:12, 105885006 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:14, 105884994 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:15, 105884998 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:17, 105884982 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:18, 105885069 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:20, 105885001 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:21, 105884956 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:23, 105885034 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:24, 105885026 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:25, 105885009 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:27, 105885005 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:28, 105885007 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:30, 105885016 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:31, 105885004 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:33, 105885000 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:34, 105884992 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:35, 105885008 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:37, 105885000 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:38, 105885027 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:40, 105885027 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:41, 105884966 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:43, 105885006 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:44, 106076968 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:45, 106844860 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:47, 106844820 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:48, 106844779 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:50, 106844879 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:51, 106844843 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:53, 106844800 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:54, 106844850 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:55, 106844815 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:57, 106844804 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:14:58, 106844834 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:00, 106846059 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:01, 106844820 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:03, 106844815 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:04, 106844820 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:06, 106844761 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:07, 106844856 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:08, 106844800 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:10, 106844838 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:11, 106844818 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:13, 107804666 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:14, 107804678 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:16, 107804684 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:17, 107804612 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:19, 107804621 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:20, 107804609 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:21, 107804640 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:23, 107804572 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:24, 107804579 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:26, 107804631 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:27, 107804611 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:29, 107804614 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:30, 107804642 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:32, 107804686 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:33, 107804634 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:34, 107804631 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:36, 107804634 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:37, 107804569 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:39, 107804614 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:40, 107804638 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:42, 107804599 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:43, 108764420 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:44, 108764471 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:46, 108764425 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:47, 108764502 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:49, 108764405 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:50, 108764441 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:52, 108764430 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:53, 108764406 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:55, 108764441 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:56, 108764440 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:57, 108764455 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:15:59, 108764393 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:00, 108764503 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:02, 108764458 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:03, 108764439 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:05, 108764438 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:06, 108764420 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:08, 108764401 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:09, 108764407 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:10, 108764492 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:12, 108764527 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:13, 108828465 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:15, 109724305 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:16, 109724260 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:18, 109724218 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:19, 109724296 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:21, 109724234 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:22, 109724288 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:24, 109724343 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:25, 109724261 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:26, 109724287 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:28, 109724252 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:29, 109724283 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:31, 109724265 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:32, 109724286 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:34, 109724235 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:35, 109724271 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:37, 109724253 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:38, 109724287 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:39, 109724264 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:41, 109724230 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:42, 109724288 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:44, 109724273 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:45, 110652062 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:47, 110684120 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:48, 110684044 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:50, 110684055 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:51, 110684102 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:53, 110684073 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:54, 110684058 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:55, 110684064 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:57, 110684068 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:16:58, 110684154 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:00, 110684071 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:01, 110684107 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:03, 110684127 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:04, 110684103 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:05, 110684057 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:07, 110684066 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:08, 110684088 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:10, 110684100 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:11, 110684093 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:13, 110684078 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:14, 110684069 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:16, 114057915 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:17, 118568239 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:19, 123163768 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:20, 127640011 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:22, 129680172 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:24, 129663031 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:26, 129402353 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:28, 129211624 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:31, 129109479 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:33, 128791160 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:35, 128858577 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:37, 128818786 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:39, 128945670 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:41, 128580249 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:43, 129034711 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:45, 128742452 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:47, 128790220 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:50, 128305120 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:52, 128744053 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:54, 128711431 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:56, 128827967 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:58, 128961678 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:17:59, 128918966 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:01, 128750306 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:03, 128892602 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:04, 128733964 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:06, 128827019 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:08, 128734234 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:10, 128500979 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:12, 128661668 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:15, 128840254 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:17, 128506565 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:19, 128587178 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:21, 128659147 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:22, 128733178 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:24, 128808550 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:25, 128728375 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:27, 128800002 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:29, 128839346 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:30, 128742823 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:32, 128814717 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:34, 128885506 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:35, 128777961 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:37, 128851266 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:39, 128865706 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:40, 128875176 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:42, 128888209 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:43, 128760290 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:45, 128849274 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:47, 128748847 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:48, 128826035 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:50, 128811321 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:52, 128812585 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:53, 128800008 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:55, 128832236 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:57, 128755985 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:18:58, 128820440 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:00, 128890036 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:01, 128838056 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:03, 128918286 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:05, 128819177 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:06, 128904275 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:08, 128976668 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:10, 128862079 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:11, 128934747 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:13, 128886085 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:15, 128950531 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:16, 129022943 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:18, 129047871 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:20, 128984233 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:21, 129058194 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:23, 128961708 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:25, 129027102 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:26, 129100469 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:28, 128964195 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:29, 129037366 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:31, 129050090 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:33, 128989528 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:34, 129063622 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:36, 128951520 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:38, 129011179 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:39, 129083390 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:41, 129077941 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:43, 129010460 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:44, 129083785 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:46, 129156859 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:48, 129042969 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:49, 129115673 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:51, 129047620 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:53, 129109964 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:54, 129182382 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:56, 129138611 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:58, 129211484 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:19:59, 129037620 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:01, 129085918 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:03, 129163303 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:04, 129078939 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:06, 129091548 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:08, 129079722 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:09, 129177417 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:11, 129091627 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:13, 129008633 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:14, 129105026 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:16, 129028598 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:18, 129026346 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:19, 129018652 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:21, 129035602 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:23, 129008840 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:24, 128911508 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:26, 128988213 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:28, 128937317 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:29, 129012172 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:31, 128924690 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:33, 129000280 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:34, 129073763 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:36, 128927261 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:38, 128999657 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:39, 129072560 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:41, 128955129 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:43, 129028613 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:45, 129100555 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:46, 129004528 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:48, 129076001 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:50, 128955060 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:51, 129025681 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:53, 129098566 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:55, 129025076 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:56, 129099910 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:20:58, 128906190 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:00, 128928518 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:01, 128973574 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:03, 129002439 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:05, 129028210 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:06, 129064204 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:08, 128998308 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:10, 129044699 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:12, 129126593 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:13, 129096981 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:15, 129025844 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:17, 129169119 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:18, 129150666 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:20, 129149096 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:22, 129068837 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:23, 129213168 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:25, 128890105 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:27, 129032024 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:29, 129171961 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:30, 129099269 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:32, 129203127 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:34, 129152142 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:35, 129110913 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:37, 129105731 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:39, 129190618 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:40, 129171981 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:42, 128878703 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:45, 128511185 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:47, 128626578 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:50, 128636183 , 0, 13, 1000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 04:21:59, 6724 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:00, 85838 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:01, 236851 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:02, 283958 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:03, 344776 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:04, 434278 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:05, 494493 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:06, 563921 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:07, 635495 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:08, 709662 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:09, 776478 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:10, 840199 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:12, 883291 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:13, 956716 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:14, 1083474 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:15, 1157712 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:16, 1226310 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:17, 1270096 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:18, 1335060 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:19, 1385035 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:20, 1446211 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:21, 1503035 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:22, 1561404 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:23, 1638405 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:25, 1688739 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:26, 1783584 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:27, 1904602 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:28, 1951322 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:29, 2041315 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:30, 2085092 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:31, 2119140 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:32, 2200128 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:33, 2255897 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:34, 2316123 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:35, 2388707 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:36, 2419469 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:38, 2567859 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:39, 2624341 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:40, 2701487 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:41, 2778343 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:42, 2838413 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:43, 2884120 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:44, 2927855 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:45, 2976150 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:46, 3050632 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:47, 3112083 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:48, 3170552 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:50, 3240954 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:51, 3281564 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:52, 3422196 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:53, 3497964 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:54, 3560763 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:55, 3622928 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:56, 3688832 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:57, 3754710 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:58, 3821924 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:22:59, 3886238 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:01, 3941834 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:02, 3982754 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:03, 4006526 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:04, 4082034 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:05, 4134999 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:06, 4184752 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:07, 4262832 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:08, 4326722 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:09, 4381121 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:10, 4459468 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:12, 4509128 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:13, 4574873 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:14, 4577338 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:15, 4827697 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:16, 4886424 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:17, 4975627 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:18, 5060332 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:19, 5092706 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:20, 5153393 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:21, 5239715 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:23, 5315164 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:24, 5353360 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:25, 5406770 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:26, 5487362 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:27, 5565976 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:28, 5613690 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:29, 5631031 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:30, 5676074 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:31, 5727426 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:33, 5786472 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:34, 5845522 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:35, 5911049 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:36, 5974363 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:37, 6040766 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:38, 6105065 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:39, 6167936 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:40, 6232340 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:41, 6299955 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:43, 6369332 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:44, 6442239 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:45, 6459188 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:46, 6510144 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:47, 6803732 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:48, 6868777 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:49, 6975403 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:50, 6996368 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:51, 7115329 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:53, 7121636 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:54, 7242670 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:55, 7271189 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:56, 7361124 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:57, 7427334 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:58, 7476715 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:23:59, 7588446 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:00, 7600985 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:01, 7700100 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:03, 7762543 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:04, 7807442 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:05, 7912270 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:06, 7917274 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:07, 7996990 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:08, 7996993 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:09, 8057694 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:10, 8095589 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:11, 8181841 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:13, 8269693 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:14, 8307212 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:15, 8368858 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:16, 8452209 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:17, 8539922 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:18, 8588611 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:19, 8641971 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:20, 8708100 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:22, 8789625 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:23, 8869202 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:24, 8946969 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:25, 9021397 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:26, 9094805 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:27, 9167015 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:28, 9235982 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:29, 9287956 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:31, 9287978 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:32, 9354121 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:33, 9675396 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:34, 9945808 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:35, 9998567 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:36, 10027151 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:37, 10095374 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:38, 10169382 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:40, 10240946 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:41, 10306161 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:42, 10337692 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:43, 10388375 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:44, 10455449 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:45, 10528270 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:46, 10600684 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:47, 10650548 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:49, 10668796 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:50, 10668724 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:51, 10668797 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:52, 10668708 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:53, 10734505 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:54, 10760632 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:55, 10795703 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:56, 10856534 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:58, 10922493 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:24:59, 10982101 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:00, 11040956 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:01, 11082653 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:02, 11267359 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:03, 12150512 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:04, 12266767 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:06, 12272354 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:07, 12272334 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:08, 12272343 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:09, 12272361 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:10, 12272315 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:11, 12272405 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:12, 12299610 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:14, 12359381 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:15, 12430211 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:16, 12500926 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:17, 12565022 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:18, 12598229 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:19, 12637956 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:20, 12698351 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:21, 12766003 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:23, 12766020 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:24, 12765973 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:25, 12765973 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:26, 12765984 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:27, 12765985 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:28, 12802624 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:29, 12866432 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:31, 12923141 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:32, 12982443 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:33, 13035837 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:34, 14029323 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:35, 14139770 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:36, 14210757 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:37, 14284003 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:39, 14334025 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:40, 14377360 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:41, 14419930 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:42, 14493014 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:43, 14550157 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:44, 14618454 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:45, 14686908 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:47, 14755266 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:48, 14808198 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:49, 14848538 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:50, 14892187 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:51, 14942075 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:52, 14942029 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:53, 14942100 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:55, 14942109 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:56, 14942043 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:57, 14942052 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:58, 14942103 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:25:59, 14942056 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:00, 14942053 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:01, 14978304 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:03, 16013467 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:04, 16085166 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:05, 16143657 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:06, 16143706 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:07, 16143730 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:08, 16143650 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:09, 16143733 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:11, 16143695 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:12, 16143696 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:13, 16143714 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:14, 16143737 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:15, 16143679 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:16, 16143689 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:17, 16143632 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:19, 16143694 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:20, 16143698 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:21, 16143732 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:22, 16143651 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:23, 16143668 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:24, 16143670 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:26, 16143665 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:27, 16143657 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:28, 16143648 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:29, 16143658 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:30, 16143660 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:31, 16143689 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:32, 17135496 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:34, 17135471 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:35, 17135445 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:36, 17135456 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:37, 17135502 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:38, 17135506 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:39, 17135452 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:41, 17135454 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:42, 17135555 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:43, 17135451 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:44, 17135504 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:45, 17135489 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:46, 17135462 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:47, 17135447 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:49, 17135463 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:50, 17135497 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:51, 17135561 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:52, 17135476 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:53, 17135507 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:54, 17135460 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:56, 17135498 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:57, 17135494 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:58, 17135466 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:26:59, 17135472 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:00, 17167539 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:01, 18143384 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:02, 18216014 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:04, 18242602 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:05, 18294977 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:06, 18356464 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:07, 18426832 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:08, 18498100 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:09, 18559275 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:11, 18606097 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:12, 18622577 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:13, 18622573 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:14, 18622580 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:15, 18622546 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:16, 18622566 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:17, 18622548 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:19, 18622602 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:20, 18622546 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:21, 18622552 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:22, 18622535 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:23, 18622545 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:24, 18622610 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:26, 18622627 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:27, 18622567 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:28, 18622626 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:29, 18622540 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:30, 18622555 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:31, 18622582 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:33, 19102418 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:34, 19614355 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:35, 19614363 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:36, 19614327 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:37, 19614350 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:38, 19614333 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:40, 19614312 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:41, 19614384 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:42, 19614396 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:43, 19614414 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:44, 19614388 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:45, 19614353 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:46, 19614361 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:48, 19614358 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:49, 19614363 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:50, 19614406 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:51, 19614404 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:52, 19614354 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:53, 19614321 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:55, 19614410 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:56, 19614328 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:57, 19614392 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:58, 19614354 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:27:59, 19614373 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:00, 19998302 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:02, 20574180 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:03, 20574179 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:04, 20574153 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:05, 20574160 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:06, 20574173 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:07, 20574178 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:09, 20574166 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:10, 20574184 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:11, 20574207 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:12, 20574168 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:13, 20574192 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:14, 20574161 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:16, 20609013 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:17, 20648923 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:18, 20712384 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:19, 20775947 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:20, 20839790 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:21, 20839729 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:22, 20839731 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:24, 20839818 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:25, 20839770 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:26, 20839713 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:27, 20839752 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:28, 20839699 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:29, 20936530 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:31, 21888741 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:32, 21935781 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:33, 21984842 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:34, 21984827 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:35, 21984815 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:36, 21984862 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:38, 21984810 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:39, 21984795 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:40, 21984833 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:41, 21984904 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:42, 21984856 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:43, 21984819 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:45, 21984871 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:46, 21984867 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:47, 21984802 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:48, 21984901 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:49, 21984848 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:50, 21984803 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:52, 21984833 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:53, 21984831 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:54, 21984809 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:55, 21984828 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:56, 21984836 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:57, 21984824 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:28:59, 21984834 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:00, 21984855 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:01, 22976711 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:02, 22976660 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:03, 22976619 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:05, 22976656 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:06, 22976665 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:07, 22976680 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:08, 22976633 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:09, 22976628 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:10, 22976713 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:12, 22976677 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:13, 22976629 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:14, 22976642 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:15, 22976679 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:16, 22976614 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:17, 22976656 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:19, 22976677 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:20, 22976647 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:21, 22976652 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:22, 22976644 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:23, 22976641 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:24, 22976701 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:26, 22976611 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:27, 22976627 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:28, 22976611 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:29, 23936458 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:30, 23936432 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:31, 23936463 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:33, 23936438 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:34, 23936482 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:35, 23936459 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:36, 23936432 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:37, 23936509 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:39, 23936458 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:40, 23936449 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:41, 23936477 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:42, 23936516 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:43, 23936464 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:44, 23936374 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:46, 23936398 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:47, 23936381 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:48, 23936559 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:49, 23963371 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:50, 23963347 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:51, 23963309 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:53, 23963325 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:54, 23963349 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:55, 23963402 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:56, 23963419 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:57, 23963357 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:29:58, 23963370 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:00, 24955240 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:01, 24955197 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:02, 24955138 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:03, 24955170 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:04, 24955213 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:06, 24955239 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:07, 24955181 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:08, 24955193 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:09, 24955183 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:10, 24955210 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:11, 24955195 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:13, 24955166 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:14, 24955176 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:15, 24955205 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:16, 24955149 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:17, 24955152 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:18, 24955209 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:20, 24955191 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:21, 24955196 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:22, 24955188 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:23, 24955221 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:24, 24955218 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:26, 24955233 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:27, 24955236 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:28, 25915002 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:29, 25915014 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:30, 25914980 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:31, 25915035 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:33, 25915076 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:34, 25915012 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:35, 25914982 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:36, 25915039 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:37, 25914986 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:39, 25914998 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:40, 25915048 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:41, 25914995 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:42, 25915004 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:43, 25915023 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:44, 25915011 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:46, 25915035 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:47, 25915058 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:48, 25914978 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:49, 25914998 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:50, 25915060 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:52, 25914985 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:53, 25915000 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:54, 25915016 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:55, 25915024 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:56, 25915051 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:57, 25914985 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:30:59, 26874792 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:00, 26874838 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:01, 26874839 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:02, 26874831 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:03, 26874835 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:05, 26874783 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:06, 26874823 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:07, 26874796 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:08, 26874856 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:09, 26874891 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:11, 26874890 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:12, 26874846 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:13, 26874809 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:14, 26874845 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:15, 26874856 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:16, 26874859 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:18, 26874803 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:19, 26874797 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:20, 26874842 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:21, 26874824 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:22, 26874846 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:24, 26874811 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:25, 26874815 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:26, 26874808 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:27, 27834630 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:28, 27834621 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:29, 27834603 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:31, 27834626 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:32, 27834620 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:33, 27834623 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:34, 27834684 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:35, 27834613 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:37, 27834643 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:38, 27834646 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:39, 27834677 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:40, 27834667 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:41, 27834679 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:43, 27834603 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:44, 27834620 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:45, 27834659 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:46, 27834662 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:47, 27834588 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:48, 27834698 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:50, 27834634 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:51, 27834648 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:52, 27834632 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:53, 27834622 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:54, 27834684 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:56, 28794522 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:57, 28851643 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:58, 28895975 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:31:59, 28958088 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:00, 28983841 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:02, 29027417 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:03, 29097023 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:04, 29166933 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:05, 29223459 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:06, 29288002 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:08, 29352970 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:09, 29411156 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:10, 29448453 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:11, 29482208 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:12, 29534572 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:13, 29596328 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:15, 29596340 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:16, 29596355 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:17, 29596328 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:18, 29596304 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:19, 29596302 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:21, 29596270 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:22, 29596285 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:23, 29596295 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:24, 29596300 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:25, 29596283 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:27, 29596323 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:28, 30588122 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:29, 30588153 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:30, 30588120 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:31, 30588072 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:33, 30588098 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:34, 30588123 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:35, 30588047 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:36, 30588116 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:37, 30588137 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:39, 30588151 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:40, 30588081 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:41, 30588108 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:42, 30588114 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:43, 30588082 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:45, 30588165 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:46, 30588060 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:47, 30588103 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:48, 30588111 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:49, 30588101 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:51, 30588117 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:52, 30588096 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:53, 30588064 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:54, 30588130 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:55, 31419993 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:57, 31547901 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:58, 31547910 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:32:59, 31547939 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:00, 31547942 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:01, 31547942 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:03, 31547926 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:04, 31547963 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:05, 31547926 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:06, 31547954 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:07, 31547932 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:09, 31547948 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:10, 31547979 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:11, 31547917 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:12, 31547877 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:13, 31547954 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:15, 31547937 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:16, 31547964 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:17, 31547904 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:18, 31547918 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:19, 31547916 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:21, 31547928 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:22, 31547968 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:23, 31547921 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:24, 31547992 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:25, 32507772 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:27, 32507748 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:28, 32507757 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:29, 32507780 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:30, 32507790 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:31, 32507722 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:33, 32507787 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:34, 32507803 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:35, 32507754 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:36, 32507775 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:37, 32507719 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:39, 32507752 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:40, 32507717 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:41, 32507747 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:42, 32507707 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:43, 32507753 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:45, 32507716 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:46, 32507710 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:47, 32507753 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:48, 32507795 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:49, 32518103 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:51, 32548810 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:52, 32591913 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:53, 32646281 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:54, 32698498 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:55, 33736268 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:57, 33786982 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:58, 33853506 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:33:59, 33917354 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:00, 33980525 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:01, 34043090 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:03, 34110614 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:04, 34167229 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:05, 34192221 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:06, 34230848 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:07, 34293676 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:09, 34293645 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:10, 34293594 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:11, 34293574 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:12, 34293647 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:13, 34293646 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:15, 34293546 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:16, 34293608 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:17, 34322451 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:18, 34376892 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:19, 34431054 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:21, 34489157 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:22, 34547349 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:23, 34598929 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:24, 34651697 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:26, 34699012 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:27, 34726680 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:28, 35746232 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:29, 35854672 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:30, 35912603 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:32, 35966075 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:33, 35990986 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:34, 36036418 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:35, 36102209 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:36, 36167941 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:38, 36167983 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:39, 36167920 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:40, 36167955 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:41, 36167946 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:42, 36167958 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:44, 36167931 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:45, 36167915 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:46, 36193438 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:47, 36193458 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:49, 36193465 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:50, 36193521 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:51, 36193451 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:52, 36193467 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:53, 36193520 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:55, 36193508 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:56, 36193441 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:57, 36193474 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:58, 36193465 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:34:59, 36193531 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:01, 37185256 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:02, 37185273 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:03, 37185267 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:04, 37185279 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:06, 37185307 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:07, 37185232 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:08, 37185276 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:09, 37185292 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:10, 37185282 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:12, 37185284 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:13, 37185219 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:14, 37185331 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:15, 37185349 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:17, 37185252 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:18, 37185274 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:19, 37185213 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:20, 37185273 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:21, 37185270 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:23, 37185288 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:24, 37185267 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:25, 37185240 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:26, 37185277 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:28, 37185269 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:29, 38145140 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:30, 38145122 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:31, 38145116 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:32, 38145120 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:34, 38145070 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:35, 38145134 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:36, 38145067 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:37, 38145061 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:38, 38145068 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:40, 38145092 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:41, 38145058 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:42, 38145141 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:43, 38145061 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:45, 38145097 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:46, 38145106 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:47, 38145085 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:48, 38145070 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:49, 38145061 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:51, 38145090 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:52, 38145052 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:53, 38145093 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:54, 38145077 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:56, 38145049 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:57, 38145100 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:58, 39104883 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:35:59, 39104943 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:00, 39104899 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:02, 39104911 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:03, 39104930 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:04, 39104905 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:05, 39104904 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:07, 39104877 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:08, 39104946 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:09, 39104886 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:10, 39104913 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:12, 39104892 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:13, 39104909 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:14, 39104974 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:15, 39104954 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:16, 39104928 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:18, 39104940 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:19, 39104943 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:20, 39104865 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:21, 39104848 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:23, 39104897 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:24, 39104923 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:25, 39104892 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:26, 39104933 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:27, 39104908 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:29, 40064730 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:30, 40064759 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:31, 40064733 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:32, 40064710 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:34, 40064695 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:35, 40064684 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:36, 40064739 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:37, 40064696 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:38, 40064731 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:40, 40064762 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:41, 40064706 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:42, 40064718 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:43, 40064797 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:45, 40064683 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:46, 40064720 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:47, 40064759 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:48, 40064771 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:49, 40064693 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:51, 40064718 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:52, 40064735 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:53, 40064740 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:54, 40064736 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:56, 40064737 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:57, 40064739 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:58, 40064725 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:36:59, 40768582 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:00, 41024499 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:02, 41024540 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:03, 41024541 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:04, 41024551 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:05, 41024576 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:07, 41024517 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:08, 41024529 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:09, 41024599 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:10, 41024556 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:12, 41047178 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:13, 41101034 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:14, 41129998 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:15, 41171322 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:16, 41222265 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:18, 41280668 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:19, 41339565 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:20, 41398541 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:21, 41456728 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:23, 41507762 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:24, 41561309 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:25, 41616834 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:26, 41672276 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:27, 41672301 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:29, 41672309 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:30, 41672287 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:31, 41672296 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:32, 41672296 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:34, 42664108 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:35, 42664127 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:36, 42664058 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:37, 42664153 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:39, 42664098 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:40, 42664171 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:41, 42664151 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:42, 42664098 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:43, 42664097 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:45, 42664066 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:46, 42664154 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:47, 42664076 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:48, 42664150 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:50, 42664103 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:51, 42664119 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:52, 42664123 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:53, 42664094 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:55, 42664115 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:56, 42664077 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:57, 42664079 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:37:58, 42664131 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:00, 42664044 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:01, 42664164 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:02, 43623875 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:03, 43623910 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:04, 43623944 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:06, 43623939 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:07, 43623901 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:08, 43623908 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:09, 43623972 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:11, 43623921 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:12, 43623993 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:13, 43623936 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:14, 43623892 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:16, 43623933 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:17, 43623906 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:18, 43623978 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:19, 43623969 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:21, 43623924 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:22, 43623903 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:23, 43623948 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:24, 43623919 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:26, 43623911 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:27, 43623940 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:28, 43623975 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:29, 43623957 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:30, 44583760 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:32, 44583723 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:33, 44583761 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:34, 44583746 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:35, 44583772 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:37, 44583745 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:38, 44583720 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:39, 44583797 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:40, 44583738 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:42, 44583832 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:43, 44583750 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:44, 44583795 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:45, 44583706 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:47, 44583719 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:48, 44583731 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:49, 44583758 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:50, 44583742 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:52, 44583705 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:53, 44583792 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:54, 44583738 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:55, 44583800 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:57, 44583767 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:58, 44583731 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:38:59, 44583782 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:00, 44583739 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:02, 45543536 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:03, 45543552 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:04, 45543591 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:05, 45543535 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:07, 45543581 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:08, 45543529 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:09, 45543619 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:10, 45543590 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:12, 45543598 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:13, 45543553 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:14, 45543584 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:15, 45543582 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:17, 45543542 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:18, 45543581 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:19, 45543528 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:20, 45543557 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:22, 45543557 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:23, 45543577 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:24, 45543529 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:25, 45543517 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:27, 45543498 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:28, 45543546 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:29, 45543552 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:30, 45543511 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:32, 46503362 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:33, 46503401 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:34, 46503338 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:35, 46503351 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:37, 46503412 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:38, 46503372 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:39, 46503393 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:40, 46503338 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:42, 46503334 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:43, 46503402 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:44, 46503369 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:45, 46503349 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:46, 46503368 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:48, 46503413 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:49, 46503359 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:50, 46503396 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:51, 46503407 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:53, 46503414 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:54, 46503369 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:55, 46503389 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:56, 46503400 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:58, 46503395 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:39:59, 46504369 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:00, 46504517 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:01, 47463175 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:03, 47463175 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:04, 47463189 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:05, 47463149 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:06, 47463137 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:08, 47463171 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:09, 47463193 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:10, 47463211 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:11, 47463244 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:13, 47463191 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:14, 47463192 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:15, 47463159 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:16, 47463161 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:18, 47463145 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:19, 47463170 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:20, 47463156 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:21, 47463135 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:23, 47463210 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:24, 47463221 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:25, 47463160 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:26, 47463184 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:28, 47463172 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:29, 47463185 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:30, 48422951 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:31, 48422986 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:33, 48423020 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:34, 48423014 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:35, 48422966 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:36, 48422995 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:38, 48423037 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:39, 48423096 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:40, 48423002 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:41, 48422963 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:43, 48422945 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:44, 48423070 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:45, 48423044 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:46, 48423014 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:48, 48422962 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:49, 48423050 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:50, 48423082 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:51, 48422966 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:53, 48422974 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:54, 48423032 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:55, 48423018 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:56, 48423002 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:58, 48423018 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:40:59, 49382858 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:00, 49382828 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:01, 49382878 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:03, 49382790 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:04, 49382852 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:05, 49382822 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:07, 49382805 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:08, 49382868 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:09, 49382820 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:10, 49382764 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:12, 49382829 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:13, 49382801 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:14, 49382807 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:15, 49382801 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:17, 49382780 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:18, 49382810 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:19, 49382803 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:20, 49382785 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:22, 49382850 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:23, 49382796 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:24, 49382808 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:25, 49382814 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:27, 49382898 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:28, 49382791 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:29, 50342655 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:30, 50342683 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:32, 50342631 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:33, 50342683 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:34, 50342639 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:35, 50342598 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:37, 50342612 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:38, 50342618 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:39, 50342643 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:41, 50342596 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:42, 50342658 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:43, 50342621 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:44, 50342598 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:46, 50342627 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:47, 50342643 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:48, 50342652 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:49, 50342662 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:51, 50342597 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:52, 50342686 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:53, 50342647 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:54, 50342635 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:56, 50342622 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:57, 50342584 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:58, 50342625 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:41:59, 51302402 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:01, 51302486 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:02, 51302442 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:03, 51302492 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:04, 51302486 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:06, 51302489 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:07, 51302465 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:08, 51302487 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:10, 51302481 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:11, 51302383 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:12, 51302424 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:13, 51302427 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:15, 51302485 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:16, 51302494 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:17, 51302460 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:18, 51302420 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:20, 51302426 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:21, 51302497 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:22, 51302482 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:23, 51302438 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:25, 51302478 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:26, 51302409 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:27, 51302457 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:29, 51302441 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:30, 51302480 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:31, 52262281 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:32, 52262320 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:34, 52262301 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:35, 52262237 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:36, 52262228 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:37, 52262246 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:39, 52262288 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:40, 52262289 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:41, 52262267 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:42, 52262277 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:44, 52262225 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:45, 52262254 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:46, 52262266 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:48, 52262306 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:49, 52262261 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:50, 52262280 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:51, 52262279 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:53, 52262239 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:54, 52262236 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:55, 52262296 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:56, 52262337 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:58, 52262270 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:42:59, 52262270 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:00, 52262301 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:01, 52454266 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:03, 53222056 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:04, 53222118 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:05, 53222074 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:06, 53222113 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:08, 53222090 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:09, 53222096 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:10, 53222091 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:12, 53222077 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:13, 53222084 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:14, 53222091 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:15, 53222115 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:17, 53222068 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:18, 53222076 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:19, 53222081 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:20, 53222091 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:22, 53222091 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:23, 53222119 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:24, 53222037 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:26, 53222094 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:27, 53222073 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:28, 53222103 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:29, 53222075 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:31, 53989910 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:32, 54181858 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:33, 54181870 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:34, 54181913 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:36, 54181909 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:37, 54181881 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:38, 54181924 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:40, 54181902 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:41, 54181939 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:42, 54181949 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:43, 54181914 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:45, 54181868 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:46, 54181886 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:47, 54181868 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:48, 54181887 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:50, 54181864 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:51, 54181843 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:52, 54181903 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:53, 54181922 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:55, 54181961 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:56, 54181924 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:57, 54181915 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:43:59, 54181927 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:00, 54181879 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:01, 55141742 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:02, 55141718 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:04, 55141755 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:05, 55141787 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:06, 55141693 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:07, 55141734 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:09, 55141708 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:10, 55141673 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:11, 55141744 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:13, 55141738 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:14, 55141703 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:15, 55141727 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:16, 55141720 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:18, 55141697 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:19, 55141685 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:20, 55141719 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:21, 55141743 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:23, 55141705 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:24, 55141666 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:25, 55141726 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:27, 55141691 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:28, 55141764 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:29, 55141723 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:30, 55141735 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:32, 56101505 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:33, 56101600 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:34, 56101552 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:35, 56101501 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:37, 56101537 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:38, 56101562 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:39, 56101570 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:41, 56101567 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:42, 56101508 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:43, 56101518 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:44, 56101525 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:46, 56101553 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:47, 56101542 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:48, 56101521 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:49, 56101580 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:51, 56101564 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:52, 56101497 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:53, 56101565 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:55, 56101475 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:56, 56101491 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:57, 56101543 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:44:58, 56101509 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:00, 56101641 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:01, 56101541 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:02, 56485518 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:04, 57061360 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:05, 57061420 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:06, 57061359 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:07, 57061330 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:09, 57061350 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:10, 57061361 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:11, 57061408 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:12, 57061367 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:14, 57061398 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:15, 57061468 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:16, 57061410 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:18, 57061326 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:19, 57061453 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:20, 57061363 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:21, 57061346 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:23, 57061335 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:24, 57061356 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:25, 57061326 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:27, 57061414 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:28, 57061367 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:29, 57061365 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:30, 57061350 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:32, 57061367 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:33, 57637260 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:34, 58021208 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:36, 58021225 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:37, 58021230 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:38, 58021254 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:39, 58021217 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:41, 58021192 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:42, 58021199 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:43, 58021188 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:45, 58021201 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:46, 58021215 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:47, 58021199 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:48, 58021176 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:50, 58021249 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:51, 58021179 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:52, 58021191 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:54, 58021179 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:55, 58021213 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:56, 58021267 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:57, 58021223 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:45:59, 58021271 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:00, 58021291 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:01, 58021220 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:03, 58980991 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:04, 58980971 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:05, 58981013 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:06, 58981040 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:08, 58981003 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:09, 58980975 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:10, 58981025 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:12, 58980977 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:13, 58980969 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:14, 58981026 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:15, 58980972 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:17, 58980995 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:18, 58980998 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:19, 58981003 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:21, 58981046 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:22, 58980954 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:23, 58980957 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:24, 58981017 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:26, 58980992 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:27, 58980958 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:28, 58980985 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:30, 58980983 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:31, 58981026 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:32, 59940848 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:33, 59940830 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:35, 59940807 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:36, 59940795 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:37, 59940843 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:39, 59940837 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:40, 59940818 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:41, 59940840 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:42, 59940798 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:44, 59940835 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:45, 59940877 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:46, 59940853 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:48, 59940770 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:49, 59940805 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:50, 59940811 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:51, 59940818 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:53, 59940803 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:54, 59940792 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:55, 59940813 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:57, 59940793 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:58, 59940848 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:46:59, 59940820 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:01, 59940859 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:02, 59940789 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:03, 60900649 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:04, 60900596 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:06, 60900667 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:07, 60900690 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:08, 60900593 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:10, 60900683 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:11, 60900701 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:12, 60900654 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:13, 60900614 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:15, 60900640 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:16, 60900631 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:17, 60900701 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:19, 60900613 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:20, 60900654 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:21, 60900673 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:22, 60900702 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:24, 60900632 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:25, 60900580 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:26, 60900621 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:28, 60900606 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:29, 60900694 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:30, 60900654 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:32, 60900636 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:33, 60900651 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:34, 61860452 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:35, 61860424 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:37, 61860523 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:38, 61860516 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:39, 61860439 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:41, 61860427 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:42, 61860495 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:43, 61860462 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:45, 61860487 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:46, 61860453 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:47, 61860486 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:48, 61860512 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:50, 61860427 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:51, 61860452 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:52, 61860413 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:54, 61860431 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:55, 61860464 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:56, 61860448 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:57, 61860456 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:47:59, 61860462 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:00, 61860474 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:01, 61860443 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:03, 61860413 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:04, 61860454 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:05, 61860506 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:07, 62820277 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:08, 62820241 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:09, 62820319 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:10, 62820267 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:12, 62820267 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:13, 62820264 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:14, 62820290 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:16, 62820282 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:17, 62820290 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:18, 62820289 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:20, 62820265 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:21, 62820233 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:22, 62820237 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:23, 62820269 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:25, 62820257 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:26, 62820220 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:27, 62820269 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:29, 62820302 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:30, 62820257 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:31, 62820227 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:32, 62820266 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:34, 62820222 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:35, 63780055 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:36, 63780102 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:38, 63780105 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:39, 63780070 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:40, 63780063 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:42, 63780084 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:43, 63780127 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:44, 63780036 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:45, 63780120 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:47, 63780070 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:48, 63780101 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:49, 63780157 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:51, 63780086 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:52, 63780078 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:53, 63780077 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:55, 63780110 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:56, 63780090 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:57, 63780128 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:48:59, 63780137 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:00, 63780077 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:01, 63780073 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:02, 63780114 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:04, 64419957 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:05, 64739953 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:06, 64739936 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:08, 64739907 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:09, 64739875 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:10, 64739938 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:12, 64739976 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:13, 64739884 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:14, 64739914 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:15, 64739944 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:17, 64739922 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:18, 64739905 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:19, 64739962 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:21, 64739921 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:22, 64739921 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:23, 64739927 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:25, 64739873 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:26, 64739894 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:27, 64739958 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:29, 64739918 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:30, 64739860 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:31, 64739889 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:32, 64739917 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:34, 64739921 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:35, 65699727 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:36, 65699769 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:38, 65699674 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:39, 65699656 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:40, 65699704 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:42, 65699684 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:43, 65699694 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:44, 65699731 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:45, 65699724 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:47, 65699764 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:48, 65699734 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:49, 65699728 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:51, 65699713 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:52, 65699773 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:53, 65699746 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:55, 65699718 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:56, 65699799 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:57, 65699669 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:49:59, 65699666 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:00, 65700879 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:01, 65699695 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:02, 65699752 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:04, 65699759 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:05, 65699669 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:06, 66659567 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:08, 66659507 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:09, 66659589 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:10, 66659490 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:12, 66659613 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:13, 66659592 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:14, 66659553 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:16, 66659558 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:17, 66659560 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:18, 66659579 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:19, 66659551 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:21, 66659574 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:22, 66659493 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:23, 66659520 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:25, 66659561 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:26, 66659611 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:27, 66659511 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:29, 66659484 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:30, 66659501 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:31, 66659527 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:33, 66659554 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:34, 66659583 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:35, 66659564 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:36, 66659549 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:38, 67619310 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:39, 67619395 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:40, 67619391 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:42, 67619413 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:43, 67619382 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:44, 67619332 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:46, 67619304 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:47, 67619375 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:48, 67619337 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:50, 67619406 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:51, 67619410 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:52, 67619400 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:54, 67619384 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:55, 67619355 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:56, 67619372 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:57, 67619407 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:50:59, 67619378 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:00, 67619397 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:01, 67619387 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:03, 67619414 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:04, 67619434 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:05, 67619448 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:07, 68579208 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:08, 68579130 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:09, 68579185 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:11, 68579159 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:12, 68579165 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:13, 68579165 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:15, 68579124 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:16, 68579175 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:17, 68579171 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:18, 68579209 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:20, 68579135 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:21, 68579115 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:22, 68579180 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:24, 68579146 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:25, 68579155 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:26, 68579273 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:28, 68579201 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:29, 68579149 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:30, 68579286 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:32, 68579207 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:33, 68579208 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:34, 68579136 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:36, 69539003 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:37, 69539027 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:38, 69539022 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:39, 69539021 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:41, 69538994 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:42, 69538962 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:43, 69538978 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:45, 69538963 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:46, 69539031 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:47, 69539023 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:49, 69539013 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:50, 69539003 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:51, 69538998 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:53, 69538983 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:54, 69538975 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:55, 69538976 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:57, 69539006 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:58, 69538999 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:51:59, 69538946 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:01, 69538977 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:02, 69539032 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:03, 69538978 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:05, 69539000 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:06, 70498794 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:07, 70498827 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:09, 70498849 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:10, 70498823 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:11, 70498790 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:12, 70498755 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:14, 70498821 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:15, 70498789 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:16, 70498835 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:18, 70498828 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:19, 70498766 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:20, 70498824 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:22, 70498774 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:23, 70498804 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:24, 70498816 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:26, 70498816 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:27, 70498816 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:28, 70498816 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:30, 70498830 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:31, 70498796 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:32, 70498830 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:34, 70498789 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:35, 70498805 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:36, 70498838 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:38, 71458642 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:39, 71458655 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:40, 71458627 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:42, 71458590 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:43, 71458640 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:44, 71458605 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:46, 71458576 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:47, 71458620 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:48, 71458586 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:50, 71458600 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:51, 71458662 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:52, 71458646 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:54, 71458591 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:55, 71458683 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:56, 71458601 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:58, 71458621 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:52:59, 71458604 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:00, 71458619 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:02, 71458626 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:03, 71458641 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:04, 71458609 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:05, 71464329 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:07, 71464318 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:08, 71464326 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:09, 71464339 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:11, 71464338 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:12, 72456149 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:13, 72456127 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:15, 72456213 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:16, 72456165 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:17, 72456146 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:19, 72456075 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:20, 72456058 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:21, 72456100 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:23, 72456061 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:24, 72456185 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:25, 72456118 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:27, 72456087 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:28, 72456144 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:29, 72456075 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:31, 72456069 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:32, 72456167 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:33, 72456134 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:35, 72456095 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:36, 72456080 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:37, 72456103 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:39, 72456127 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:40, 73415929 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:41, 73415881 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:43, 73415959 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:44, 73415996 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:45, 73415964 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:47, 73415913 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:48, 73415922 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:49, 73415906 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:51, 73415894 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:52, 73415896 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:53, 73415934 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:55, 73415924 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:56, 73415943 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:57, 73415962 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:53:59, 73415965 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:00, 73415947 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:01, 73415937 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:03, 73415876 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:04, 73415921 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:05, 73415955 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:07, 73415939 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:08, 73479920 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:09, 74375781 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:11, 74375767 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:12, 74375725 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:13, 74375756 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:15, 74375713 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:16, 74375741 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:17, 74375755 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:19, 74375795 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:20, 74375762 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:21, 74375734 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:23, 74375726 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:24, 74375762 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:25, 74375736 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:27, 74375705 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:28, 74375723 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:29, 74375736 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:31, 74375723 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:32, 74375791 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:33, 74375783 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:35, 74375756 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:36, 74375772 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:37, 74375794 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:39, 75015617 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:40, 75335589 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:41, 75335528 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:43, 75335566 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:44, 75335541 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:45, 75335611 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:47, 75335623 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:48, 75335602 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:49, 75335519 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:51, 75335559 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:52, 75335507 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:53, 75335572 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:55, 75335585 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:56, 75335592 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:57, 75335551 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:54:59, 75335513 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:00, 75335588 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:01, 75335618 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:03, 75335595 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:04, 75335575 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:06, 75335543 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:07, 75335562 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:08, 75335580 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:10, 75335492 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:11, 76295408 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:12, 76295427 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:14, 76295327 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:15, 76295298 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:16, 76295378 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:18, 76295425 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:19, 76295343 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:20, 76295359 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:22, 76295352 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:23, 76295344 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:24, 76295355 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:26, 76295338 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:27, 76295315 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:28, 76295352 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:30, 76295378 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:31, 76295381 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:32, 76295376 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:34, 76295326 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:35, 76295388 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:36, 76295308 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:38, 76295378 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:39, 76295326 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:40, 76295377 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:42, 76295380 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:43, 77255178 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:44, 77282758 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:46, 77340277 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:47, 77403968 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:48, 77460556 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:50, 77524421 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:51, 77588352 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:52, 77642405 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:54, 77699693 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:55, 77759479 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:57, 77759494 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:58, 77759442 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:55:59, 77759437 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:01, 77759468 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:02, 77759484 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:03, 77759474 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:05, 77759443 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:06, 77759452 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:07, 77759474 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:09, 77759424 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:10, 77759440 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:11, 77759429 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:13, 77759419 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:14, 77759440 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:15, 78751191 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:17, 78751239 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:18, 78751273 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:19, 78751279 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:21, 78751196 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:22, 78751246 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:23, 78751272 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:25, 78751235 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:26, 78751203 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:28, 78751209 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:29, 78751228 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:30, 78751234 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:32, 78751266 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:33, 78751261 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:34, 78751218 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:36, 78751241 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:37, 78751290 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:38, 78751260 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:40, 78751194 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:41, 78751267 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:42, 78751344 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:44, 79711035 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:45, 79711020 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:46, 79711056 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:48, 79711101 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:49, 79711022 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:51, 79711089 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:52, 79711067 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:53, 79711021 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:55, 79711045 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:56, 79711074 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:57, 79711047 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:56:59, 79711057 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:00, 79711045 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:01, 79711066 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:03, 79711117 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:04, 79711043 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:05, 79711018 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:07, 79711012 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:08, 79711062 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:09, 79711001 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:11, 79711051 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:12, 79711039 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:14, 80670911 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:15, 80670863 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:16, 80670908 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:18, 80670805 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:19, 80670853 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:20, 80670913 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:22, 80670874 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:23, 80670874 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:24, 80670836 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:26, 80670872 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:27, 80670845 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:28, 80670857 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:30, 80670928 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:31, 80670902 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:33, 80670827 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:34, 80670954 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:35, 80670862 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:37, 80670819 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:38, 80670853 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:39, 80670852 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:41, 80670872 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:42, 80670875 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:43, 81630701 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:45, 81630681 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:46, 81630692 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:47, 81630690 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:49, 81630740 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:50, 81630682 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:52, 81630669 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:53, 81630737 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:54, 81630658 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:56, 81630669 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:57, 81630674 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:57:58, 81630688 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:00, 81630678 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:01, 81630771 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:02, 81630661 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:04, 81630736 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:05, 81630706 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:06, 81630693 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:08, 81630712 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:09, 81630725 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:11, 81630685 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:12, 81630688 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:13, 81630621 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:15, 82462615 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:16, 82590555 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:17, 82590526 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:19, 82590520 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:20, 82590562 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:21, 82590563 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:23, 82590551 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:24, 82590550 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:26, 82590475 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:27, 82590483 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:28, 82590531 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:30, 82590519 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:31, 82590563 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:32, 82590504 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:34, 82590609 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:35, 82590530 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:36, 82590474 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:38, 82590443 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:39, 82590558 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:41, 82590569 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:42, 82590481 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:43, 82590582 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:45, 82590501 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:46, 82590503 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:47, 82590564 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:49, 82590544 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:50, 83550357 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:51, 83550390 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:53, 83550315 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:54, 83550285 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:55, 83550297 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:57, 83550331 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:58:58, 83550356 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:00, 83550296 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:01, 83550389 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:02, 83550334 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:04, 83550379 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:05, 83550265 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:06, 83550330 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:08, 83550301 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:09, 83550378 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:10, 83550312 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:12, 83550325 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:13, 83550313 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:15, 83550271 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:16, 83550282 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:17, 84510113 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:19, 84510096 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:20, 84510128 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:21, 84510198 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:23, 84510203 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:24, 84510163 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:25, 84510083 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:27, 84510162 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:28, 84510099 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:30, 84510133 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:31, 84510186 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:32, 84510154 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:34, 84510182 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:35, 84510150 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:36, 84510189 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:38, 84510158 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:39, 84510188 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:41, 84510176 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:42, 84510102 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:43, 84510138 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:45, 84510222 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:46, 84638180 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:47, 85469976 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:49, 85469954 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:50, 85469960 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:51, 85469934 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:53, 85469908 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:54, 85470017 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:56, 85469996 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:57, 85469961 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 04:59:58, 85469984 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:00, 85470191 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:01, 85469933 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:02, 85469900 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:04, 85469941 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:05, 85469940 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:07, 85469933 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:08, 85469959 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:09, 85469988 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:11, 85469974 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:12, 85469987 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:13, 85469943 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:15, 85469919 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:16, 85469975 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:18, 86429783 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:19, 86429720 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:20, 86429783 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:22, 86429765 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:23, 86429785 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:24, 86429746 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:26, 86429723 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:27, 86429822 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:29, 86429772 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:30, 86429717 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:31, 86429746 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:33, 86429780 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:34, 86429764 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:35, 86429742 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:37, 86429770 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:38, 86429786 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:39, 86429755 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:41, 86429787 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:42, 86429793 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:44, 86429755 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:45, 86429761 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:46, 86429733 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:48, 87069628 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:49, 87389578 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:50, 87389594 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:52, 87389583 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:53, 87389559 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:55, 87389632 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:56, 87389640 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:57, 87389555 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:00:59, 87389538 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:00, 87389556 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:01, 87389544 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:03, 87389545 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:04, 87389563 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:06, 87389563 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:07, 87389587 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:08, 87389560 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:10, 87389592 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:11, 87389630 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:12, 87389622 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:14, 87389561 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:15, 87389570 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:17, 87389535 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:18, 87389543 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:19, 87389554 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:21, 88349358 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:22, 88349361 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:23, 88349479 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:25, 88349435 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:26, 88349425 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:28, 88349405 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:29, 88349442 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:30, 88349428 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:32, 88349405 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:33, 88349387 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:34, 88349365 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:36, 88349477 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:37, 88349404 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:39, 88349465 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:40, 88349426 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:41, 88349428 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:43, 88349371 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:44, 88349392 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:45, 88349391 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:47, 88349393 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:48, 88349365 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:50, 88349370 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:51, 88349437 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:52, 89341188 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:54, 89341216 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:55, 89341165 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:57, 89341244 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:58, 89341147 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:01:59, 89341232 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:01, 89341177 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:02, 89341219 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:03, 89341214 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:05, 89341182 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:06, 89341221 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:08, 89341242 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:09, 89341178 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:10, 89341249 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:12, 89341246 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:13, 89341174 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:15, 89341232 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:16, 89341214 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:17, 89341240 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:19, 89341237 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:20, 89341231 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:21, 90300987 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:23, 90301064 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:24, 90300978 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:26, 90301085 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:27, 90301067 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:28, 90301056 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:30, 90301050 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:31, 90301041 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:33, 90301034 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:34, 90301031 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:35, 90301019 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:37, 90301057 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:38, 90300995 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:39, 90301012 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:41, 90300984 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:42, 90301058 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:44, 90301064 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:45, 90301038 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:46, 90300990 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:48, 90301063 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:49, 90301016 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:51, 91260863 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:52, 91260900 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:53, 91260861 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:55, 91260855 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:56, 91260902 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:58, 91260847 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:02:59, 91260844 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:00, 91260851 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:02, 91260799 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:03, 91260798 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:04, 91260793 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:06, 91260860 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:07, 91260822 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:09, 91260809 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:10, 91260849 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:11, 91260857 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:13, 91260818 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:14, 91260869 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:16, 91260856 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:17, 91260829 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:18, 91260897 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:20, 91260792 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:21, 92220679 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:23, 92220670 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:24, 92220646 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:25, 92220647 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:27, 92220725 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:28, 92220651 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:30, 92220660 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:31, 92220630 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:32, 92220620 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:34, 92220685 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:35, 92220624 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:36, 92220686 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:38, 92220613 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:39, 92220654 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:41, 92220684 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:42, 92220706 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:43, 92220675 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:45, 92220707 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:46, 92220737 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:48, 92220597 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:49, 92220672 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:50, 92220657 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:52, 92220665 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:53, 93180513 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:55, 93180468 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:56, 93180542 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:57, 93180462 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:03:59, 93180436 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:00, 93180487 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:02, 93180483 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:03, 93180470 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:04, 93180423 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:06, 93180468 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:07, 93180512 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:08, 93180477 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:10, 93180461 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:11, 93180425 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:13, 93180468 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:14, 93180475 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:15, 93180493 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:17, 93180411 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:18, 93180497 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:20, 93180470 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:21, 93180486 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:22, 93180482 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:24, 93180471 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:25, 93180475 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:27, 93180474 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:28, 94140270 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:29, 94140289 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:31, 94140300 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:32, 94140301 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:34, 94140293 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:35, 94140244 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:36, 94140300 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:38, 94140307 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:39, 94140294 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:41, 94140284 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:42, 94140314 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:43, 94140265 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:45, 94140310 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:46, 94140312 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:48, 94140314 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:49, 94140300 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:50, 94140233 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:52, 94140277 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:53, 94140277 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:55, 94140298 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:56, 95100116 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:57, 95100075 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:04:59, 95100101 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:00, 95101269 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:02, 95100098 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:03, 95100068 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:04, 95100116 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:06, 95100146 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:07, 95100082 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:09, 95100074 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:10, 95100028 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:11, 95100073 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:13, 95100072 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:14, 95100071 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:16, 95100111 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:17, 95100056 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:18, 95100102 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:20, 95100066 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:21, 95100090 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:23, 95100077 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:24, 95100086 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:25, 96059909 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:27, 96059887 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:28, 96059854 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:30, 96059892 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:31, 96059908 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:32, 96059860 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:34, 96059877 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:35, 96059892 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:37, 96059955 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:38, 96059950 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:39, 96059920 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:41, 96059895 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:42, 96059933 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:44, 96059860 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:45, 96059950 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:46, 96059922 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:48, 96059905 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:49, 96059881 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:51, 96059907 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:52, 96059972 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:53, 96059887 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:55, 97019670 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:56, 97019700 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:58, 97019690 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:05:59, 97019724 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:00, 97019707 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:02, 97019722 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:03, 97019691 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:05, 97019684 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:06, 97019713 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:08, 97019704 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:09, 97019751 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:10, 97019726 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:12, 97019734 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:13, 97019757 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:15, 97019703 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:16, 97019739 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:17, 97019705 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:19, 97019750 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:20, 97019709 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:22, 97019721 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:23, 97019693 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:24, 97019721 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:26, 97979537 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:27, 97979505 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:29, 97979584 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:30, 97979571 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:31, 97979617 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:33, 97979597 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:34, 97979526 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:36, 97979529 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:37, 97979532 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:39, 97979563 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:40, 97979520 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:41, 97979512 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:43, 97979566 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:44, 97979585 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:46, 97979604 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:47, 97979594 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:48, 97979581 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:50, 97979562 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:51, 97979519 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:53, 97979529 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:54, 97979522 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:55, 97979508 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:57, 97979583 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:06:58, 98939377 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:00, 98939346 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:01, 98939383 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:02, 98939324 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:04, 98939360 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:05, 98939389 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:07, 98939347 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:08, 98939392 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:10, 98939411 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:11, 98939411 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:12, 98939373 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:14, 98939345 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:15, 98939364 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:17, 98939379 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:18, 98939399 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:19, 98939371 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:21, 98939377 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:22, 98939344 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:24, 98939348 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:25, 98939334 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:26, 98939328 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:28, 98939369 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:29, 98939347 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:31, 99899134 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:32, 99899144 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:34, 99899164 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:35, 99899156 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:36, 99899188 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:38, 99899149 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:39, 99899143 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:41, 99899149 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:42, 99899197 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:43, 99899136 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:45, 99899173 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:46, 99899182 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:48, 99899186 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:49, 99899230 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:51, 99899206 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:52, 99899182 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:53, 99899174 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:55, 99899140 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:56, 99899194 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:58, 99899174 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:07:59, 100859011 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:00, 100859055 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:02, 100858968 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:03, 100859040 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:05, 100859027 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:06, 100858945 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:08, 100858975 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:09, 100859014 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:10, 100858965 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:12, 100859014 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:13, 100858951 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:15, 100858988 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:16, 100859013 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:17, 100859050 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:19, 100858985 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:20, 100859006 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:22, 100859009 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:23, 100858989 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:25, 100859027 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:26, 100858990 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:27, 100858953 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:29, 101818799 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:30, 101818764 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:32, 101818791 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:33, 101818883 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:34, 101818877 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:36, 101818914 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:37, 101818807 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:39, 101818844 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:40, 101818848 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:42, 101818847 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:43, 101818871 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:44, 101818855 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:46, 101818777 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:47, 101818784 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:49, 101818808 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:50, 101818818 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:52, 101818852 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:53, 101818767 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:54, 101818837 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:56, 101818843 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:57, 101818788 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:08:59, 102778643 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:00, 102778660 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:01, 102778621 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:03, 102778643 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:04, 102778641 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:06, 102778691 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:07, 102778651 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:09, 102778622 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:10, 102778669 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:11, 102778588 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:13, 102778684 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:14, 102778603 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:16, 102778649 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:17, 102778666 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:19, 102778641 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:20, 102778663 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:21, 102778622 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:23, 102778622 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:24, 102778624 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:26, 102778628 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:27, 102778652 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:28, 102778582 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:30, 103738430 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:31, 103738419 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:33, 103738501 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:34, 103738458 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:36, 103738498 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:37, 103738483 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:38, 103738426 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:40, 103738408 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:41, 103738511 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:43, 103738455 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:44, 103738429 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:46, 103738447 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:47, 103738431 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:48, 103738436 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:50, 103738391 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:51, 103738410 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:53, 103738472 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:54, 103738432 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:56, 103738434 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:57, 103738512 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:09:58, 103738469 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:00, 103738425 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:01, 103738461 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:03, 103738472 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:04, 104058420 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:06, 104698277 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:07, 104698276 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:08, 104698217 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:10, 104698292 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:11, 104698272 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:13, 104698244 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:14, 104698288 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:16, 104698285 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:17, 104698263 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:18, 104698263 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:20, 104698318 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:21, 104698286 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:23, 104698312 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:24, 104698254 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:26, 104698278 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:27, 104698290 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:28, 104698227 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:30, 104698278 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:31, 104698311 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:33, 105402097 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:34, 105658087 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:36, 105658043 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:37, 105658057 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:38, 105658064 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:40, 105658070 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:41, 105658082 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:43, 105658110 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:44, 105658048 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:46, 105658081 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:47, 105658089 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:48, 105658094 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:50, 105658053 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:51, 105658131 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:53, 105658065 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:54, 105658019 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:56, 105658080 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:57, 105658083 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:10:59, 105658054 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:00, 105658163 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:01, 105658069 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:03, 106617849 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:04, 106617932 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:06, 106617919 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:07, 106617927 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:09, 106617875 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:10, 106617899 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:11, 106617895 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:13, 106617900 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:14, 106617928 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:16, 106617859 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:17, 106617880 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:19, 106617941 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:20, 106617872 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:21, 106617950 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:23, 106617860 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:24, 106617916 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:26, 106617874 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:27, 106617855 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:29, 106617924 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:30, 106617854 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:32, 106617882 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:33, 107577729 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:34, 107577755 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:36, 107577752 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:37, 107577764 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:39, 107577777 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:40, 107577682 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:42, 107577693 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:43, 107577706 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:44, 107577706 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:46, 107577683 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:47, 107577727 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:49, 107577756 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:50, 107577684 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:52, 107577699 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:53, 107577688 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:55, 107577675 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:56, 107577674 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:57, 107577779 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:11:59, 107577686 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:00, 107577713 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:02, 107577714 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:03, 108505531 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:05, 108537504 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:06, 108537559 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:07, 108537520 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:09, 108537626 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:10, 108537595 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:12, 108537544 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:13, 108537550 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:15, 108537551 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:16, 108537524 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:18, 108537564 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:19, 108537555 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:20, 108537490 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:22, 108537539 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:23, 108537511 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:25, 108537505 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:26, 108537575 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:28, 108537520 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:29, 108537575 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:31, 108537526 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:32, 108537521 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:33, 108537495 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:35, 108537510 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:36, 109497332 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:38, 109497352 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:39, 109497392 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:41, 109497408 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:42, 109497360 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:43, 109497417 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:45, 109497342 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:46, 109497354 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:48, 109497369 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:49, 109497390 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:51, 109497328 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:52, 109497338 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:54, 109497363 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:55, 109497385 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:56, 109497314 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:58, 109497303 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:12:59, 109497453 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:01, 109497327 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:02, 109497318 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:04, 109497365 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:05, 109497384 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:07, 109497405 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:08, 110457170 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:09, 110457165 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:11, 110457180 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:12, 110457206 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:14, 110457193 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:15, 110457166 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:17, 110457216 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:18, 110457176 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:19, 110457147 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:21, 110457149 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:22, 110457151 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:24, 110457160 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:25, 110457137 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:27, 110457124 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:28, 110457143 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:30, 110457187 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:31, 110457205 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:33, 110457154 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:34, 110457124 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:35, 110457130 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:37, 111416967 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:38, 111416973 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:40, 111416956 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:41, 111416923 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:43, 111417014 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:44, 111417029 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:46, 111416937 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:47, 111416956 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:48, 111417014 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:50, 111416975 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:51, 111417005 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:53, 111416983 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:54, 111416950 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:56, 111416966 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:57, 111417023 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:13:59, 111416963 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:00, 111416945 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:02, 111417035 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:03, 111416985 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:04, 111416996 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:06, 111928888 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:07, 112376834 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:09, 112376778 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:10, 112376800 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:12, 112376812 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:13, 112376774 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:15, 112376785 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:16, 112376869 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:18, 112376859 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:19, 112376809 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:20, 112376838 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:22, 112376795 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:23, 112376862 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:25, 112376781 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:26, 112376792 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:28, 112376798 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:29, 112376868 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:31, 112376779 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:32, 112376737 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:33, 112376780 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:35, 112376754 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:36, 112376779 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:38, 113336568 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:39, 113336644 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:41, 113336634 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:42, 113336578 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:44, 113336570 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:45, 113336638 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:47, 113336587 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:48, 113336670 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:49, 113336607 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:51, 113336647 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:52, 113336667 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:54, 113336668 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:55, 113336638 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:57, 113336633 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:14:58, 113336671 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:00, 113336613 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:01, 113336634 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:03, 113336611 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:04, 113336619 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:06, 113336636 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:07, 113336633 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:08, 114264460 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:10, 117882543 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:11, 122514401 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:13, 127137913 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:15, 129751898 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:17, 129714396 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:19, 129520372 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:22, 129427429 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:24, 129338185 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:27, 129199607 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:29, 129124598 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:31, 129014212 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:33, 128682406 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:35, 128661613 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:38, 128990161 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:40, 128680288 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:41, 128822303 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:43, 128811961 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:45, 128679284 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:47, 128691372 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:50, 128530964 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:52, 128861002 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:54, 128470894 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:56, 128544991 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:57, 128618876 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:15:59, 128693515 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:00, 128763246 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:02, 128697517 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:04, 128765177 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:05, 128709928 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:07, 128772507 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:08, 128842987 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:10, 128780456 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:12, 128855588 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:13, 128835095 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:15, 128911382 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:17, 128993487 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:18, 128903608 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:20, 128911003 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:21, 128918786 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:23, 128927013 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:25, 128937853 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:26, 128960748 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:28, 129005806 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:29, 128940344 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:31, 129017318 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:33, 128920074 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:34, 128989857 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:36, 128978057 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:38, 128977727 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:39, 129055962 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:41, 128979542 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:42, 129051487 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:44, 129098618 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:46, 129036239 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:47, 129113828 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:49, 129004782 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:50, 129077997 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:52, 129149731 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:54, 129059270 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:55, 129131286 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:57, 129038815 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:16:59, 129111805 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:00, 129027754 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:02, 129088486 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:03, 129100609 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:05, 129086002 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:07, 129154705 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:08, 129077712 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:10, 129139072 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:12, 129211039 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:13, 129116354 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:15, 129181675 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:16, 129251898 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:18, 129144589 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:20, 129216859 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:21, 129124008 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:23, 129185057 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:25, 129257686 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:26, 129181530 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:28, 129252651 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:30, 129181792 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:31, 129254252 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:33, 129325384 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:35, 129194007 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:36, 129265047 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:38, 129335613 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:39, 129136133 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:41, 129191319 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:43, 129263991 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:44, 129337362 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:46, 129243500 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:48, 129340557 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:49, 129246068 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:51, 129343676 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:53, 129247133 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:54, 129167555 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:56, 129247419 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:57, 129167767 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:17:59, 129249044 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:01, 129183032 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:02, 129281369 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:04, 129208326 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:06, 129129609 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:07, 129188254 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:09, 129221482 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:11, 129161972 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:12, 129257525 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:14, 129091969 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:16, 129162662 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:17, 129234827 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:19, 129165544 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:21, 129162184 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:22, 129232400 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:24, 129107655 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:25, 129169964 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:27, 129244238 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:29, 129102670 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:30, 129175143 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:32, 129176756 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:34, 129102939 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:35, 129176631 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:37, 129069859 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:39, 129089470 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:40, 129160854 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:42, 129131384 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:44, 129112659 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:45, 129138664 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:47, 129191476 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:49, 129084795 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:50, 129134339 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:52, 129206127 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:54, 129252961 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:55, 129214316 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:57, 129191346 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:18:59, 129334920 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:00, 129331360 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:02, 129305718 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:04, 129119903 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:06, 129264703 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:07, 129240657 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:09, 129374535 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:11, 129329466 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:12, 129277931 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:14, 129205946 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:16, 129199313 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:17, 128960025 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:19, 128414625 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:22, 128922396 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:24, 128614126 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:27, 128423067 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:29, 128563118 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:30, 128614292 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:32, 128676784 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:34, 128664395 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:35, 128636493 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:37, 128779401 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:39, 128761779 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:41, 128735516 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:42, 128704450 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:44, 128744069 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:46, 128871735 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:48, 128839862 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:49, 128840905 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:51, 128953508 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:53, 128968394 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:54, 128967193 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:56, 129028896 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:19:58, 129117180 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:20:00, 129089496 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:20:01, 128951914 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:20:03, 128927870 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:20:05, 128860645 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:20:07, 129249070 , 0, 13, 1000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:20:16, 6617 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:17, 83471 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:18, 211923 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:19, 4232527 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:20, 6625288 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:21, 6626925 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:22, 6628526 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:23, 6630142 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:25, 6631857 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:26, 6633375 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:27, 6634955 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:28, 6636834 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:29, 6638489 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:30, 6640219 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:31, 6641813 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:32, 6643432 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:34, 6645141 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:35, 6646862 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:36, 6647411 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:37, 6647461 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:38, 6647491 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:39, 6647506 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:40, 6647461 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:42, 6647585 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:43, 6647682 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:44, 6647681 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:45, 6647736 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:46, 6647844 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:47, 6647925 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:48, 6647941 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:49, 6648061 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:51, 9749289 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:52, 6648145 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:53, 8714137 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:54, 10840373 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:55, 12996726 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:56, 13525040 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:57, 13525020 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:20:59, 13856039 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:00, 7464640 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:01, 10588678 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:02, 13858227 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:03, 14923194 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:04, 16350686 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:06, 17778879 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:07, 18782075 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:08, 18782098 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:09, 18782068 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:10, 18782064 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:11, 18782034 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:13, 18782086 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:14, 18782049 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:15, 18782456 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:16, 18782959 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:17, 18783060 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:19, 18783273 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:20, 18783323 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:21, 18783404 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:22, 16685053 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:23, 16685035 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:24, 16685196 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:26, 16685310 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:27, 16685453 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:28, 16685467 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:29, 16685642 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:30, 16685616 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:31, 16685561 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:33, 10279207 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:34, 10279325 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:35, 10279307 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:36, 10279536 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:37, 10279592 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:38, 10291723 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:40, 10505643 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:41, 10846425 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:42, 11098973 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:43, 11033790 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:44, 11062628 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:45, 11063129 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:46, 11063138 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:48, 11063264 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:49, 11228612 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:50, 11439272 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:51, 11501402 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:52, 11948800 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:53, 12586033 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:55, 12778914 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:56, 12694732 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:57, 13048597 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:58, 13987068 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:21:59, 13764556 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:00, 14052474 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:02, 14735922 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:03, 14004628 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:04, 14004665 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:05, 14004609 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:06, 14004656 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:07, 14033453 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:09, 14033672 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:10, 14034281 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:11, 14073135 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:12, 14169898 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:13, 14524361 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:14, 14527591 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:16, 15041573 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:17, 15492713 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:18, 15287062 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:19, 15565726 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:20, 15816190 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:21, 15816415 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:23, 15816448 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:24, 15816420 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:25, 15816473 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:26, 15816476 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:27, 15816496 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:28, 15816510 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:30, 15816517 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:31, 15816540 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:32, 15816653 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:33, 15839192 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:34, 15950713 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:36, 16060812 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:37, 16060921 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:38, 16062097 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:39, 16062115 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:40, 15998104 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:41, 15998087 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:43, 15998086 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:44, 15998235 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:45, 15998168 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:46, 15998299 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:47, 15998242 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:48, 16029011 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:50, 16084262 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:51, 16084215 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:52, 16084249 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:53, 16084294 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:54, 16084234 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:56, 16084250 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:57, 16084297 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:58, 16126861 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:22:59, 16126823 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:00, 16147728 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:01, 16147677 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:03, 16147843 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:04, 16179809 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:05, 16179849 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:06, 16179932 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:07, 16233687 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:08, 16169686 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:10, 16338600 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:11, 16243120 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:12, 16867008 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:13, 16562724 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:14, 16233685 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:16, 16317232 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:17, 16232852 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:18, 16488064 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:19, 16835935 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:20, 16790644 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:21, 16819084 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:23, 16818982 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:24, 17282868 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:25, 17399604 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:26, 17535458 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:27, 17878295 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:29, 18542032 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:30, 18518096 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:31, 18686401 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:32, 18197187 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:33, 18197220 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:34, 18197283 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:36, 18272808 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:37, 18224901 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:38, 18318580 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:39, 18574425 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:40, 18656835 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:42, 20705616 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:43, 23792061 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:44, 27389904 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:45, 27999597 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:46, 21390070 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:48, 25443506 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:49, 33058126 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:50, 37521614 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:52, 41781619 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:53, 45433103 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:54, 49759173 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:55, 54399619 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:57, 57654823 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:58, 61083519 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:23:59, 63690505 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:01, 65516561 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:02, 66125164 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:03, 57605018 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:05, 56692164 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:06, 56695247 , 0, 13, 1000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:12, 6492 , 0, 13, 1000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:24:12, 101022 , 0, 13, 1000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:24:18, 6520845 , 0, 13, 1000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:19, 6600457 , 0, 13, 1000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:24, 7092348 , 0, 13, 1000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:24:25, 7211763 , 0, 13, 1000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:24:31, 8106238 , 0, 13, 1000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:31, 8275153 , 0, 13, 1000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:37, 10472112 , 0, 13, 1000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:24:38, 10673901 , 0, 13, 1000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:24:43, 13215756 , 0, 13, 1000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:44, 13505359 , 0, 13, 1000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:50, 21994052 , 0, 13, 1000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:24:51, 24227908 , 0, 13, 1000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:24:57, 38066388 , 0, 13, 1000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:24:58, 38734856 , 0, 13, 1000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:25:04, 40610288 , 0, 13, 1000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:25:05, 41772867 , 0, 13, 1000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:25:12, 47158333 , 0, 13, 1000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:25:13, 47576329 , 0, 13, 1000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:25:19, 51141253 , 0, 13, 1000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:25:21, 51429390 , 0, 13, 1000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:25:27, 53184279 , 0, 13, 1000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:25:29, 55984070 , 0, 13, 1000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:25:35, 68971062 , 0, 13, 1000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:25:37, 74961326 , 0, 13, 1000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:25:44, 84069312 , 0, 13, 1000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:25:46, 81489225 , 0, 13, 1000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:25:53, 79052595 , 0, 13, 1000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:25:55, 84316961 , 0, 13, 1000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:26:03, 94892974 , 0, 13, 1000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:26:06, 96598458 , 0, 13, 1000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:26:14, 99833357 , 0, 13, 1000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:26:17, 100447601 , 0, 13, 1000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:26:25, 104100579 , 0, 13, 1000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:26:28, 106271242 , 0, 13, 1000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:26:37, 117426423 , 0, 13, 1000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:26:40, 122727488 , 0, 13, 1000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:26:50, 129969077 , 0, 13, 1000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:26:55, 117087597 , 0, 13, 1000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:27:04, 124646052 , 0, 13, 1000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:27:10, 128518341 , 0, 13, 1000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:27:20, 130082088 , 0, 13, 1000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:27:25, 129830956 , 0, 13, 1000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:27:36, 130581441 , 0, 13, 1000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:27:44, 130303373 , 0, 13, 1000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:27:56, 130463119 , 0, 13, 1000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:28:04, 129449594 , 0, 13, 1000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:28:15, 116758602 , 0, 13, 1000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:28:32, 113244820 , 0, 13, 1000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:28:44, 114825463 , 0, 13, 1000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:28:48, 119334707 , 0, 13, 1000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:28:59, 127570088 , 0, 13, 1000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:29:10, 112330114 , 0, 13, 1000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:29:25, 115870502 , 0, 13, 1000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:29:33, 120046417 , 0, 13, 1000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:29:49, 130903829 , 0, 13, 1000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:30:01, 118129189 , 0, 13, 1000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:30:19, 121002871 , 0, 13, 1000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:30:31, 122230297 , 0, 13, 1000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:30:46, 129498579 , 0, 13, 1000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:30:54, 129538409 , 0, 13, 1000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:31:07, 119639699 , 0, 13, 1000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:31:17, 123521354 , 0, 13, 1000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:31:36, 129439782 , 0, 13, 1000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:31:48, 112980449 , 0, 13, 1000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:32:04, 121305696 , 0, 13, 1000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:32:18, 116328767 , 0, 13, 1000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:32:36, 122156947 , 0, 13, 1000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:32:50, 126280925 , 0, 13, 1000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:33:13, 126011009 , 0, 13, 1000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:33:29, 120909207 , 0, 13, 1000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:33:46, 129978146 , 0, 13, 1000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:33:59, 127727054 , 0, 13, 1000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:34:13, 125649049 , 0, 13, 1000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:34:25, 128451140 , 0, 13, 1000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:34:40, 127304570 , 0, 13, 1000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:34:49, 128363382 , 0, 13, 1000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:35:09, 122099382 , 0, 13, 1000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:35:17, 123845812 , 0, 13, 1000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:35:37, 127422838 , 0, 13, 1000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:35:53, 127071334 , 0, 13, 1000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:36:12, 123492309 , 0, 13, 1000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:36:20, 123588772 , 0, 13, 1000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:36:36, 129978251 , 0, 13, 1000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:36:46, 129701687 , 0, 13, 1000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:37:03, 132970151 , 0, 13, 1000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:37:17, 128851219 , 0, 13, 1000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:37:36, 129148814 , 0, 13, 1000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:37:48, 122540425 , 0, 13, 1000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:38:06, 132176866 , 0, 13, 1000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:38:20, 122161531 , 0, 13, 1000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:38:39, 131303193 , 0, 13, 1000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:39:02, 129001762 , 0, 13, 1000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:39:19, 124550837 , 0, 13, 1000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:39:36, 129280344 , 0, 13, 1000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:39:59, 131495112 , 0, 13, 1000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:40:15, 125610058 , 0, 13, 1000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:40:34, 125730483 , 0, 13, 1000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:40:41, 129181349 , 0, 13, 1000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:40:59, 119750302 , 0, 13, 1000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:41:15, 127374890 , 0, 13, 1000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:41:40, 118668752 , 0, 13, 1000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:42:00, 125872066 , 0, 13, 1000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:42:23, 128892503 , 0, 13, 1000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:42:40, 123759865 , 0, 13, 1000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:43:02, 122788949 , 0, 13, 1000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:43:18, 126190372 , 0, 13, 1000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:43:41, 129863220 , 0, 13, 1000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:44:01, 124157980 , 0, 13, 1000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:44:23, 130797415 , 0, 13, 1000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:44:37, 127203099 , 0, 13, 1000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:45:01, 125070444 , 0, 13, 1000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:45:18, 129358608 , 0, 13, 1000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:45:38, 133444115 , 0, 13, 1000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:45:56, 130336618 , 0, 13, 1000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:46:15, 128109806 , 0, 13, 1000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:46:32, 122646970 , 0, 13, 1000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:46:56, 129892745 , 0, 13, 1000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:47:10, 130270151 , 0, 13, 1000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:47:29, 129273160 , 0, 13, 1000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:47:46, 132105188 , 0, 13, 1000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:48:06, 128058359 , 0, 13, 1000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:48:14, 128067479 , 0, 13, 1000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:48:29, 129450962 , 0, 13, 1000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:48:46, 129926867 , 0, 13, 1000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:49:10, 129622462 , 0, 13, 1000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:49:27, 129468207 , 0, 13, 1000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:49:49, 124210481 , 0, 13, 1000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:50:07, 119587740 , 0, 13, 1000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:50:38, 126679388 , 0, 13, 1000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:50:59, 116698989 , 0, 13, 1000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:51:28, 129382394 , 0, 13, 1000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:51:43, 119982994 , 0, 13, 1000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:52:03, 129759232 , 0, 13, 1000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:52:22, 130063016 , 0, 13, 1000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:52:46, 130990300 , 0, 13, 1000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:52:59, 122287777 , 0, 13, 1000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:53:23, 133880195 , 0, 13, 1000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:53:41, 126333968 , 0, 13, 1000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:54:07, 127609675 , 0, 13, 1000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:54:36, 115429574 , 0, 13, 1000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:55:02, 125478589 , 0, 13, 1000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:55:25, 130589312 , 0, 13, 1000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 05:55:56, 126794385 , 0, 13, 1000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:56:16, 129217949 , 0, 13, 1000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 05:56:40, 132616307 , 0, 13, 1000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:56:52, 127542886 , 0, 13, 1000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 05:57:14, 123763488 , 0, 13, 1000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:57:33, 128828017 , 0, 13, 1000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 05:57:54, 124957216 , 0, 13, 1000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:58:16, 114066858 , 0, 13, 1000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 05:58:44, 124694388 , 0, 13, 1000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:59:06, 130449365 , 0, 13, 1000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 05:59:42, 127303123 , 0, 13, 1000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:00:05, 134410147 , 0, 13, 1000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:00:36, 128967251 , 0, 13, 1000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:00:58, 128932297 , 0, 13, 1000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:01:25, 130266227 , 0, 13, 1000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:01:44, 122786571 , 0, 13, 1000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:02:04, 129019251 , 0, 13, 1000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:02:23, 123827509 , 0, 13, 1000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:02:49, 129448097 , 0, 13, 1000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:03:06, 130736731 , 0, 13, 1000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:03:33, 130269260 , 0, 13, 1000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:03:58, 130458583 , 0, 13, 1000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:04:24, 129288449 , 0, 13, 1000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:04:39, 121124932 , 0, 13, 1000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:05:01, 121030236 , 0, 13, 1000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:05:25, 126618245 , 0, 13, 1000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:05:48, 128550155 , 0, 13, 1000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:06:03, 129682329 , 0, 13, 1000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:06:23, 126269775 , 0, 13, 1000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:06:42, 126596310 , 0, 13, 1000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:07:03, 126562701 , 0, 13, 1000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:07:24, 131351985 , 0, 13, 1000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:07:50, 130340632 , 0, 13, 1000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:08:14, 117178029 , 0, 13, 1000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:08:32, 124910512 , 0, 13, 1000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:08:49, 128278925 , 0, 13, 1000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:09:09, 128162728 , 0, 13, 1000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:09:25, 128713288 , 0, 13, 1000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:09:48, 120605785 , 0, 13, 1000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:10:02, 129512551 , 0, 13, 1000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:10:30, 115635246 , 0, 13, 1000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:10:51, 123054049 , 0, 13, 1000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:11:19, 126637253 , 0, 13, 1000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:11:41, 132612259 , 0, 13, 1000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:12:14, 123564007 , 0, 13, 1000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:12:38, 130518445 , 0, 13, 1000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:13:11, 131150586 , 0, 13, 1000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:13:30, 125878987 , 0, 13, 1000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:13:54, 129621508 , 0, 13, 1000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:14:12, 130055752 , 0, 13, 1000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:14:29, 128064348 , 0, 13, 1000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:14:53, 132561531 , 0, 13, 1000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:15:13, 128610129 , 0, 13, 1000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:15:27, 132059172 , 0, 13, 1000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:15:53, 122877333 , 0, 13, 1000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:16:17, 130195633 , 0, 13, 1000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:16:47, 127108510 , 0, 13, 1000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:17:13, 132051133 , 0, 13, 1000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:17:52, 127201138 , 0, 13, 1000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:18:18, 130226233 , 0, 13, 1000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:18:55, 129972543 , 0, 13, 1000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:19:22, 127642020 , 0, 13, 1000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:19:45, 131118931 , 0, 13, 1000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:19:58, 126913181 , 0, 13, 1000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:20:26, 131842314 , 0, 13, 1000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:20:54, 129255598 , 0, 13, 1000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:21:26, 119431633 , 0, 13, 1000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:21:58, 130295901 , 0, 13, 1000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:22:32, 115392825 , 0, 13, 1000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:23:02, 125072466 , 0, 13, 1000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:23:41, 130217879 , 0, 13, 1000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:24:18, 131457688 , 0, 13, 1000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:24:55, 130191822 , 0, 13, 1000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:25:23, 128559711 , 0, 13, 1000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:25:49, 129343625 , 0, 13, 1000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:26:13, 126372425 , 0, 13, 1000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:26:44, 116905122 , 0, 13, 1000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:27:14, 123596146 , 0, 13, 1000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:27:50, 131473614 , 0, 13, 1000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:28:31, 133081105 , 0, 13, 1000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:29:09, 129455275 , 0, 13, 1000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:29:43, 129159998 , 0, 13, 1000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:30:15, 136544266 , 0, 13, 1000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:31:03, 131000587 , 0, 13, 1000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:31:35, 130211501 , 0, 13, 1000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:31:56, 126467446 , 0, 13, 1000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:32:23, 127416451 , 0, 13, 1000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:32:43, 133138408 , 0, 13, 1000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:33:23, 127873179 , 0, 13, 1000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:33:40, 123519891 , 0, 13, 1000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:34:13, 130014264 , 0, 13, 1000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:34:43, 133968076 , 0, 13, 1000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:35:38, 131254994 , 0, 13, 1000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:36:14, 129999682 , 0, 13, 1000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:36:58, 128163264 , 0, 13, 1000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:37:26, 125180966 , 0, 13, 1000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:37:53, 132112272 , 0, 13, 1000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:38:23, 121540165 , 0, 13, 1000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:38:56, 125845131 , 0, 13, 1000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:39:18, 131401751 , 0, 13, 1000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:39:53, 128720589 , 0, 13, 1000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:40:14, 122271416 , 0, 13, 1000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:40:42, 128358867 , 0, 13, 1000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:41:00, 126746274 , 0, 13, 1000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:41:22, 129105618 , 0, 13, 1000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:41:36, 124537038 , 0, 13, 1000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:41:56, 130661007 , 0, 13, 1000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:42:15, 126995636 , 0, 13, 1000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:42:35, 129381163 , 0, 13, 1000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:42:51, 118067754 , 0, 13, 1000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:43:12, 128008668 , 0, 13, 1000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:43:29, 130602780 , 0, 13, 1000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:43:46, 129217648 , 0, 13, 1000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:43:58, 130617598 , 0, 13, 1000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:44:18, 125055312 , 0, 13, 1000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:44:36, 124394890 , 0, 13, 1000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:44:56, 131781455 , 0, 13, 1000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:45:17, 118225315 , 0, 13, 1000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:45:38, 124086200 , 0, 13, 1000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:45:59, 129773559 , 0, 13, 1000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:46:25, 128496832 , 0, 13, 1000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:46:44, 125424446 , 0, 13, 1000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:47:09, 131087351 , 0, 13, 1000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:47:25, 113227597 , 0, 13, 1000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:47:44, 120061328 , 0, 13, 1000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:48:04, 125409691 , 0, 13, 1000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:48:29, 130711835 , 0, 13, 1000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:49:09, 132490198 , 0, 13, 1000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:49:34, 123582699 , 0, 13, 1000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:49:49, 117805114 , 0, 13, 1000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:50:28, 119032253 , 0, 13, 1000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:50:47, 125262378 , 0, 13, 1000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:51:12, 132258901 , 0, 13, 1000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:51:34, 133337483 , 0, 13, 1000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:52:02, 123916401 , 0, 13, 1000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:52:12, 122986614 , 0, 13, 1000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:52:41, 131594203 , 0, 13, 1000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:53:03, 133611514 , 0, 13, 1000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 06:53:47, 129626369 , 0, 13, 1000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:54:22, 127633743 , 0, 13, 1000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 06:55:05, 135136710 , 0, 13, 1000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:55:50, 127900269 , 0, 13, 1000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 06:56:27, 121541274 , 0, 13, 1000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:57:08, 126266138 , 0, 13, 1000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 06:57:53, 128700787 , 0, 13, 1000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:58:09, 118379018 , 0, 13, 1000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 06:59:02, 133788848 , 0, 13, 1000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:59:20, 131356584 , 0, 13, 1000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 06:59:45, 128366904 , 0, 13, 1000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:00:31, 130827274 , 0, 13, 1000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:01:35, 128102572 , 0, 13, 1000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:02:11, 131631070 , 0, 13, 1000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:03:18, 132299442 , 0, 13, 1000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:04:17, 131660202 , 0, 13, 1000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:05:06, 122445648 , 0, 13, 1000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:05:49, 127693474 , 0, 13, 1000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:06:58, 114378873 , 0, 13, 1000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:07:18, 117500801 , 0, 13, 1000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:07:54, 132832556 , 0, 13, 1000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:08:12, 133889992 , 0, 13, 1000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:08:37, 128475089 , 0, 13, 1000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:09:03, 131694755 , 0, 13, 1000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:10:09, 135021999 , 0, 13, 1000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:10:53, 124875018 , 0, 13, 1000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:11:46, 128239845 , 0, 13, 1000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:12:37, 115019025 , 0, 13, 1000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:13:21, 130339582 , 0, 13, 1000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:13:52, 116632825 , 0, 13, 1000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:14:37, 127030170 , 0, 13, 1000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:15:11, 127561476 , 0, 13, 1000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:15:44, 132802310 , 0, 13, 1000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:16:24, 128998357 , 0, 13, 1000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:16:53, 126891358 , 0, 13, 1000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:17:30, 131412986 , 0, 13, 1000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:18:26, 134364970 , 0, 13, 1000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:19:30, 120250932 , 0, 13, 1000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:20:28, 123453973 , 0, 13, 1000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:21:26, 124294120 , 0, 13, 1000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:22:32, 122676110 , 0, 13, 1000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:23:15, 131868754 , 0, 13, 1000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:24:09, 131392987 , 0, 13, 1000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:25:00, 131959446 , 0, 13, 1000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:25:50, 127214664 , 0, 13, 1000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:26:22, 125153948 , 0, 13, 1000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:27:00, 129887438 , 0, 13, 1000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:27:22, 133931535 , 0, 13, 1000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:28:20, 130756372 , 0, 13, 1000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:28:50, 130041685 , 0, 13, 1000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:29:36, 108579414 , 0, 13, 1000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:29:48, 115276302 , 0, 13, 1000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:30:12, 124348794 , 0, 13, 1000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:30:31, 128746189 , 0, 13, 1000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:30:53, 125958139 , 0, 13, 1000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:31:05, 127114729 , 0, 13, 1000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:31:28, 127851337 , 0, 13, 1000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:32:04, 129088542 , 0, 13, 1000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:32:24, 127931115 , 0, 13, 1000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:32:44, 124577418 , 0, 13, 1000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:33:05, 127129250 , 0, 13, 1000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:33:17, 126638780 , 0, 13, 1000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:33:38, 105867764 , 0, 13, 1000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:33:51, 109696593 , 0, 13, 1000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:34:09, 121762464 , 0, 13, 1000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:34:25, 126722893 , 0, 13, 1000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:34:47, 129971954 , 0, 13, 1000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:35:04, 128849463 , 0, 13, 1000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:35:24, 127916976 , 0, 13, 1000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:35:37, 128292689 , 0, 13, 1000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:36:02, 128235105 , 0, 13, 1000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:36:18, 128657851 , 0, 13, 1000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:36:41, 133575373 , 0, 13, 1000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:36:56, 122959243 , 0, 13, 1000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:37:25, 126029196 , 0, 13, 1000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:37:50, 130816580 , 0, 13, 1000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:38:38, 101815771 , 0, 13, 1000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:38:56, 117613816 , 0, 13, 1000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:39:20, 131412767 , 0, 13, 1000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:39:39, 126255303 , 0, 13, 1000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:40:05, 119210960 , 0, 13, 1000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:40:24, 121646211 , 0, 13, 1000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:40:57, 136515408 , 0, 13, 1000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:41:34, 133917731 , 0, 13, 1000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:42:08, 107580483 , 0, 13, 1000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:42:39, 110903362 , 0, 13, 1000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:43:14, 124837264 , 0, 13, 1000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:43:52, 127796551 , 0, 13, 1000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:44:28, 125872686 , 0, 13, 1000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:45:03, 129164496 , 0, 13, 1000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:45:55, 133499954 , 0, 13, 1000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:46:30, 130380578 , 0, 13, 1000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:47:00, 134317479 , 0, 13, 1000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:48:28, 133056321 , 0, 13, 1000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:49:11, 135620167 , 0, 13, 1000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:49:32, 115084292 , 0, 13, 1000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 07:49:57, 110642263 , 0, 13, 1000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:50:51, 113874352 , 0, 13, 1000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 07:51:53, 136132917 , 0, 13, 1000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:52:54, 114210673 , 0, 13, 1000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 07:54:03, 127723235 , 0, 13, 1000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:55:35, 126538638 , 0, 13, 1000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 07:56:29, 115510860 , 0, 13, 1000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:57:20, 124729984 , 0, 13, 1000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 07:58:23, 127107767 , 0, 13, 1000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 07:59:07, 125826458 , 0, 13, 1000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:00:23, 101191826 , 0, 13, 1000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:01:24, 123410807 , 0, 13, 1000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:02:33, 130705841 , 0, 13, 1000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:03:38, 122158470 , 0, 13, 1000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:04:43, 105032749 , 0, 13, 1000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:05:41, 120561092 , 0, 13, 1000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:07:06, 125398184 , 0, 13, 1000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:08:33, 126547004 , 0, 13, 1000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:09:37, 140754986 , 0, 13, 1000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:11:11, 130010619 , 0, 13, 1000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:12:33, 128242867 , 0, 13, 1000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:13:18, 126728805 , 0, 13, 1000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:14:37, 111198761 , 0, 13, 1000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:15:17, 105154603 , 0, 13, 1000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:16:07, 118014234 , 0, 13, 1000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:16:58, 129381055 , 0, 13, 1000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:18:01, 134758228 , 0, 13, 1000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:19:12, 131083775 , 0, 13, 1000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:20:16, 136036385 , 0, 13, 1000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:21:45, 137092748 , 0, 13, 1000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:23:16, 113356478 , 0, 13, 1000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:24:02, 129460838 , 0, 13, 1000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:24:57, 128587301 , 0, 13, 1000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:25:45, 128813081 , 0, 13, 1000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:26:37, 99205738 , 0, 13, 1000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:26:59, 105869288 , 0, 13, 1000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:27:26, 114875655 , 0, 13, 1000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:27:48, 121946739 , 0, 13, 1000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:28:15, 128806802 , 0, 13, 1000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:28:40, 130597966 , 0, 13, 1000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:29:09, 128002508 , 0, 13, 1000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:29:30, 127872552 , 0, 13, 1000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:29:56, 126402757 , 0, 13, 1000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:30:16, 129147500 , 0, 13, 1000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:30:41, 127353694 , 0, 13, 1000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:30:53, 131017837 , 0, 13, 1000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:31:11, 125091451 , 0, 13, 1000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:31:23, 127095284 , 0, 13, 1000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:31:39, 129244959 , 0, 13, 1000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:31:54, 130574958 , 0, 13, 1000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:32:38, 129124015 , 0, 13, 1000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:32:51, 127005055 , 0, 13, 1000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:33:10, 127457912 , 0, 13, 1000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:33:20, 132329867 , 0, 13, 1000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:33:44, 129687405 , 0, 13, 1000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:34:23, 129662178 , 0, 13, 1000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:34:45, 131372395 , 0, 13, 1000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:35:00, 131713438 , 0, 13, 1000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:35:22, 98321209 , 0, 13, 1000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:35:30, 91353860 , 0, 13, 1000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:35:46, 86546767 , 0, 13, 1000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:36:02, 88974821 , 0, 13, 1000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:36:24, 100973512 , 0, 13, 1000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:36:45, 102822117 , 0, 13, 1000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:37:09, 109865118 , 0, 13, 1000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:37:28, 117557500 , 0, 13, 1000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:37:54, 130886496 , 0, 13, 1000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:38:14, 130404755 , 0, 13, 1000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:38:36, 123075716 , 0, 13, 1000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:39:06, 129090518 , 0, 13, 1000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:39:39, 134441960 , 0, 13, 1000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:40:17, 125510958 , 0, 13, 1000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:41:10, 133315559 , 0, 13, 1000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:41:55, 131814875 , 0, 13, 1000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:42:41, 125591544 , 0, 13, 1000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:43:25, 127153512 , 0, 13, 1000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:44:07, 121206601 , 0, 13, 1000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:44:51, 126253517 , 0, 13, 1000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:45:31, 125671397 , 0, 13, 1000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:46:13, 130171439 , 0, 13, 1000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:47:09, 131909410 , 0, 13, 1000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:47:57, 128678679 , 0, 13, 1000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 08:48:38, 136233748 , 0, 13, 1000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:49:20, 120696543 , 0, 13, 1000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 08:50:40, 115267404 , 0, 13, 1000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:51:38, 115256177 , 0, 13, 1000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 08:52:42, 135114802 , 0, 13, 1000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:53:57, 130405810 , 0, 13, 1000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 08:55:27, 117540659 , 0, 13, 1000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:56:20, 127181273 , 0, 13, 1000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 08:56:53, 140668636 , 0, 13, 1000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:57:50, 127330057 , 0, 13, 1000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 08:58:58, 134253027 , 0, 13, 1000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:00:28, 134794298 , 0, 13, 1000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:01:31, 118444836 , 0, 13, 1000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:02:13, 93086160 , 0, 13, 1000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:03:05, 116159720 , 0, 13, 1000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:04:28, 133326037 , 0, 13, 1000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:05:58, 114894422 , 0, 13, 1000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 09:07:13, 134809600 , 0, 13, 1000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 09:08:56, 137236831 , 0, 13, 1000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 09:10:38, 137421000 , 0, 13, 1000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 09:12:19, 135200608 , 0, 13, 1000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 09:13:17, 132021548 , 0, 13, 1000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 09:14:33, 118881618 , 0, 13, 1000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:15:37, 130991094 , 0, 13, 1000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:16:09, 107722089 , 0, 13, 1000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:16:55, 118611869 , 0, 13, 1000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:18:17, 112586298 , 0, 13, 1000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:19:38, 128302149 , 0, 13, 1000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:22:07, 139214232 , 0, 13, 1000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 09:24:31, 135384751 , 0, 13, 1000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 09:26:58, 110537469 , 0, 13, 1000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 09:28:05, 131024258 , 0, 13, 1000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 09:29:35, 98963789 , 0, 13, 1000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 09:30:09, 109077128 , 0, 13, 1000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 09:30:54, 123998391 , 0, 13, 1000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:31:38, 132051279 , 0, 13, 1000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:33:11, 129856616 , 0, 13, 1000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:33:58, 130102709 , 0, 13, 1000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:34:31, 130668312 , 0, 13, 1000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:34:58, 130278280 , 0, 13, 1000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:35:41, 129635384 , 0, 13, 1000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 09:36:08, 131032090 , 0, 13, 1000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 09:36:58, 128976169 , 0, 13, 1000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 09:37:13, 128971800 , 0, 13, 1000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 09:37:33, 130091950 , 0, 13, 1000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 09:37:53, 129029250 , 0, 13, 1000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 09:38:15, 129040942 , 0, 13, 1000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:38:29, 132404242 , 0, 13, 1000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:39:02, 129944492 , 0, 13, 1000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:39:16, 129542286 , 0, 13, 1000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:39:38, 127752074 , 0, 13, 1000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:39:58, 129339613 , 0, 13, 1000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:40:22, 83037976 , 0, 13, 1000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 09:40:29, 79235516 , 0, 13, 1000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 09:40:39, 80183286 , 0, 13, 1000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 09:40:44, 78387495 , 0, 13, 1000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 09:40:55, 84805048 , 0, 13, 1000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 09:41:07, 88059838 , 0, 13, 1000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 09:41:25, 95529590 , 0, 13, 1000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:41:36, 107891967 , 0, 13, 1000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:41:59, 120249772 , 0, 13, 1000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:42:18, 130629081 , 0, 13, 1000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:42:43, 111532662 , 0, 13, 1000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:43:04, 114510839 , 0, 13, 1000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:43:31, 127286623 , 0, 13, 1000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 09:44:00, 127903914 , 0, 13, 1000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 09:44:34, 129234745 , 0, 13, 1000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 09:45:00, 125951932 , 0, 13, 1000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 09:45:42, 130189336 , 0, 13, 1000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 09:46:16, 125578446 , 0, 13, 1000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 09:46:49, 129236973 , 0, 13, 1000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:47:18, 134327761 , 0, 13, 1000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:47:51, 124340172 , 0, 13, 1000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:48:27, 125003678 , 0, 13, 1000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:49:25, 127529276 , 0, 13, 1000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:50:09, 128504412 , 0, 13, 1000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:50:58, 127805356 , 0, 13, 1000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 09:51:41, 130813047 , 0, 13, 1000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 09:52:33, 131773526 , 0, 13, 1000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 09:53:14, 131605516 , 0, 13, 1000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 09:53:58, 130955164 , 0, 13, 1000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 09:54:19, 127762449 , 0, 13, 1000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 09:55:06, 137906939 , 0, 13, 1000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:55:52, 137882968 , 0, 13, 1000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 09:56:31, 116588462 , 0, 13, 1000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:57:06, 107392858 , 0, 13, 1000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 09:58:19, 118766660 , 0, 13, 1000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 09:59:35, 109882791 , 0, 13, 1000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:00:37, 123338962 , 0, 13, 1000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:01:45, 130346968 , 0, 13, 1000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:03:00, 134599504 , 0, 13, 1000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:04:17, 130973121 , 0, 13, 1000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:05:21, 135947078 , 0, 13, 1000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:06:23, 130452081 , 0, 13, 1000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:07:21, 137183873 , 0, 13, 1000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:08:51, 128952799 , 0, 13, 1000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:09:39, 107818610 , 0, 13, 1000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:10:18, 108648151 , 0, 13, 1000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:11:30, 129042892 , 0, 13, 1000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:12:54, 127735976 , 0, 13, 1000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:14:42, 138267332 , 0, 13, 1000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:16:28, 131518268 , 0, 13, 1000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:19:48, 116576718 , 0, 13, 1000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:20:49, 130395548 , 0, 13, 1000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:22:25, 141150503 , 0, 13, 1000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:24:19, 100961781 , 0, 13, 1000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:25:04, 125488056 , 0, 13, 1000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:26:07, 133224702 , 0, 13, 1000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:26:53, 118273418 , 0, 13, 1000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:27:41, 83660011 , 0, 13, 1000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:28:47, 112070910 , 0, 13, 1000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:30:23, 122482262 , 0, 13, 1000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:32:16, 126674835 , 0, 13, 1000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:33:50, 97947436 , 0, 13, 1000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:35:15, 116028618 , 0, 13, 10000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:37:14, 125281030 , 0, 13, 10000, 100, 1, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:39:36, 130317248 , 0, 13, 10000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:41:50, 132072876 , 0, 13, 10000, 100, 1, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:43:26, 86817233 , 0, 13, 10000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:43:43, 86126744 , 0, 13, 10000, 100, 1, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:44:07, 93647161 , 0, 13, 10000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:44:37, 103968151 , 0, 13, 10000, 100, 1, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:45:16, 115789364 , 0, 13, 10000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:45:47, 125941060 , 0, 13, 10000, 100, 1, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:46:30, 130185540 , 0, 13, 10000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:47:09, 130620438 , 0, 13, 10000, 100, 1, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:47:43, 129558166 , 0, 13, 10000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:48:19, 130656284 , 0, 13, 10000, 100, 1, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:48:55, 131593060 , 0, 13, 10000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:49:32, 129932255 , 0, 13, 10000, 100, 1, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:49:55, 126830858 , 0, 13, 10000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:50:10, 130036015 , 0, 13, 10000, 100, 1, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:50:29, 126477359 , 0, 13, 10000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:50:55, 125098964 , 0, 13, 10000, 100, 1, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:51:43, 129042783 , 0, 13, 10000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:51:57, 88108190 , 0, 13, 10000, 100, 1, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:52:13, 63524976 , 0, 13, 10000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:52:17, 65608513 , 0, 13, 10000, 100, 1, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:52:27, 72696626 , 0, 13, 10000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:52:33, 75349067 , 0, 13, 10000, 100, 1, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:52:44, 81166356 , 0, 13, 10000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:52:49, 84063943 , 0, 13, 10000, 100, 1, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:53:00, 89497027 , 0, 13, 10000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:53:06, 92789650 , 0, 13, 10000, 100, 1, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:53:18, 98432324 , 0, 13, 10000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:53:24, 101919525 , 0, 13, 10000, 100, 1, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:53:38, 108054355 , 0, 13, 10000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:53:46, 114704221 , 0, 13, 10000, 100, 1, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:54:00, 129495811 , 0, 13, 10000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:54:09, 129175794 , 0, 13, 10000, 100, 1, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:54:27, 129989719 , 0, 13, 10000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:54:34, 129869510 , 0, 13, 10000, 100, 1, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:54:45, 121812766 , 0, 13, 10000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:54:56, 127555948 , 0, 13, 10000, 100, 1, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:55:09, 122715861 , 0, 13, 10000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:55:15, 126118892 , 0, 13, 10000, 100, 1, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:55:29, 124919752 , 0, 13, 10000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:55:34, 128745519 , 0, 13, 10000, 100, 1, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:55:48, 127326055 , 0, 13, 10000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:55:56, 125099239 , 0, 13, 10000, 100, 1, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:56:12, 125983390 , 0, 13, 10000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:56:18, 122943810 , 0, 13, 10000, 100, 1, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:56:32, 130219983 , 0, 13, 10000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:56:41, 127934325 , 0, 13, 10000, 100, 1, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:56:54, 125350725 , 0, 13, 10000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:57:00, 128573670 , 0, 13, 10000, 100, 1, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:57:13, 128130777 , 0, 13, 10000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:57:19, 125027534 , 0, 13, 10000, 100, 1, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:57:32, 127787643 , 0, 13, 10000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:57:38, 129410594 , 0, 13, 10000, 100, 1, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 10:57:52, 128963534 , 0, 13, 10000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:58:04, 125679353 , 0, 13, 10000, 100, 1, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 10:58:17, 125139332 , 0, 13, 10000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:58:24, 127667167 , 0, 13, 10000, 100, 1, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 10:58:35, 127747060 , 0, 13, 10000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:58:43, 127259338 , 0, 13, 10000, 100, 1, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 10:59:00, 125375447 , 0, 13, 10000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:59:10, 129392785 , 0, 13, 10000, 100, 1, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 10:59:28, 128513776 , 0, 13, 10000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:59:36, 124541302 , 0, 13, 10000, 100, 1, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 10:59:55, 129271960 , 0, 13, 10000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:00:06, 124803498 , 0, 13, 10000, 100, 1, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:00:17, 129249800 , 0, 13, 10000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:00:27, 125537426 , 0, 13, 10000, 100, 1, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:00:41, 123825932 , 0, 13, 10000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:00:48, 127565279 , 0, 13, 10000, 100, 1, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:01:05, 130321077 , 0, 13, 10000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:01:16, 125706806 , 0, 13, 10000, 100, 1, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:01:28, 125258965 , 0, 13, 10000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:01:42, 130357455 , 0, 13, 10000, 100, 1, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:01:55, 126227761 , 0, 13, 10000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:02:03, 129366082 , 0, 13, 10000, 100, 1, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:02:18, 127418484 , 0, 13, 10000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:02:32, 125710832 , 0, 13, 10000, 100, 1, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:02:47, 123080449 , 0, 13, 10000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:02:56, 125547417 , 0, 13, 10000, 100, 1, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:03:11, 127469144 , 0, 13, 10000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:03:26, 131051252 , 0, 13, 10000, 100, 1, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:03:43, 129013671 , 0, 13, 10000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:04:00, 130152590 , 0, 13, 10000, 100, 2, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:04:21, 120801704 , 0, 13, 10000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:04:33, 123042100 , 0, 13, 10000, 100, 2, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:04:50, 119601551 , 0, 13, 10000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:05:02, 126572420 , 0, 13, 10000, 100, 2, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:05:23, 120339261 , 0, 13, 10000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:05:46, 124761345 , 0, 13, 10000, 100, 2, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:06:08, 130726374 , 0, 13, 10000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:06:30, 131361500 , 0, 13, 10000, 100, 2, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:06:53, 126355460 , 0, 13, 10000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:07:08, 131106266 , 0, 13, 10000, 100, 2, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:07:30, 127052251 , 0, 13, 10000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:07:48, 131246788 , 0, 13, 10000, 100, 2, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:08:12, 137847727 , 0, 13, 10000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:08:25, 137038358 , 0, 13, 10000, 100, 2, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:08:43, 108395956 , 0, 13, 10000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:08:58, 113929839 , 0, 13, 10000, 100, 2, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:09:19, 124526168 , 0, 13, 10000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:09:37, 129934550 , 0, 13, 10000, 100, 2, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:10:09, 122707289 , 0, 13, 10000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:10:30, 117470815 , 0, 13, 10000, 100, 2, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:10:52, 121899759 , 0, 13, 10000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:11:10, 128819483 , 0, 13, 10000, 100, 2, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:11:39, 127430667 , 0, 13, 10000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:12:00, 130298552 , 0, 13, 10000, 100, 2, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:12:30, 129525386 , 0, 13, 10000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:12:38, 131132772 , 0, 13, 10000, 100, 2, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:12:57, 109142728 , 0, 13, 10000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:13:09, 112004844 , 0, 13, 10000, 100, 2, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:13:29, 121669599 , 0, 13, 10000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:13:44, 125755070 , 0, 13, 10000, 100, 2, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:14:06, 130808120 , 0, 13, 10000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:14:24, 129071384 , 0, 13, 10000, 100, 2, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:14:46, 128644987 , 0, 13, 10000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:15:03, 131091966 , 0, 13, 10000, 100, 2, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:15:28, 130180778 , 0, 13, 10000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:15:47, 123270078 , 0, 13, 10000, 100, 2, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:16:13, 131399553 , 0, 13, 10000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:16:29, 105944826 , 0, 13, 10000, 100, 2, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:16:47, 130203560 , 0, 13, 10000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:16:54, 130213579 , 0, 13, 10000, 100, 2, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:17:08, 104712842 , 0, 13, 10000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:17:19, 110904286 , 0, 13, 10000, 100, 2, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:17:38, 121380172 , 0, 13, 10000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:17:54, 127699049 , 0, 13, 10000, 100, 2, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:18:18, 130760984 , 0, 13, 10000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:18:32, 131049309 , 0, 13, 10000, 100, 2, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:18:53, 130221316 , 0, 13, 10000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:19:05, 129821944 , 0, 13, 10000, 100, 2, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:19:25, 127466186 , 0, 13, 10000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:19:51, 121364938 , 0, 13, 10000, 100, 2, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:20:11, 131658548 , 0, 13, 10000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:20:24, 109653979 , 0, 13, 10000, 100, 2, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:20:42, 116183484 , 0, 13, 10000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:20:59, 125672508 , 0, 13, 10000, 100, 2, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:21:22, 123263779 , 0, 13, 10000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:21:41, 125411371 , 0, 13, 10000, 100, 2, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:22:08, 130628260 , 0, 13, 10000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:22:22, 122070417 , 0, 13, 10000, 100, 2, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:22:47, 129971578 , 0, 13, 10000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:23:03, 117697402 , 0, 13, 10000, 100, 2, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:23:24, 135191127 , 0, 13, 10000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:24:09, 110026064 , 0, 13, 10000, 100, 2, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:24:33, 106571322 , 0, 13, 10000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:24:49, 112608281 , 0, 13, 10000, 100, 2, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:25:10, 120597211 , 0, 13, 10000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:25:29, 127869530 , 0, 13, 10000, 100, 2, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:25:58, 124191653 , 0, 13, 10000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:26:14, 129842070 , 0, 13, 10000, 100, 2, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:26:40, 125634303 , 0, 13, 10000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:27:02, 130231228 , 0, 13, 10000, 100, 2, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:27:32, 125162371 , 0, 13, 10000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:27:53, 129774900 , 0, 13, 10000, 100, 2, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:28:18, 136722913 , 0, 13, 10000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:28:35, 135288921 , 0, 13, 10000, 100, 2, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:28:58, 118392274 , 0, 13, 10000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:29:15, 113043161 , 0, 13, 10000, 100, 2, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:29:39, 124682825 , 0, 13, 10000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:30:00, 121641812 , 0, 13, 10000, 100, 2, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:30:29, 122060667 , 0, 13, 10000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:30:57, 120632542 , 0, 13, 10000, 100, 2, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:31:25, 130415091 , 0, 13, 10000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:31:50, 120310782 , 0, 13, 10000, 100, 2, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:32:18, 129985371 , 0, 13, 10000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:32:41, 138592206 , 0, 13, 10000, 100, 4, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:33:03, 116890773 , 0, 13, 10000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:33:17, 134324853 , 0, 13, 10000, 100, 4, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:33:48, 116065588 , 0, 13, 10000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:34:09, 124475128 , 0, 13, 10000, 100, 4, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:34:34, 123162515 , 0, 13, 10000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:34:54, 129410330 , 0, 13, 10000, 100, 4, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:35:18, 119498150 , 0, 13, 10000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:35:35, 125279364 , 0, 13, 10000, 100, 4, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:36:02, 131486738 , 0, 13, 10000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:36:24, 122682591 , 0, 13, 10000, 100, 4, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:36:46, 129954422 , 0, 13, 10000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:37:03, 130704666 , 0, 13, 10000, 100, 4, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:37:28, 130867996 , 0, 13, 10000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:37:38, 130209697 , 0, 13, 10000, 100, 4, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:37:57, 124951544 , 0, 13, 10000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:38:12, 100797394 , 0, 13, 10000, 100, 4, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:38:27, 110685819 , 0, 13, 10000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:38:44, 115822636 , 0, 13, 10000, 100, 4, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:39:06, 127251599 , 0, 13, 10000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:39:25, 111226394 , 0, 13, 10000, 100, 4, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:39:51, 119523047 , 0, 13, 10000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:40:07, 124610439 , 0, 13, 10000, 100, 4, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:40:29, 118756825 , 0, 13, 10000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:40:46, 124271550 , 0, 13, 10000, 100, 4, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:41:10, 130725229 , 0, 13, 10000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:41:21, 130558149 , 0, 13, 10000, 100, 4, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:41:39, 97224448 , 0, 13, 10000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:41:52, 102635505 , 0, 13, 10000, 100, 4, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:42:09, 110650067 , 0, 13, 10000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:42:25, 117661147 , 0, 13, 10000, 100, 4, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:42:50, 128255727 , 0, 13, 10000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:43:11, 131692455 , 0, 13, 10000, 100, 4, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:43:38, 128338452 , 0, 13, 10000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:43:59, 130795785 , 0, 13, 10000, 100, 4, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:44:34, 129423312 , 0, 13, 10000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:44:57, 126627657 , 0, 13, 10000, 100, 4, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:45:25, 131058133 , 0, 13, 10000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:45:35, 132017393 , 0, 13, 10000, 100, 4, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:45:59, 129877281 , 0, 13, 10000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:46:10, 132863682 , 0, 13, 10000, 100, 4, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:46:35, 90636245 , 0, 13, 10000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:46:48, 97155536 , 0, 13, 10000, 100, 4, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:47:09, 109751255 , 0, 13, 10000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:47:29, 117674457 , 0, 13, 10000, 100, 4, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:47:55, 128699648 , 0, 13, 10000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:48:22, 128789993 , 0, 13, 10000, 100, 4, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:48:53, 128061736 , 0, 13, 10000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:49:15, 123089986 , 0, 13, 10000, 100, 4, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:49:41, 131983622 , 0, 13, 10000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:49:58, 130299610 , 0, 13, 10000, 100, 4, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:50:16, 133668197 , 0, 13, 10000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:50:38, 106691127 , 0, 13, 10000, 100, 4, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:51:04, 120328752 , 0, 13, 10000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:51:28, 130464353 , 0, 13, 10000, 100, 4, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:51:58, 110938464 , 0, 13, 10000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:52:23, 118146037 , 0, 13, 10000, 100, 4, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:52:53, 130238417 , 0, 13, 10000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:53:25, 129992510 , 0, 13, 10000, 100, 4, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 11:54:14, 127440403 , 0, 13, 10000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:54:41, 126184764 , 0, 13, 10000, 100, 4, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 11:55:24, 132389462 , 0, 13, 10000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:55:46, 112927877 , 0, 13, 10000, 100, 4, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 11:56:20, 116195857 , 0, 13, 10000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:56:41, 125776767 , 0, 13, 10000, 100, 4, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 11:57:11, 117302145 , 0, 13, 10000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:57:38, 127874955 , 0, 13, 10000, 100, 4, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 11:58:16, 129354140 , 0, 13, 10000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:59:00, 131138171 , 0, 13, 10000, 100, 4, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 11:59:42, 120673177 , 0, 13, 10000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:00:09, 125519281 , 0, 13, 10000, 100, 4, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:00:44, 131232178 , 0, 13, 10000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:01:13, 124544005 , 0, 13, 10000, 100, 4, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:01:48, 133785338 , 0, 13, 10000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:02:05, 108434622 , 0, 13, 10000, 100, 4, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:02:33, 130163091 , 0, 13, 10000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:02:47, 92788747 , 0, 13, 10000, 100, 4, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:03:20, 106696832 , 0, 13, 10000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:03:47, 117301586 , 0, 13, 10000, 100, 4, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:04:24, 129783282 , 0, 13, 10000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:05:00, 130463767 , 0, 13, 10000, 100, 4, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:05:49, 116456259 , 0, 13, 10000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:06:24, 126657103 , 0, 13, 10000, 100, 4, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:07:04, 134230133 , 0, 13, 10000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:07:43, 137534090 , 0, 13, 10000, 100, 8, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:08:17, 130403779 , 0, 13, 10000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:08:41, 131205152 , 0, 13, 10000, 100, 8, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:09:12, 118900644 , 0, 13, 10000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:09:36, 128714374 , 0, 13, 10000, 100, 8, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:10:09, 126478652 , 0, 13, 10000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:10:34, 128433794 , 0, 13, 10000, 100, 8, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:11:05, 128540461 , 0, 13, 10000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:11:26, 126730485 , 0, 13, 10000, 100, 8, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:12:00, 127854107 , 0, 13, 10000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:12:22, 128234046 , 0, 13, 10000, 100, 8, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:12:51, 126127111 , 0, 13, 10000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:13:07, 129659786 , 0, 13, 10000, 100, 8, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:13:32, 111664047 , 0, 13, 10000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:13:47, 116346980 , 0, 13, 10000, 100, 8, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:14:09, 127313207 , 0, 13, 10000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:14:26, 115831903 , 0, 13, 10000, 100, 8, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:14:51, 124735916 , 0, 13, 10000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:15:09, 120297533 , 0, 13, 10000, 100, 8, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:15:36, 129296818 , 0, 13, 10000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:15:58, 126942690 , 0, 13, 10000, 100, 8, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:16:22, 125159526 , 0, 13, 10000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:16:43, 122017483 , 0, 13, 10000, 100, 8, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:17:10, 127300591 , 0, 13, 10000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:17:29, 129798774 , 0, 13, 10000, 100, 8, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:18:03, 128004207 , 0, 13, 10000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:18:17, 128688651 , 0, 13, 10000, 100, 8, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:18:33, 130243203 , 0, 13, 10000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:18:43, 135745823 , 0, 13, 10000, 100, 8, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:19:00, 129385490 , 0, 13, 10000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:19:17, 100539651 , 0, 13, 10000, 100, 8, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:19:35, 108931721 , 0, 13, 10000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:19:52, 114930512 , 0, 13, 10000, 100, 8, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:20:17, 124458486 , 0, 13, 10000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:20:38, 130827279 , 0, 13, 10000, 100, 8, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:21:06, 128114320 , 0, 13, 10000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:21:29, 124333105 , 0, 13, 10000, 100, 8, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:21:57, 136268052 , 0, 13, 10000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:22:16, 130229889 , 0, 13, 10000, 100, 8, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:22:33, 129980278 , 0, 13, 10000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:22:44, 129800609 , 0, 13, 10000, 100, 8, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:22:57, 130248372 , 0, 13, 10000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:23:06, 129250567 , 0, 13, 10000, 100, 8, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:23:21, 71722636 , 0, 13, 10000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:23:46, 78416910 , 0, 13, 10000, 100, 8, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:24:10, 92125856 , 0, 13, 10000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:24:34, 103603112 , 0, 13, 10000, 100, 8, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:25:05, 120956957 , 0, 13, 10000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:25:35, 134038087 , 0, 13, 10000, 100, 8, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:26:18, 130234909 , 0, 13, 10000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:26:30, 133336677 , 0, 13, 10000, 100, 8, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:26:55, 94800800 , 0, 13, 10000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:27:35, 105164004 , 0, 13, 10000, 100, 8, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:28:02, 116498140 , 0, 13, 10000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:28:35, 131639163 , 0, 13, 10000, 100, 8, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:29:31, 134440847 , 0, 13, 10000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:30:18, 129378485 , 0, 13, 10000, 100, 8, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:31:05, 129895056 , 0, 13, 10000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:32:06, 127593839 , 0, 13, 10000, 100, 8, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:32:59, 114191079 , 0, 13, 10000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:33:35, 127709599 , 0, 13, 10000, 100, 8, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:34:16, 133332453 , 0, 13, 10000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:34:40, 129917844 , 0, 13, 10000, 100, 8, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:35:05, 131852281 , 0, 13, 10000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:35:27, 113893975 , 0, 13, 10000, 100, 8, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:36:27, 125832627 , 0, 13, 10000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:37:18, 134937889 , 0, 13, 10000, 100, 8, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:38:38, 135428851 , 0, 13, 10000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:39:39, 130708144 , 0, 13, 10000, 100, 8, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:40:24, 123494682 , 0, 13, 10000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:41:02, 130236436 , 0, 13, 10000, 100, 8, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:41:49, 110126406 , 0, 13, 10000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:42:24, 124324939 , 0, 13, 10000, 100, 8, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:43:18, 132079909 , 0, 13, 10000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:43:44, 112571681 , 0, 13, 10000, 100, 8, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:44:27, 110150983 , 0, 13, 10000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:44:57, 120393726 , 0, 13, 10000, 100, 8, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:45:34, 132563940 , 0, 13, 10000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:46:18, 131611956 , 0, 13, 10000, 100, 8, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:47:09, 117018110 , 0, 13, 10000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:47:49, 129540509 , 0, 13, 10000, 100, 8, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:48:29, 134759023 , 0, 13, 10000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:49:21, 134524990 , 0, 13, 10000, 100, 8, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:50:23, 106458717 , 0, 13, 10000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:51:04, 125296637 , 0, 13, 10000, 100, 16, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:51:49, 129759212 , 0, 13, 10000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:52:30, 128135000 , 0, 13, 10000, 100, 16, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:53:10, 127320121 , 0, 13, 10000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:53:52, 131705456 , 0, 13, 10000, 100, 16, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:54:33, 125352766 , 0, 13, 10000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:55:10, 131824429 , 0, 13, 10000, 100, 16, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:55:53, 130717194 , 0, 13, 10000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:56:12, 106470692 , 0, 13, 10000, 100, 16, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 12:56:36, 119250926 , 0, 13, 10000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:56:57, 128733194 , 0, 13, 10000, 100, 16, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 12:57:24, 129741820 , 0, 13, 10000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:57:38, 119071256 , 0, 13, 10000, 100, 16, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 12:58:04, 106480893 , 0, 13, 10000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:58:20, 113204110 , 0, 13, 10000, 100, 16, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 12:58:42, 130293863 , 0, 13, 10000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:58:59, 123948009 , 0, 13, 10000, 100, 16, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 12:59:28, 115935150 , 0, 13, 10000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 12:59:48, 123304130 , 0, 13, 10000, 100, 16, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:00:14, 120123663 , 0, 13, 10000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:00:37, 125868566 , 0, 13, 10000, 100, 16, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:01:02, 126092348 , 0, 13, 10000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:01:20, 124805777 , 0, 13, 10000, 100, 16, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:01:47, 125752122 , 0, 13, 10000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:02:09, 123903413 , 0, 13, 10000, 100, 16, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:02:42, 128544873 , 0, 13, 10000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:03:02, 121207985 , 0, 13, 10000, 100, 16, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:03:25, 128812689 , 0, 13, 10000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:03:39, 129916270 , 0, 13, 10000, 100, 16, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:04:01, 132165174 , 0, 13, 10000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:04:22, 135026805 , 0, 13, 10000, 100, 16, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:04:46, 117480634 , 0, 13, 10000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:05:06, 118301401 , 0, 13, 10000, 100, 16, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:05:31, 128147427 , 0, 13, 10000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:05:54, 127257780 , 0, 13, 10000, 100, 16, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:06:19, 127557401 , 0, 13, 10000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:06:44, 128373877 , 0, 13, 10000, 100, 16, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:07:19, 129688975 , 0, 13, 10000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:07:30, 106046112 , 0, 13, 10000, 100, 16, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:07:53, 130053539 , 0, 13, 10000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:08:11, 133141699 , 0, 13, 10000, 100, 16, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:08:34, 130940096 , 0, 13, 10000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:08:49, 112717293 , 0, 13, 10000, 100, 16, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:09:12, 81140050 , 0, 13, 10000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:09:33, 97143903 , 0, 13, 10000, 100, 16, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:09:59, 114420750 , 0, 13, 10000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:10:26, 124451047 , 0, 13, 10000, 100, 16, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:11:01, 125995485 , 0, 13, 10000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:11:32, 127554642 , 0, 13, 10000, 100, 16, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:12:07, 136688533 , 0, 13, 10000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:12:25, 129610551 , 0, 13, 10000, 100, 16, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:12:45, 132668828 , 0, 13, 10000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:13:03, 131601485 , 0, 13, 10000, 100, 16, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:13:48, 134418148 , 0, 13, 10000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:14:22, 90439433 , 0, 13, 10000, 100, 16, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:14:49, 91870599 , 0, 13, 10000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:15:15, 100034427 , 0, 13, 10000, 100, 16, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:16:06, 120800220 , 0, 13, 10000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:17:11, 125222509 , 0, 13, 10000, 100, 16, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:18:35, 136425214 , 0, 13, 10000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:19:53, 124722071 , 0, 13, 10000, 100, 16, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:20:59, 124043672 , 0, 13, 10000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:21:51, 122017980 , 0, 13, 10000, 100, 16, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:22:42, 99148287 , 0, 13, 10000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:23:02, 105892463 , 0, 13, 10000, 100, 16, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:23:47, 130037938 , 0, 13, 10000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:25:04, 117307780 , 0, 13, 10000, 100, 16, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:26:29, 114410445 , 0, 13, 10000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:27:34, 131438501 , 0, 13, 10000, 100, 16, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:29:05, 133310458 , 0, 13, 10000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:30:42, 130443014 , 0, 13, 10000, 100, 16, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:31:30, 136100942 , 0, 13, 10000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:33:05, 118365054 , 0, 13, 10000, 100, 16, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:34:00, 132683496 , 0, 13, 10000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:34:36, 134402712 , 0, 13, 10000, 100, 16, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:35:37, 120663733 , 0, 13, 10000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:36:31, 132672133 , 0, 13, 10000, 100, 16, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:37:31, 135422180 , 0, 13, 10000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:38:37, 95087298 , 0, 13, 10000, 100, 16, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:39:38, 106880395 , 0, 13, 10000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:40:32, 118370442 , 0, 13, 10000, 100, 16, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:41:45, 120962875 , 0, 13, 10000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:43:04, 115987926 , 0, 13, 10000, 100, 16, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:44:53, 88457393 , 0, 13, 10000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:45:52, 104247178 , 0, 13, 10000, 100, 24, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:46:43, 125971977 , 0, 13, 10000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:47:31, 129840606 , 0, 13, 10000, 100, 24, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:47:53, 124115186 , 0, 13, 10000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:48:37, 126759650 , 0, 13, 10000, 100, 24, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:49:31, 121749202 , 0, 13, 10000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:50:19, 127318450 , 0, 13, 10000, 100, 24, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:51:28, 94477905 , 0, 13, 10000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:51:57, 104271107 , 0, 13, 10000, 100, 24, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:52:31, 115286085 , 0, 13, 10000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:53:01, 127107425 , 0, 13, 10000, 100, 24, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:53:39, 125116281 , 0, 13, 10000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:54:14, 124516910 , 0, 13, 10000, 100, 24, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:54:53, 124532530 , 0, 13, 10000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:55:31, 120506253 , 0, 13, 10000, 100, 24, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 13:56:07, 126596342 , 0, 13, 10000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:56:36, 126183944 , 0, 13, 10000, 100, 24, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 13:57:12, 125400916 , 0, 13, 10000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:57:45, 126349538 , 0, 13, 10000, 100, 24, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 13:58:26, 87750235 , 0, 13, 10000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:58:48, 70494756 , 0, 13, 10000, 100, 24, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 13:59:03, 75285519 , 0, 13, 10000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:59:14, 78530661 , 0, 13, 10000, 100, 24, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 13:59:30, 84430636 , 0, 13, 10000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:59:41, 88362522 , 0, 13, 10000, 100, 24, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 13:59:59, 105606464 , 0, 13, 10000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 14:00:14, 111213202 , 0, 13, 10000, 100, 24, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 14:00:34, 129879659 , 0, 13, 10000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 14:00:51, 130303482 , 0, 13, 10000, 100, 24, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 14:01:12, 130110867 , 0, 13, 10000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 14:01:26, 136674046 , 0, 13, 10000, 100, 24, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 14:01:53, 134356669 , 0, 13, 10000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 14:02:11, 124243236 , 0, 13, 10000, 100, 24, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 14:02:41, 106662881 , 0, 13, 10000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 14:02:58, 120594075 , 0, 13, 10000, 100, 24, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 14:03:20, 133155266 , 0, 13, 10000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 14:03:50, 125819219 , 0, 13, 10000, 100, 24, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 14:04:08, 130973029 , 0, 13, 10000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 14:04:24, 135627808 , 0, 13, 10000, 100, 24, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 14:04:45, 135139642 , 0, 13, 10000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 14:05:04, 129690228 , 0, 13, 10000, 100, 24, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 14:05:27, 124200279 , 0, 13, 10000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 14:05:38, 137376667 , 0, 13, 10000, 100, 24, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 14:06:12, 129779137 , 0, 13, 10000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 14:06:39, 134376924 , 0, 13, 10000, 100, 24, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 14:07:04, 118331047 , 0, 13, 10000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 14:07:31, 130540407 , 0, 13, 10000, 100, 24, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 14:07:56, 125138062 , 0, 13, 10000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 14:08:29, 126412467 , 0, 13, 10000, 100, 24, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 14:09:12, 141174465 , 0, 13, 10000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 14:09:38, 129614707 , 0, 13, 10000, 100, 24, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 14:10:04, 132549325 , 0, 13, 10000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 14:10:46, 134162558 , 0, 13, 10000, 100, 24, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 14:11:15, 128908595 , 0, 13, 10000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 14:11:26, 123601233 , 0, 13, 10000, 100, 24, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 14:12:11, 85832892 , 0, 13, 10000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 14:13:02, 101097046 , 0, 13, 10000, 100, 24, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 14:14:01, 129583268 , 0, 13, 10000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 14:15:07, 131996009 , 0, 13, 10000, 100, 24, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 14:16:25, 137671618 , 0, 13, 10000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 14:17:39, 121284799 , 0, 13, 10000, 100, 24, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 14:18:37, 142046540 , 0, 13, 10000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 14:19:26, 126517287 , 0, 13, 10000, 100, 24, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 14:20:40, 121954306 , 0, 13, 10000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 14:21:22, 125223816 , 0, 13, 10000, 100, 24, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 14:22:24, 128780806 , 0, 13, 10000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 14:23:30, 102780047 , 0, 13, 10000, 100, 24, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 14:24:32, 125524935 , 0, 13, 10000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 14:26:08, 128680635 , 0, 13, 10000, 100, 24, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 14:27:49, 131636487 , 0, 13, 10000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 14:30:04, 109256173 , 0, 13, 10000, 100, 24, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 14:31:34, 130129353 , 0, 13, 10000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 14:32:38, 132614209 , 0, 13, 10000, 100, 24, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 14:33:46, 138571011 , 0, 13, 10000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 14:34:45, 130865710 , 0, 13, 10000, 100, 24, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 14:35:38, 126552671 , 0, 13, 10000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 14:37:17, 100366803 , 0, 13, 10000, 100, 24, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 14:38:38, 103928922 , 0, 13, 10000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 14:39:31, 124048140 , 0, 13, 10000, 100, 24, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 14:41:07, 127812730 , 0, 13, 10000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 14:43:29, 82880224 , 0, 13, 10000, 100, 24, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 14:44:43, 102787935 , 0, 13, 10000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 14:45:53, 126049764 , 0, 13, 10000, 100, 24, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 14:47:44, 138567821 , 0, 13, 10000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 14:49:28, 138242117 , 0, 13, 10000, 100, 32, 1, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 14:50:44, 134286808 , 0, 13, 10000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 14:51:52, 110075931 , 0, 13, 10000, 100, 32, 1, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 14:53:09, 101608062 , 0, 13, 10000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 14:53:49, 115388379 , 0, 13, 10000, 100, 32, 1, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 14:54:37, 126230926 , 0, 13, 10000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 14:55:27, 124852855 , 0, 13, 10000, 100, 32, 1, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 14:56:21, 126420252 , 0, 13, 10000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 14:57:08, 125336976 , 0, 13, 10000, 100, 32, 1, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 14:58:33, 124072203 , 0, 13, 10000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 14:59:17, 124708682 , 0, 13, 10000, 100, 32, 1, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 15:00:05, 62203685 , 0, 13, 10000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 15:00:17, 64681545 , 0, 13, 10000, 100, 32, 2, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 15:00:33, 73324962 , 0, 13, 10000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 15:00:47, 78286341 , 0, 13, 10000, 100, 32, 2, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 15:01:06, 89460172 , 0, 13, 10000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 15:01:21, 94301333 , 0, 13, 10000, 100, 32, 2, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 15:01:41, 104389646 , 0, 13, 10000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 15:01:57, 124029025 , 0, 13, 10000, 100, 32, 2, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 15:02:18, 128771727 , 0, 13, 10000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 15:02:28, 127718160 , 0, 13, 10000, 100, 32, 2, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 15:02:45, 130158501 , 0, 13, 10000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 15:02:53, 129843880 , 0, 13, 10000, 100, 32, 2, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 15:03:05, 122067265 , 0, 13, 10000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 15:03:18, 115007965 , 0, 13, 10000, 100, 32, 4, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 15:03:57, 128395816 , 0, 13, 10000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 15:04:03, 127155366 , 0, 13, 10000, 100, 32, 4, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 15:04:18, 130396486 , 0, 13, 10000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 15:04:32, 127829727 , 0, 13, 10000, 100, 32, 4, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 15:04:52, 122743880 , 0, 13, 10000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 15:05:01, 129696346 , 0, 13, 10000, 100, 32, 4, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 15:05:19, 123521368 , 0, 13, 10000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 15:05:33, 125007410 , 0, 13, 10000, 100, 32, 4, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 15:05:54, 129680331 , 0, 13, 10000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 15:06:03, 124777785 , 0, 13, 10000, 100, 32, 4, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 15:06:18, 129765692 , 0, 13, 10000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 15:06:30, 128157777 , 0, 13, 10000, 100, 32, 8, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 15:06:49, 133593953 , 0, 13, 10000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 15:07:16, 129225386 , 0, 13, 10000, 100, 32, 8, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 15:07:45, 132189810 , 0, 13, 10000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 15:07:57, 129803549 , 0, 13, 10000, 100, 32, 8, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 15:08:17, 133930546 , 0, 13, 10000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 15:08:26, 126347342 , 0, 13, 10000, 100, 32, 8, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 15:08:56, 119754625 , 0, 13, 10000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 15:09:21, 130447877 , 0, 13, 10000, 100, 32, 8, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 15:09:54, 127239504 , 0, 13, 10000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 15:10:28, 131109447 , 0, 13, 10000, 100, 32, 8, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 15:11:12, 132544852 , 0, 13, 10000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 15:11:39, 129314362 , 0, 13, 10000, 100, 32, 16, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 15:12:30, 133255965 , 0, 13, 10000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 15:12:59, 132566840 , 0, 13, 10000, 100, 32, 16, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 15:13:26, 130166710 , 0, 13, 10000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 15:13:46, 132151856 , 0, 13, 10000, 100, 32, 16, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 15:14:26, 128726433 , 0, 13, 10000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 15:14:42, 131969651 , 0, 13, 10000, 100, 32, 16, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 15:15:07, 86412424 , 0, 13, 10000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 15:15:46, 116970046 , 0, 13, 10000, 100, 32, 16, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 15:16:50, 123760155 , 0, 13, 10000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 15:18:08, 136258714 , 0, 13, 10000, 100, 32, 16, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 15:19:18, 137476572 , 0, 13, 10000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 15:20:52, 121190182 , 0, 13, 10000, 100, 32, 24, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 15:22:00, 136832317 , 0, 13, 10000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 15:22:42, 132559478 , 0, 13, 10000, 100, 32, 24, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 15:23:47, 127364511 , 0, 13, 10000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 15:24:52, 105642258 , 0, 13, 10000, 100, 32, 24, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 15:27:05, 110484725 , 0, 13, 10000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 15:28:04, 119602266 , 0, 13, 10000, 100, 32, 24, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 15:29:24, 129365526 , 0, 13, 10000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 15:31:03, 129539647 , 0, 13, 10000, 100, 32, 24, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 15:33:12, 129492550 , 0, 13, 10000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 15:34:44, 106271903 , 0, 13, 10000, 100, 32, 24, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 15:35:55, 133374047 , 0, 13, 10000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 15:36:57, 139489295 , 0, 13, 10000, 100, 32, 32, empirical, multisession, timing_log_test_big.csv
+2022-01-23, 15:39:11, 139585391 , 0, 13, 10000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 15:40:42, 132448177 , 0, 13, 10000, 100, 32, 32, empirical, multicore, timing_log_test_big.csv
+2022-01-23, 15:42:45, 107035284 , 0, 13, 10000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 15:43:27, 114791924 , 0, 13, 10000, 100, 32, 32, gaussian, multisession, timing_log_test_big.csv
+2022-01-23, 15:44:04, 128489982 , 0, 13, 10000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 15:45:03, 119422040 , 0, 13, 10000, 100, 32, 32, gaussian, multicore, timing_log_test_big.csv
+2022-01-23, 15:47:02, 133338388 , 0, 13, 10000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 15:49:26, 127923326 , 0, 13, 10000, 100, 32, 32, ctree, multisession, timing_log_test_big.csv
+2022-01-23, 15:51:35, 132161860 , 0, 13, 10000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
+2022-01-23, 15:53:26, 126884391 , 0, 13, 10000, 100, 32, 32, ctree, multicore, timing_log_test_big.csv
diff --git a/inst/scripts/devel/testing_explain_forevast_n_comb.R b/inst/scripts/devel/testing_explain_forevast_n_comb.R
new file mode 100644
index 000000000..48784a6cf
--- /dev/null
+++ b/inst/scripts/devel/testing_explain_forevast_n_comb.R
@@ -0,0 +1,214 @@
+
+
+h3test <- explain_forecast(model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "empirical",
+ prediction_zero = p0_ar[1:3],
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE,
+ seed = i,
+ n_combinations = 300
+)
+
+h2test <- explain_forecast(model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 2,
+ approach = "empirical",
+ prediction_zero = p0_ar[1:2],
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE,
+ seed = i,
+ n_combinations = 10^7
+)
+
+h1test <- explain_forecast(model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 1,
+ approach = "empirical",
+ prediction_zero = p0_ar[1],
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE,
+ seed = i,
+ n_combinations = 10^7
+)
+
+w <- h3test$internal$objects$X_list[[1]][["shapley_weight"]]
+
+w[-c(1, length(w))] <- w[-c(1, length(w))] / sum(w[-c(1, length(w))])
+h3test$internal$objects$X_list[[1]][,shapley_weight_norm := w]
+
+
+w <- h1test$internal$objects$X_list[[1]][["shapley_weight"]]
+
+w[-c(1, length(w))] <- w[-c(1, length(w))] / sum(w[-c(1, length(w))])
+h1test$internal$objects$X_list[[1]][,shapley_weight_norm := w]
+
+
+w2 <- h1full$internal$objects$X_list[[1]][["shapley_weight"]]
+
+w2[-c(1, length(w2))] <- w2[-c(1, length(w2))] / sum(w2[-c(1, length(w2))])
+h1full$internal$objects$X_list[[1]][,shapley_weight_norm := w2]
+
+h1test$internal$objects$X_list[[1]][-c(1,.N),]
+h1full$internal$objects$X_list[[1]][-c(1,.N),]
+h3test$internal$objects$X_list[[1]][-c(1,.N),]
+
+
+ncomb <- 50
+
+reps <- 10
+
+set.seed(123)
+h3full <- explain_forecast(model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "empirical",
+ prediction_zero = p0_ar[1:3],
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE,
+ seed = 1)
+
+set.seed(123)
+h1full <- explain_forecast(model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 1,
+ approach = "empirical",
+ prediction_zero = p0_ar[1],
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE,
+ seed = 1)
+
+
+
+h1list <- h2list <- h3list <- list()
+for (i in 1:reps){
+ h3list[[i]] <- explain_forecast(model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "empirical",
+ prediction_zero = p0_ar[1:3],
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE,
+ seed = i,
+ n_combinations = ncomb
+ )
+
+ h2list[[i]] <- explain_forecast(model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 2,
+ approach = "empirical",
+ prediction_zero = p0_ar[1:2],
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE,
+ seed = i,
+ n_combinations = ncomb
+ )
+
+ h1list[[i]] <- explain_forecast(model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 1,
+ approach = "empirical",
+ prediction_zero = p0_ar[1],
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE,
+ seed = i,
+ n_combinations = min(ncomb,31)
+ )
+
+ print(i)
+}
+
+
+
+cols_horizon1 <- h3full$internal$objects$cols_per_horizon[[1]]
+cols_horizon2 <- h3full$internal$objects$cols_per_horizon[[2]]
+cols_horizon3 <- h3full$internal$objects$cols_per_horizon[[3]]
+
+h1mean1 <- h2mean1 <- h2mean2 <- h3mean1 <- h3mean2 <- h3mean3 <- list()
+for(i in 1:reps){
+ h1mean1[[i]] <- as.matrix(h1list[[i]]$shapley_values[horizon==1, ..cols_horizon1])
+
+ h2mean1[[i]] <- as.matrix(h2list[[i]]$shapley_values[horizon==1, ..cols_horizon1])
+ h2mean2[[i]] <- as.matrix(h2list[[i]]$shapley_values[horizon==2, ..cols_horizon2])
+
+ h3mean1[[i]] <- as.matrix(h3list[[i]]$shapley_values[horizon==1, ..cols_horizon1])
+ h3mean2[[i]] <- as.matrix(h3list[[i]]$shapley_values[horizon==2, ..cols_horizon2])
+ h3mean3[[i]] <- as.matrix(h3list[[i]]$shapley_values[horizon==3, ..cols_horizon3])
+
+}
+
+# Horizon 1
+Reduce("+", h1mean1) / reps
+Reduce("+", h2mean1) / reps
+Reduce("+", h3mean1) / reps
+h3full$shapley_values[horizon==1,..cols_horizon1]
+
+# Horizon 2
+Reduce("+", h2mean2) / reps
+Reduce("+", h3mean2) / reps
+h3full$shapley_values[horizon==2,..cols_horizon2]
+
+# Horizon 3
+Reduce("+", h3mean3) / reps
+h3full$shapley_values[horizon==3,..cols_horizon3]
+
+
+
+expect_equal(h2$shapley_values[horizon==1, ..cols_horizon1],
+ h1$shapley_values[horizon==1,..cols_horizon1])
+
+expect_equal(h3$shapley_values[horizon==1, ..cols_horizon1],
+ h1$shapley_values[horizon==1,..cols_horizon1])
+
+cols_horizon2 <- h2$internal$objects$cols_per_horizon[[2]]
+expect_equal(h3$shapley_values[horizon==2, ..cols_horizon2],
+ h2$shapley_values[horizon==2,..cols_horizon2])
diff --git a/inst/scripts/devel/testing_memory_monitoring.R b/inst/scripts/devel/testing_memory_monitoring.R
new file mode 100644
index 000000000..a372c6cf3
--- /dev/null
+++ b/inst/scripts/devel/testing_memory_monitoring.R
@@ -0,0 +1,98 @@
+
+
+library(shapr)
+library(future)
+library(MASS)
+library(microbenchmark)
+library(data.table)
+library(peakRAM)
+
+p_vec <- 20#2:10
+n_train_vec <- 1000
+n_test_vec <- 100#c(2,10,20)
+n_batches_vec <- c(1,2,4,8,16,24,32)#seq(2,20,by=5)
+n_cores_vec <- c(1,2,4,8,16,24,32)#c(1,seq(2,32,by=5))
+approach_vec <- c("empirical","gaussian","ctree")#rev(c("empirical","gaussian"))
+reps <- 2
+
+max_n <- 10^5
+max_p <- 20
+rho <- 0.3
+Sigma <- matrix(rho,max_p,max_p)
+diag(Sigma) <- 1
+mu <- rep(0,max_p)
+beta <- c(1,seq_len(max_p)/max_p)
+sigma_eps <- 1
+
+set.seed(123)
+x_all <- MASS::mvrnorm(max_n,mu = mu,Sigma = Sigma)
+y_all <- as.vector(cbind(1,x_all)%*%beta)+rnorm(max_n,mean = 0,sd = sigma_eps)
+
+
+
+set.seed(123)
+these_p <- sample.int(max_p,size=p_vec[1])
+these_train <- sample.int(max_n,size=n_train_vec[1])
+these_test <- sample.int(max_n,size=n_test_vec[1])
+
+x_train <- as.data.frame(x_all[these_train,these_p])
+x_test <- as.data.frame(x_all[these_test,these_p])
+
+y_train <- y_all[these_train]
+
+xy_train <- cbind(x_train,y=y_train)
+
+model <- lm(formula = y~.,data=xy_train)
+
+explainer <- shapr(x_train, model,n_combinations = 1000)
+p <- mean(y_train)
+
+
+future::plan("multicore",workers=4)
+#future::plan("multisession",workers=4)
+#future::plan("sequential")
+
+peakRAM(explain(
+ x_test,
+ approach = "gaussian",
+ explainer = explainer,
+ prediction_zero = p,n_batches = 4)
+ )
+
+# ,
+# explain(
+# x_test,
+# approach = "empirical",
+# explainer = explainer,
+# prediction_zero = p,n_batches = 2),
+# explain(
+# x_test,
+# approach = "empirical",
+# explainer = explainer,
+# prediction_zero = p,n_batches = 4))
+
+# explain(
+# x_test,
+# approach = "empirical",
+# explainer = explainer,
+# prediction_zero = p,n_batches = 8),
+# explain(
+# x_test,
+# approach = "empirical",
+# explainer = explainer,
+# prediction_zero = p,n_batches = 16),
+# explain(
+# x_test,
+# approach = "empirical",
+# explainer = explainer,
+# prediction_zero = p,n_batches = 32)
+# )
+
+# s <- proc.time()
+# explain(
+# x_test,
+# approach = "empirical",
+# explainer = explainer,
+# prediction_zero = p,n_batches = 32)
+# print(proc.time()-s)
+#
diff --git a/inst/scripts/devel/testing_parallelization.R b/inst/scripts/devel/testing_parallelization.R
new file mode 100644
index 000000000..24cacc1a7
--- /dev/null
+++ b/inst/scripts/devel/testing_parallelization.R
@@ -0,0 +1,176 @@
+
+
+library(shapr)
+library(future)
+library(MASS)
+library(microbenchmark)
+library(data.table)
+
+p_vec <- 10#2:10
+n_train_vec <- 1000
+n_test_vec <- 100#c(2,10,20)
+n_batches_vec <- c(1,2,4,8,16,24,32)#seq(2,20,by=5)
+n_cores_vec <- c(1,2,4,8,16,24,32)#c(1,seq(2,32,by=5))
+approach_vec <- c("empirical","gaussian","ctree")#rev(c("empirical","gaussian"))
+reps <- 2
+
+max_n <- 10^5
+max_p <- 10
+rho <- 0.3
+Sigma <- matrix(rho,max_p,max_p)
+diag(Sigma) <- 1
+mu <- rep(0,max_p)
+beta <- c(1,seq_len(max_p)/max_p)
+sigma_eps <- 1
+
+set.seed(123)
+x_all <- MASS::mvrnorm(max_n,mu = mu,Sigma = Sigma)
+y_all <- as.vector(cbind(1,x_all)%*%beta)+rnorm(max_n,mean = 0,sd = sigma_eps)
+
+
+res_dt <- as.data.table(expand.grid(p = p_vec,
+ n_train = n_train_vec,
+ n_test = n_test_vec,
+ n_batches = n_batches_vec,
+ n_cores = n_cores_vec,
+ approach = approach_vec))
+
+res_dt[,n_cores:=ifelse(n_cores>n_batches,n_batches,n_cores)]
+res_dt <- unique(res_dt)
+
+res_dt[,approach:=as.character(approach)]
+res_dt[,time_median:=as.numeric(NA)]
+res_dt[,time_min:=as.numeric(NA)]
+res_dt[,mem_alloc:=as.numeric(NA)]
+
+
+for(i in seq_len(nrow(res_dt))){
+#for(i in sample.int(nrow(res_dt),10)){
+
+ set.seed(123)
+ these_p <- sample.int(max_p,size=res_dt[i,p])
+ these_train <- sample.int(max_n,size=res_dt[i,n_train])
+ these_test <- sample.int(max_n,size=res_dt[i,n_test])
+
+ x_train <- as.data.frame(x_all[these_train,these_p])
+ x_test <- as.data.frame(x_all[these_test,these_p])
+
+ y_train <- y_all[these_train]
+
+ xy_train <- cbind(x_train,y=y_train)
+
+ model <- lm(formula = y~.,data=xy_train)
+
+ explainer <- shapr(x_train, model)
+ p <- mean(y_train)
+
+
+ n_batches_use <- min(nrow(explainer$S),res_dt[i,n_batches])
+ n_cores_use <- res_dt[i,n_cores]
+ approach_use <- res_dt[i,approach]
+
+ #future::plan("multicore",workers=n_cores_use)
+ future::plan("multisession",workers=n_cores_use)
+
+
+ res0 <- bench::mark({
+ explanation <- explain(
+ x_test,
+ approach = approach_use,
+ explainer = explainer,
+ prediction_zero = p,n_batches = n_batches_use
+ )},iterations = reps,time_unit ='s',memory = F,
+ min_time = Inf
+ )
+
+ res_dt[i,c("time_median","time_min","mem_alloc"):= list(res0$median,res0$min,res0$mem_alloc/1024^2),]
+
+ # res_dt[p==res_dt[i,p] &
+ # n_train == res_dt[i,n_train] &
+ # n_test == res_dt[i,n_test] &
+ # n_cores == res_dt[i,n_cores] &
+ # n_batches == res_dt[i,n_batches] &
+ # approach == approach_use,
+ # res:=res0$time[3]/10^6
+ # ]
+
+ print(res_dt[i])
+}
+
+setkey(res_dt,time_median)
+
+#res_dt[approach=="gaussian"]
+
+
+
+
+# p n_train n_test n_batches n_cores approach time_median time_min mem_alloc
+# 1: 10 1000 100 5 10 empirical 8.264136 8.199610 NA
+# 2: 10 1000 100 5 5 empirical 8.277614 8.224627 NA
+# 3: 10 1000 100 5 15 empirical 8.351432 8.189444 NA
+# 4: 10 1000 100 5 20 empirical 8.394858 8.317760 NA
+# 5: 10 1000 100 5 30 empirical 8.496488 8.453119 NA
+# 6: 10 1000 100 10 5 empirical 10.534386 10.523246 NA
+# 7: 10 1000 100 10 10 empirical 11.659772 11.659772 NA
+# 8: 10 1000 100 10 15 empirical 11.767503 11.767503 NA
+# 9: 10 1000 100 10 30 empirical 11.835323 11.835323 NA
+# 10: 10 1000 100 10 20 empirical 11.902262 11.902262 NA
+# 11: 10 1000 100 20 5 empirical 14.750653 14.718519 NA
+# 12: 10 1000 100 20 30 empirical 15.426510 15.398783 NA
+# 13: 10 1000 100 20 15 empirical 15.426532 15.388514 NA
+# 14: 10 1000 100 20 20 empirical 15.468479 15.426808 NA
+# 15: 10 1000 100 20 10 empirical 15.564483 15.536153 NA
+# 16: 10 1000 100 10 2 empirical 16.275958 16.155311 NA
+# 17: 10 1000 100 5 2 empirical 16.520838 16.484130 NA
+# 18: 10 1000 100 20 2 empirical 22.812822 22.733153 NA
+# 19: 10 1000 100 5 1 empirical 32.814998 32.723445 NA
+# 20: 10 1000 100 10 1 empirical 33.740455 33.284869 NA
+# 21: 10 1000 100 10 30 gaussian 42.697496 42.123002 NA
+# 22: 10 1000 100 10 15 gaussian 43.153707 42.400444 NA
+# 23: 10 1000 100 10 20 gaussian 43.331616 42.330915 NA
+# 24: 10 1000 100 10 10 gaussian 43.601197 42.580585 NA
+# 25: 10 1000 100 20 10 gaussian 43.713152 42.444733 NA
+# 26: 10 1000 100 20 1 empirical 44.970672 44.957254 NA
+# 27: 10 1000 100 20 15 gaussian 48.515789 48.364623 NA
+# 28: 10 1000 100 20 30 gaussian 48.980771 48.716296 NA
+# 29: 10 1000 100 20 20 gaussian 49.048357 48.585454 NA
+# 30: 10 1000 100 5 10 gaussian 49.929313 49.906563 NA
+# 31: 10 1000 100 5 5 gaussian 49.952981 49.428697 NA
+# 32: 10 1000 100 20 5 gaussian 49.954880 49.645313 NA
+# 33: 10 1000 100 5 30 gaussian 50.220795 49.894032 NA
+# 34: 10 1000 100 5 20 gaussian 50.480277 50.116526 NA
+# 35: 10 1000 100 5 15 gaussian 50.616905 50.517388 NA
+# 36: 10 1000 100 10 5 gaussian 50.739175 48.893451 NA
+# 37: 10 1000 100 20 20 ctree 79.067415 79.060347 NA
+# 38: 10 1000 100 20 30 ctree 79.178795 78.830831 NA
+# 39: 10 1000 100 20 10 ctree 80.194740 76.259531 NA
+# 40: 10 1000 100 10 20 ctree 84.368049 83.086716 NA
+# 41: 10 1000 100 10 10 ctree 84.583532 84.125999 NA
+# 42: 10 1000 100 20 15 ctree 85.021570 84.921147 NA
+# 43: 10 1000 100 10 30 ctree 86.293475 83.902999 NA
+# 44: 10 1000 100 10 15 ctree 86.549406 85.115549 NA
+# 45: 10 1000 100 20 5 ctree 92.955276 92.538537 NA
+# 46: 10 1000 100 10 5 ctree 94.816191 92.215222 NA
+# 47: 10 1000 100 5 15 ctree 94.846974 94.641546 NA
+# 48: 10 1000 100 10 2 gaussian 95.399388 95.341892 NA
+# 49: 10 1000 100 5 20 ctree 95.887569 95.437676 NA
+# 50: 10 1000 100 5 5 ctree 95.938850 93.705034 NA
+# 51: 10 1000 100 5 30 ctree 96.015618 92.434543 NA
+# 52: 10 1000 100 5 10 ctree 96.238056 94.071784 NA
+# 53: 10 1000 100 20 2 gaussian 96.379812 95.719475 NA
+# 54: 10 1000 100 5 2 gaussian 109.674539 108.807517 NA
+# 55: 10 1000 100 10 1 gaussian 189.596560 188.909395 NA
+# 56: 10 1000 100 5 1 gaussian 191.256527 191.157274 NA
+# 57: 10 1000 100 20 1 gaussian 196.929709 196.358810 NA
+# 58: 10 1000 100 10 2 ctree 200.709682 200.523174 NA
+# 59: 10 1000 100 20 2 ctree 200.942230 200.570071 NA
+# 60: 10 1000 100 5 2 ctree 237.327601 236.488531 NA
+# 61: 10 1000 100 10 1 ctree 395.500767 393.656852 NA
+# 62: 10 1000 100 5 1 ctree 402.635571 401.290227 NA
+# 63: 10 1000 100 20 1 ctree 403.930240 403.903723 NA
+# p n_train n_test n_batches n_cores approach time_median time_min mem_alloc
+
+
+
+
+
diff --git a/inst/scripts/devel/testing_verification_ar_model.R b/inst/scripts/devel/testing_verification_ar_model.R
new file mode 100644
index 000000000..ab5c43d6a
--- /dev/null
+++ b/inst/scripts/devel/testing_verification_ar_model.R
@@ -0,0 +1,38 @@
+library(data.table)
+options(digits = 5) # To avoid round off errors when printing output on different systems
+set.seed(123)
+
+data <- as.data.table(matrix(rnorm(100*3),ncol=3))# first column is noise, the other two are xregs
+
+# Create AR(1)-structure
+y <- rep(0,100)
+y[1] <- data[1,1]/5+data[1,2]+data[1,3]
+for(i in 2:100){
+ y[i] <- y[i-1]+data[i,1]/5+data[i,2]+data[i,3]
+}
+y <- unlist(y)
+plot(y)
+
+dat <- data.table(y=y,xreg1=unlist(data[,2]),xreg2=unlist(data[,3]))
+
+model_arima_temp <- arima(dat$y, c(2,1,0), xreg=dat[,2:3])
+
+
+set.seed(123)
+exp <- explain_forecast(model = model_arima_temp,
+ y = dat$y,
+ xreg = dat[, 2:3],#dat[, 2:3],
+ train_idx = 10:50,
+ explain_idx = 71:72,
+ explain_y_lags = 0,
+ explain_xreg_lags = c(0,0),
+ horizon = 2,
+ approach = "empirical",
+ prediction_zero = c(0,0),
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE,
+ n_combinations = 50
+)
+
+
diff --git a/inst/scripts/devel/timing_log_test_big.csv b/inst/scripts/devel/timing_log_test_big.csv
new file mode 100644
index 000000000..06084d07a
--- /dev/null
+++ b/inst/scripts/devel/timing_log_test_big.csv
@@ -0,0 +1,1476 @@
+p,n_train,n_test,n_batches,n_cores,approach,sys_time_initial,sys_time_start_shapr,sys_time_end_shapr,sys_time_start_explain,sys_time_end_explain,secs_shapr,secs_explain,this_rep,max_n,max_p,rho,sigma,mu_const,beta0,sigma_eps
+8,1000,100,1,1,empirical,2022-01-21 19:45:21,2022-01-21 19:45:22,2022-01-21 19:45:22,2022-01-21 19:45:22,2022-01-21 19:45:28,0.0679423809051514,6.21460437774658,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,1,empirical,2022-01-21 19:45:34,2022-01-21 19:45:34,2022-01-21 19:45:34,2022-01-21 19:45:34,2022-01-21 19:45:41,0.0655725002288818,6.15326380729675,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,1,gaussian,2022-01-21 19:45:46,2022-01-21 19:45:47,2022-01-21 19:45:47,2022-01-21 19:45:47,2022-01-21 19:46:31,0.0679314136505127,43.818482875824,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,1,gaussian,2022-01-21 19:46:37,2022-01-21 19:46:38,2022-01-21 19:46:38,2022-01-21 19:46:38,2022-01-21 19:47:22,0.0672848224639893,44.5887775421143,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,1,ctree,2022-01-21 19:47:28,2022-01-21 19:47:28,2022-01-21 19:47:28,2022-01-21 19:47:29,2022-01-21 19:49:00,0.0699443817138672,91.2768745422363,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,1,ctree,2022-01-21 19:49:06,2022-01-21 19:49:06,2022-01-21 19:49:07,2022-01-21 19:49:07,2022-01-21 19:50:38,0.0691261291503906,91.5022351741791,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,2,empirical,2022-01-21 19:50:44,2022-01-21 19:50:44,2022-01-21 19:50:45,2022-01-21 19:50:45,2022-01-21 19:50:52,0.0679514408111572,6.59367156028748,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,2,empirical,2022-01-21 19:50:58,2022-01-21 19:50:58,2022-01-21 19:50:58,2022-01-21 19:50:59,2022-01-21 19:51:07,0.0681295394897461,8.33681225776672,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,4,empirical,2022-01-21 19:51:29,2022-01-21 19:51:30,2022-01-21 19:51:30,2022-01-21 19:51:31,2022-01-21 19:51:39,0.0709364414215088,7.74393963813782,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,4,empirical,2022-01-21 19:51:36,2022-01-21 19:51:37,2022-01-21 19:51:37,2022-01-21 19:51:37,2022-01-21 19:51:46,0.0693521499633789,9.35610723495483,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,2,gaussian,2022-01-21 19:51:04,2022-01-21 19:51:04,2022-01-21 19:51:05,2022-01-21 19:51:05,2022-01-21 19:51:54,0.0730493068695068,48.3370258808136,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,2,gaussian,2022-01-21 19:51:10,2022-01-21 19:51:11,2022-01-21 19:51:11,2022-01-21 19:51:11,2022-01-21 19:52:01,0.070913553237915,50.250979423523,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,8,empirical,2022-01-21 19:52:09,2022-01-21 19:52:10,2022-01-21 19:52:10,2022-01-21 19:52:11,2022-01-21 19:52:20,0.0875692367553711,8.68195867538452,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,8,empirical,2022-01-21 19:52:16,2022-01-21 19:52:17,2022-01-21 19:52:17,2022-01-21 19:52:17,2022-01-21 19:52:27,0.0852441787719727,9.46109437942505,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,4,gaussian,2022-01-21 19:51:43,2022-01-21 19:51:43,2022-01-21 19:51:43,2022-01-21 19:51:44,2022-01-21 19:52:35,0.10053014755249,51.1583552360535,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,4,gaussian,2022-01-21 19:51:49,2022-01-21 19:51:50,2022-01-21 19:51:50,2022-01-21 19:51:50,2022-01-21 19:52:42,0.0782136917114258,52.3956470489502,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,16,empirical,2022-01-21 19:52:52,2022-01-21 19:52:52,2022-01-21 19:52:52,2022-01-21 19:52:54,2022-01-21 19:53:05,0.0900194644927979,11.7862379550934,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,16,empirical,2022-01-21 19:53:00,2022-01-21 19:53:00,2022-01-21 19:53:00,2022-01-21 19:53:00,2022-01-21 19:53:12,0.103877544403076,11.3551757335663,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,8,gaussian,2022-01-21 19:52:23,2022-01-21 19:52:24,2022-01-21 19:52:24,2022-01-21 19:52:25,2022-01-21 19:53:22,0.0887646675109863,57.4617612361908,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,2,ctree,2022-01-21 19:51:17,2022-01-21 19:51:17,2022-01-21 19:51:17,2022-01-21 19:51:18,2022-01-21 19:53:30,0.0736520290374756,131.975045681,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,8,gaussian,2022-01-21 19:52:30,2022-01-21 19:52:31,2022-01-21 19:52:31,2022-01-21 19:52:31,2022-01-21 19:53:30,0.0811092853546143,59.2656891345978,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,2,ctree,2022-01-21 19:51:23,2022-01-21 19:51:23,2022-01-21 19:51:23,2022-01-21 19:51:24,2022-01-21 19:53:46,0.0772199630737305,142.687088012695,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,24,empirical,2022-01-21 19:53:39,2022-01-21 19:53:40,2022-01-21 19:53:40,2022-01-21 19:53:41,2022-01-21 19:53:53,0.0883660316467285,11.9152135848999,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,24,empirical,2022-01-21 19:53:48,2022-01-21 19:53:49,2022-01-21 19:53:49,2022-01-21 19:53:49,2022-01-21 19:54:00,0.0703213214874268,11.1572158336639,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,16,gaussian,2022-01-21 19:53:08,2022-01-21 19:53:08,2022-01-21 19:53:08,2022-01-21 19:53:10,2022-01-21 19:54:11,0.0837068557739258,61.6379418373108,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,4,ctree,2022-01-21 19:51:56,2022-01-21 19:51:56,2022-01-21 19:51:57,2022-01-21 19:51:57,2022-01-21 19:54:15,0.0905437469482422,138.026141881943,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,16,gaussian,2022-01-21 19:53:16,2022-01-21 19:53:16,2022-01-21 19:53:16,2022-01-21 19:53:16,2022-01-21 19:54:19,0.0814304351806641,62.1634771823883,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,4,ctree,2022-01-21 19:52:03,2022-01-21 19:52:03,2022-01-21 19:52:03,2022-01-21 19:52:03,2022-01-21 19:54:35,0.0948200225830078,152.007485628128,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,32,empirical,2022-01-21 19:54:32,2022-01-21 19:54:33,2022-01-21 19:54:33,2022-01-21 19:54:34,2022-01-21 19:54:48,0.0968301296234131,13.2652621269226,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,32,empirical,2022-01-21 19:54:42,2022-01-21 19:54:43,2022-01-21 19:54:43,2022-01-21 19:54:43,2022-01-21 19:54:54,0.117854833602905,11.0295221805573,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,24,gaussian,2022-01-21 19:53:57,2022-01-21 19:53:57,2022-01-21 19:53:57,2022-01-21 19:53:59,2022-01-21 19:54:57,0.103305101394653,57.8327207565308,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,8,ctree,2022-01-21 19:52:37,2022-01-21 19:52:38,2022-01-21 19:52:38,2022-01-21 19:52:39,2022-01-21 19:55:00,0.0952737331390381,140.792494773865,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,24,gaussian,2022-01-21 19:54:06,2022-01-21 19:54:06,2022-01-21 19:54:06,2022-01-21 19:54:07,2022-01-21 19:55:06,0.105049133300781,59.2937545776367,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,8,ctree,2022-01-21 19:52:44,2022-01-21 19:52:45,2022-01-21 19:52:45,2022-01-21 19:52:45,2022-01-21 19:55:24,0.0825316905975342,158.675955057144,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,1,empirical,2022-01-21 19:55:28,2022-01-21 19:55:29,2022-01-21 19:55:29,2022-01-21 19:55:29,2022-01-21 19:55:44,0.111354351043701,15.2724921703339,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,16,ctree,2022-01-21 19:53:23,2022-01-21 19:53:24,2022-01-21 19:53:24,2022-01-21 19:53:25,2022-01-21 19:55:47,0.114669561386108,141.214350700378,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,32,gaussian,2022-01-21 19:54:52,2022-01-21 19:54:52,2022-01-21 19:54:52,2022-01-21 19:54:54,2022-01-21 19:55:50,0.089949369430542,56.511536359787,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,1,empirical,2022-01-21 19:55:38,2022-01-21 19:55:38,2022-01-21 19:55:38,2022-01-21 19:55:38,2022-01-21 19:55:51,0.112372398376465,12.3302114009857,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,32,gaussian,2022-01-21 19:55:01,2022-01-21 19:55:01,2022-01-21 19:55:01,2022-01-21 19:55:01,2022-01-21 19:55:58,0.07389235496521,56.2764286994934,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,16,ctree,2022-01-21 19:53:32,2022-01-21 19:53:32,2022-01-21 19:53:32,2022-01-21 19:53:32,2022-01-21 19:56:08,0.0753993988037109,155.493281364441,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,24,ctree,2022-01-21 19:54:14,2022-01-21 19:54:15,2022-01-21 19:54:15,2022-01-21 19:54:16,2022-01-21 19:56:21,0.104304552078247,124.821214437485,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,2,empirical,2022-01-21 19:56:21,2022-01-21 19:56:21,2022-01-21 19:56:22,2022-01-21 19:56:22,2022-01-21 19:56:31,0.0804219245910645,8.62554693222046,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,2,empirical,2022-01-21 19:56:29,2022-01-21 19:56:29,2022-01-21 19:56:30,2022-01-21 19:56:30,2022-01-21 19:56:35,0.0955023765563965,5.47262620925903,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,1,gaussian,2022-01-21 19:55:48,2022-01-21 19:55:48,2022-01-21 19:55:48,2022-01-21 19:55:48,2022-01-21 19:56:45,0.0806670188903809,56.8067100048065,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,1,gaussian,2022-01-21 19:55:56,2022-01-21 19:55:57,2022-01-21 19:55:57,2022-01-21 19:55:57,2022-01-21 19:56:54,0.0770695209503174,56.566321849823,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,24,ctree,2022-01-21 19:54:23,2022-01-21 19:54:24,2022-01-21 19:54:24,2022-01-21 19:54:24,2022-01-21 19:56:54,0.0945432186126709,150.246946811676,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,2,gaussian,2022-01-21 19:56:37,2022-01-21 19:56:37,2022-01-21 19:56:37,2022-01-21 19:56:38,2022-01-21 19:57:15,0.0960960388183594,36.7110929489136,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,2,gaussian,2022-01-21 19:56:45,2022-01-21 19:56:45,2022-01-21 19:56:45,2022-01-21 19:56:46,2022-01-21 19:57:24,0.0910992622375488,38.4443778991699,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,4,empirical,2022-01-21 19:57:18,2022-01-21 19:57:19,2022-01-21 19:57:19,2022-01-21 19:57:19,2022-01-21 19:57:25,0.103775978088379,6.2346682548523,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,4,empirical,2022-01-21 19:57:10,2022-01-21 19:57:10,2022-01-21 19:57:10,2022-01-21 19:57:12,2022-01-21 19:57:26,0.109999895095825,14.5601644515991,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,32,ctree,2022-01-21 19:55:18,2022-01-21 19:55:19,2022-01-21 19:55:19,2022-01-21 19:55:19,2022-01-21 19:57:55,0.074582576751709,156.070028543472,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,4,gaussian,2022-01-21 19:57:27,2022-01-21 19:57:27,2022-01-21 19:57:27,2022-01-21 19:57:28,2022-01-21 19:58:10,0.085777759552002,42.0312032699585,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,8,empirical,2022-01-21 19:58:11,2022-01-21 19:58:12,2022-01-21 19:58:12,2022-01-21 19:58:12,2022-01-21 19:58:19,0.165909767150879,6.4951798915863,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,4,gaussian,2022-01-21 19:57:35,2022-01-21 19:57:35,2022-01-21 19:57:35,2022-01-21 19:57:36,2022-01-21 19:58:23,0.0813248157501221,47.1470136642456,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,8,empirical,2022-01-21 19:58:02,2022-01-21 19:58:02,2022-01-21 19:58:02,2022-01-21 19:58:04,2022-01-21 19:58:23,0.108048915863037,18.9510226249695,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,2,ctree,2022-01-21 19:57:01,2022-01-21 19:57:02,2022-01-21 19:57:02,2022-01-21 19:57:02,2022-01-21 19:58:33,0.0978844165802002,90.9949939250946,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,2,ctree,2022-01-21 19:56:53,2022-01-21 19:56:54,2022-01-21 19:56:54,2022-01-21 19:56:55,2022-01-21 19:59:15,0.107846736907959,139.80758357048,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,8,gaussian,2022-01-21 19:58:21,2022-01-21 19:58:21,2022-01-21 19:58:21,2022-01-21 19:58:23,2022-01-21 19:59:17,0.182563066482544,53.5822908878327,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,16,empirical,2022-01-21 19:59:10,2022-01-21 19:59:10,2022-01-21 19:59:11,2022-01-21 19:59:11,2022-01-21 19:59:18,0.102971315383911,7.40506601333618,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,32,ctree,2022-01-21 19:55:09,2022-01-21 19:55:10,2022-01-21 19:55:10,2022-01-21 19:55:11,2022-01-21 19:59:23,0.0855953693389893,251.819742918015,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,16,empirical,2022-01-21 19:58:58,2022-01-21 19:58:59,2022-01-21 19:58:59,2022-01-21 19:59:01,2022-01-21 19:59:27,0.185995101928711,25.2913010120392,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,4,ctree,2022-01-21 19:57:52,2022-01-21 19:57:53,2022-01-21 19:57:53,2022-01-21 19:57:53,2022-01-21 19:59:28,0.134212493896484,95.3330371379852,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,8,gaussian,2022-01-21 19:58:30,2022-01-21 19:58:30,2022-01-21 19:58:30,2022-01-21 19:58:31,2022-01-21 19:59:29,0.142381429672241,57.848489522934,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,1,ctree,2022-01-21 19:56:04,2022-01-21 19:56:05,2022-01-21 19:56:05,2022-01-21 19:56:05,2022-01-21 20:00:02,0.0860769748687744,236.681226730347,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,24,empirical,2022-01-21 20:00:06,2022-01-21 20:00:07,2022-01-21 20:00:07,2022-01-21 20:00:08,2022-01-21 20:00:15,0.274724721908569,6.93854188919067,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,16,gaussian,2022-01-21 19:59:20,2022-01-21 19:59:21,2022-01-21 19:59:21,2022-01-21 19:59:23,2022-01-21 20:00:16,0.154306888580322,52.9026510715485,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,1,ctree,2022-01-21 19:56:13,2022-01-21 19:56:13,2022-01-21 19:56:13,2022-01-21 19:56:13,2022-01-21 20:00:20,0.0949101448059082,246.586059093475,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,4,ctree,2022-01-21 19:57:43,2022-01-21 19:57:44,2022-01-21 19:57:44,2022-01-21 19:57:46,2022-01-21 20:00:22,0.135597467422485,155.910915374756,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,24,empirical,2022-01-21 19:59:56,2022-01-21 19:59:57,2022-01-21 19:59:57,2022-01-21 19:59:59,2022-01-21 20:00:24,0.117698669433594,25.2524628639221,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,16,gaussian,2022-01-21 19:59:30,2022-01-21 19:59:30,2022-01-21 19:59:30,2022-01-21 19:59:30,2022-01-21 20:00:26,0.0897903442382813,56.0147714614868,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,8,ctree,2022-01-21 19:58:48,2022-01-21 19:58:49,2022-01-21 19:58:49,2022-01-21 19:58:49,2022-01-21 20:00:28,0.118935823440552,98.2730269432068,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,8,ctree,2022-01-21 19:58:39,2022-01-21 19:58:39,2022-01-21 19:58:39,2022-01-21 19:58:41,2022-01-21 20:00:55,0.163913726806641,134.105771541595,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,24,gaussian,2022-01-21 20:00:17,2022-01-21 20:00:17,2022-01-21 20:00:17,2022-01-21 20:00:20,2022-01-21 20:01:04,0.144383430480957,44.1559345722199,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,32,empirical,2022-01-21 20:01:03,2022-01-21 20:01:04,2022-01-21 20:01:04,2022-01-21 20:01:04,2022-01-21 20:01:10,0.106399059295654,6.23028492927551,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,32,empirical,2022-01-21 20:00:53,2022-01-21 20:00:53,2022-01-21 20:00:53,2022-01-21 20:00:56,2022-01-21 20:01:11,0.112397193908691,14.9856216907501,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,24,gaussian,2022-01-21 20:00:26,2022-01-21 20:00:26,2022-01-21 20:00:26,2022-01-21 20:00:26,2022-01-21 20:01:11,0.0900475978851318,44.6962873935699,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,16,ctree,2022-01-21 19:59:38,2022-01-21 19:59:38,2022-01-21 19:59:39,2022-01-21 19:59:40,2022-01-21 20:01:18,0.0986039638519287,97.7044718265534,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,16,ctree,2022-01-21 19:59:46,2022-01-21 19:59:47,2022-01-21 19:59:47,2022-01-21 19:59:47,2022-01-21 20:01:21,0.131634473800659,93.5434391498566,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,32,gaussian,2022-01-21 20:01:12,2022-01-21 20:01:12,2022-01-21 20:01:12,2022-01-21 20:01:14,2022-01-21 20:01:46,0.0764749050140381,32.3495388031006,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,32,gaussian,2022-01-21 20:01:20,2022-01-21 20:01:21,2022-01-21 20:01:21,2022-01-21 20:01:21,2022-01-21 20:01:54,0.0916368961334229,32.9714848995209,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,24,ctree,2022-01-21 20:00:34,2022-01-21 20:00:35,2022-01-21 20:00:35,2022-01-21 20:00:37,2022-01-21 20:01:56,0.0887670516967773,79.0904116630554,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,1,empirical,2022-01-21 20:01:48,2022-01-21 20:01:48,2022-01-21 20:01:48,2022-01-21 20:01:49,2022-01-21 20:02:03,0.087766170501709,13.9513006210327,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,24,ctree,2022-01-21 20:00:43,2022-01-21 20:00:44,2022-01-21 20:00:44,2022-01-21 20:00:44,2022-01-21 20:02:08,0.11725926399231,83.7143578529358,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,1,empirical,2022-01-21 20:01:56,2022-01-21 20:01:57,2022-01-21 20:01:57,2022-01-21 20:01:57,2022-01-21 20:02:08,0.0754725933074951,11.5400395393372,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,32,ctree,2022-01-21 20:01:28,2022-01-21 20:01:29,2022-01-21 20:01:29,2022-01-21 20:01:31,2022-01-21 20:02:38,0.113322019577026,67.0444369316101,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,2,empirical,2022-01-21 20:02:33,2022-01-21 20:02:33,2022-01-21 20:02:33,2022-01-21 20:02:34,2022-01-21 20:02:45,0.0960612297058105,10.6223297119141,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,2,empirical,2022-01-21 20:02:40,2022-01-21 20:02:40,2022-01-21 20:02:41,2022-01-21 20:02:41,2022-01-21 20:02:47,0.0684645175933838,6.37379550933838,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,32,ctree,2022-01-21 20:01:38,2022-01-21 20:01:38,2022-01-21 20:01:39,2022-01-21 20:01:39,2022-01-21 20:02:51,0.0864460468292236,72.778927564621,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,1,gaussian,2022-01-21 20:02:04,2022-01-21 20:02:04,2022-01-21 20:02:04,2022-01-21 20:02:04,2022-01-21 20:03:03,0.0831060409545898,58.4669458866119,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,1,gaussian,2022-01-21 20:02:11,2022-01-21 20:02:11,2022-01-21 20:02:11,2022-01-21 20:02:11,2022-01-21 20:03:11,0.0728819370269775,59.8043076992035,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,4,empirical,2022-01-21 20:03:22,2022-01-21 20:03:23,2022-01-21 20:03:23,2022-01-21 20:03:23,2022-01-21 20:03:28,0.123666048049927,4.63299083709717,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,2,gaussian,2022-01-21 20:02:47,2022-01-21 20:02:48,2022-01-21 20:02:48,2022-01-21 20:02:49,2022-01-21 20:03:29,0.086911678314209,40.0605983734131,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,4,empirical,2022-01-21 20:03:15,2022-01-21 20:03:15,2022-01-21 20:03:15,2022-01-21 20:03:16,2022-01-21 20:03:32,0.112156391143799,15.3883068561554,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,2,gaussian,2022-01-21 20:02:54,2022-01-21 20:02:54,2022-01-21 20:02:55,2022-01-21 20:02:55,2022-01-21 20:03:36,0.0950264930725098,41.5522673130035,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,4,gaussian,2022-01-21 20:03:30,2022-01-21 20:03:30,2022-01-21 20:03:31,2022-01-21 20:03:32,2022-01-21 20:04:05,0.103193998336792,33.7217543125153,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,4,gaussian,2022-01-21 20:03:37,2022-01-21 20:03:38,2022-01-21 20:03:38,2022-01-21 20:03:38,2022-01-21 20:04:14,0.0797321796417236,35.9324431419373,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,8,empirical,2022-01-21 20:04:10,2022-01-21 20:04:11,2022-01-21 20:04:11,2022-01-21 20:04:11,2022-01-21 20:04:16,0.200104236602783,4.6961669921875,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,8,empirical,2022-01-21 20:04:02,2022-01-21 20:04:02,2022-01-21 20:04:02,2022-01-21 20:04:05,2022-01-21 20:04:22,0.184930324554443,17.4330916404724,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,4,ctree,2022-01-21 20:03:53,2022-01-21 20:03:54,2022-01-21 20:03:54,2022-01-21 20:03:55,2022-01-21 20:05:08,0.243716478347778,73.4328377246857,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,2,ctree,2022-01-21 20:03:08,2022-01-21 20:03:08,2022-01-21 20:03:08,2022-01-21 20:03:08,2022-01-21 20:05:09,0.1093909740448,120.792954444885,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,8,gaussian,2022-01-21 20:04:19,2022-01-21 20:04:19,2022-01-21 20:04:19,2022-01-21 20:04:21,2022-01-21 20:05:14,0.154352188110352,53.084475517273,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,16,empirical,2022-01-21 20:05:10,2022-01-21 20:05:11,2022-01-21 20:05:11,2022-01-21 20:05:12,2022-01-21 20:05:18,0.20582103729248,6.22601389884949,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,8,gaussian,2022-01-21 20:04:27,2022-01-21 20:04:28,2022-01-21 20:04:28,2022-01-21 20:04:28,2022-01-21 20:05:23,0.157943964004517,55.0574610233307,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,16,empirical,2022-01-21 20:04:58,2022-01-21 20:05:00,2022-01-21 20:05:00,2022-01-21 20:05:03,2022-01-21 20:05:29,0.304372310638428,26.4898273944855,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,4,ctree,2022-01-21 20:03:45,2022-01-21 20:03:46,2022-01-21 20:03:46,2022-01-21 20:03:48,2022-01-21 20:05:47,0.153909206390381,119.656640529633,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,8,ctree,2022-01-21 20:04:46,2022-01-21 20:04:48,2022-01-21 20:04:48,2022-01-21 20:04:48,2022-01-21 20:06:10,0.1712806224823,81.9681816101074,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,16,gaussian,2022-01-21 20:05:20,2022-01-21 20:05:21,2022-01-21 20:05:21,2022-01-21 20:05:23,2022-01-21 20:06:19,0.186304330825806,55.6254382133484,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,24,empirical,2022-01-21 20:06:16,2022-01-21 20:06:17,2022-01-21 20:06:17,2022-01-21 20:06:18,2022-01-21 20:06:24,0.140614032745361,6.13333296775818,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,16,gaussian,2022-01-21 20:05:30,2022-01-21 20:05:31,2022-01-21 20:05:31,2022-01-21 20:05:31,2022-01-21 20:06:27,0.136568784713745,56.1016058921814,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,24,empirical,2022-01-21 20:06:05,2022-01-21 20:06:06,2022-01-21 20:06:06,2022-01-21 20:06:09,2022-01-21 20:06:33,0.163660526275635,24.5170965194702,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,2,ctree,2022-01-21 20:03:01,2022-01-21 20:03:01,2022-01-21 20:03:01,2022-01-21 20:03:03,2022-01-21 20:06:35,0.106505870819092,212.415378093719,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,8,ctree,2022-01-21 20:04:36,2022-01-21 20:04:37,2022-01-21 20:04:37,2022-01-21 20:04:39,2022-01-21 20:06:47,0.122185945510864,128.019405126572,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,16,ctree,2022-01-21 20:05:52,2022-01-21 20:05:53,2022-01-21 20:05:53,2022-01-21 20:05:53,2022-01-21 20:07:10,0.171620845794678,76.418954372406,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,24,gaussian,2022-01-21 20:06:27,2022-01-21 20:06:28,2022-01-21 20:06:28,2022-01-21 20:06:30,2022-01-21 20:07:15,0.0862655639648438,45.2793593406677,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,24,gaussian,2022-01-21 20:06:37,2022-01-21 20:06:38,2022-01-21 20:06:38,2022-01-21 20:06:38,2022-01-21 20:07:23,0.137756824493408,44.3077807426453,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,32,empirical,2022-01-21 20:07:20,2022-01-21 20:07:21,2022-01-21 20:07:21,2022-01-21 20:07:22,2022-01-21 20:07:26,0.137405157089233,4.74100375175476,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,32,empirical,2022-01-21 20:07:10,2022-01-21 20:07:10,2022-01-21 20:07:11,2022-01-21 20:07:14,2022-01-21 20:07:32,0.131222009658813,18.7855203151703,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,1,ctree,2022-01-21 20:02:18,2022-01-21 20:02:18,2022-01-21 20:02:18,2022-01-21 20:02:18,2022-01-21 20:07:36,0.075833797454834,317.720438480377,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,16,ctree,2022-01-21 20:05:41,2022-01-21 20:05:42,2022-01-21 20:05:42,2022-01-21 20:05:45,2022-01-21 20:07:39,0.272588491439819,114.103365421295,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,24,ctree,2022-01-21 20:06:59,2022-01-21 20:06:59,2022-01-21 20:07:00,2022-01-21 20:07:00,2022-01-21 20:08:04,0.128761529922485,64.2611443996429,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,32,gaussian,2022-01-21 20:07:31,2022-01-21 20:07:32,2022-01-21 20:07:32,2022-01-21 20:07:34,2022-01-21 20:08:10,0.108507633209229,36.2858769893646,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,1,ctree,2022-01-21 20:02:25,2022-01-21 20:02:26,2022-01-21 20:02:26,2022-01-21 20:02:26,2022-01-21 20:08:14,0.124702453613281,348.355218172073,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,32,gaussian,2022-01-21 20:07:41,2022-01-21 20:07:42,2022-01-21 20:07:42,2022-01-21 20:07:42,2022-01-21 20:08:18,0.160996675491333,36.1614592075348,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,24,ctree,2022-01-21 20:06:48,2022-01-21 20:06:49,2022-01-21 20:06:49,2022-01-21 20:06:51,2022-01-21 20:08:23,0.175556421279907,91.6496593952179,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,1,empirical,2022-01-21 20:08:14,2022-01-21 20:08:15,2022-01-21 20:08:15,2022-01-21 20:08:15,2022-01-21 20:08:50,0.0930414199829102,34.4433264732361,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,32,ctree,2022-01-21 20:08:04,2022-01-21 20:08:05,2022-01-21 20:08:05,2022-01-21 20:08:05,2022-01-21 20:08:52,0.13874340057373,46.63427734375,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,32,ctree,2022-01-21 20:07:50,2022-01-21 20:07:51,2022-01-21 20:07:51,2022-01-21 20:07:54,2022-01-21 20:08:53,0.141202926635742,58.4276340007782,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,1,empirical,2022-01-21 20:08:23,2022-01-21 20:08:23,2022-01-21 20:08:24,2022-01-21 20:08:24,2022-01-21 20:08:54,0.108072280883789,30.4114615917206,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,2,empirical,2022-01-21 20:08:59,2022-01-21 20:09:00,2022-01-21 20:09:00,2022-01-21 20:09:01,2022-01-21 20:09:13,0.0744998455047607,11.7878661155701,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,2,empirical,2022-01-21 20:09:06,2022-01-21 20:09:06,2022-01-21 20:09:06,2022-01-21 20:09:07,2022-01-21 20:09:15,0.107386827468872,8.36253333091736,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,1,gaussian,2022-01-21 20:08:30,2022-01-21 20:08:31,2022-01-21 20:08:31,2022-01-21 20:08:31,2022-01-21 20:09:35,0.108848571777344,63.6460950374603,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,1,gaussian,2022-01-21 20:08:38,2022-01-21 20:08:39,2022-01-21 20:08:39,2022-01-21 20:08:39,2022-01-21 20:09:45,0.0947568416595459,66.0720264911652,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,4,empirical,2022-01-21 20:09:47,2022-01-21 20:09:48,2022-01-21 20:09:48,2022-01-21 20:09:48,2022-01-21 20:09:54,0.200871467590332,5.78398990631104,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,2,gaussian,2022-01-21 20:09:12,2022-01-21 20:09:13,2022-01-21 20:09:13,2022-01-21 20:09:14,2022-01-21 20:09:59,0.102152824401855,44.7574014663696,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,4,empirical,2022-01-21 20:09:40,2022-01-21 20:09:41,2022-01-21 20:09:41,2022-01-21 20:09:42,2022-01-21 20:10:13,0.1309974193573,31.1193315982819,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,2,gaussian,2022-01-21 20:09:19,2022-01-21 20:09:20,2022-01-21 20:09:20,2022-01-21 20:09:20,2022-01-21 20:10:14,0.0811419486999512,54.2267096042633,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,4,gaussian,2022-01-21 20:09:55,2022-01-21 20:09:56,2022-01-21 20:09:56,2022-01-21 20:09:58,2022-01-21 20:10:40,0.139014482498169,42.466468334198,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,8,empirical,2022-01-21 20:10:38,2022-01-21 20:10:39,2022-01-21 20:10:39,2022-01-21 20:10:40,2022-01-21 20:10:46,0.177822113037109,6.01802349090576,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,4,gaussian,2022-01-21 20:10:03,2022-01-21 20:10:03,2022-01-21 20:10:04,2022-01-21 20:10:04,2022-01-21 20:10:52,0.122958183288574,48.4998507499695,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,8,empirical,2022-01-21 20:10:28,2022-01-21 20:10:29,2022-01-21 20:10:29,2022-01-21 20:10:32,2022-01-21 20:10:58,0.110329151153564,26.5889523029327,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,8,gaussian,2022-01-21 20:10:48,2022-01-21 20:10:49,2022-01-21 20:10:49,2022-01-21 20:10:51,2022-01-21 20:11:36,0.209257364273071,44.82279753685,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,8,gaussian,2022-01-21 20:10:57,2022-01-21 20:10:59,2022-01-21 20:10:59,2022-01-21 20:10:59,2022-01-21 20:11:43,0.266931772232056,43.4305779933929,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,16,empirical,2022-01-21 20:11:44,2022-01-21 20:11:45,2022-01-21 20:11:45,2022-01-21 20:11:46,2022-01-21 20:11:51,0.197437047958374,5.71662092208862,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,4,ctree,2022-01-21 20:10:19,2022-01-21 20:10:20,2022-01-21 20:10:20,2022-01-21 20:10:21,2022-01-21 20:11:55,0.122449398040771,93.899866104126,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,2,ctree,2022-01-21 20:09:33,2022-01-21 20:09:34,2022-01-21 20:09:34,2022-01-21 20:09:34,2022-01-21 20:12:06,0.130840539932251,151.946017503738,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,16,empirical,2022-01-21 20:11:31,2022-01-21 20:11:32,2022-01-21 20:11:32,2022-01-21 20:11:35,2022-01-21 20:12:07,0.197721004486084,31.7347056865692,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,8,ctree,2022-01-21 20:11:18,2022-01-21 20:11:21,2022-01-21 20:11:22,2022-01-21 20:11:22,2022-01-21 20:12:35,0.409997463226318,73.1354198455811,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,4,ctree,2022-01-21 20:10:12,2022-01-21 20:10:13,2022-01-21 20:10:13,2022-01-21 20:10:15,2022-01-21 20:12:53,0.126886606216431,158.704616069794,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,8,ctree,2022-01-21 20:11:07,2022-01-21 20:11:09,2022-01-21 20:11:09,2022-01-21 20:11:13,2022-01-21 20:12:56,0.493088722229004,103.292267084122,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,16,gaussian,2022-01-21 20:12:08,2022-01-21 20:12:09,2022-01-21 20:12:10,2022-01-21 20:12:10,2022-01-21 20:12:59,0.20184850692749,48.7815515995026,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,16,gaussian,2022-01-21 20:11:56,2022-01-21 20:11:57,2022-01-21 20:11:57,2022-01-21 20:12:00,2022-01-21 20:12:59,0.195953607559204,59.3093349933624,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,24,empirical,2022-01-21 20:13:05,2022-01-21 20:13:06,2022-01-21 20:13:06,2022-01-21 20:13:06,2022-01-21 20:13:11,0.167906761169434,5.21187901496887,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,24,empirical,2022-01-21 20:12:55,2022-01-21 20:12:56,2022-01-21 20:12:56,2022-01-21 20:12:59,2022-01-21 20:13:25,0.145366907119751,26.580539226532,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,16,ctree,2022-01-21 20:12:38,2022-01-21 20:12:40,2022-01-21 20:12:41,2022-01-21 20:12:42,2022-01-21 20:13:34,0.337445497512817,52.4844591617584,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,2,ctree,2022-01-21 20:09:26,2022-01-21 20:09:26,2022-01-21 20:09:27,2022-01-21 20:09:28,2022-01-21 20:13:54,0.176681756973267,265.966460704804,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,24,gaussian,2022-01-21 20:13:16,2022-01-21 20:13:17,2022-01-21 20:13:17,2022-01-21 20:13:20,2022-01-21 20:14:01,0.249060869216919,40.5253417491913,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,16,ctree,2022-01-21 20:12:20,2022-01-21 20:12:21,2022-01-21 20:12:22,2022-01-21 20:12:26,2022-01-21 20:14:02,0.254679679870605,95.8836102485657,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,24,gaussian,2022-01-21 20:13:27,2022-01-21 20:13:29,2022-01-21 20:13:29,2022-01-21 20:13:30,2022-01-21 20:14:07,0.472470760345459,37.0459926128387,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,32,empirical,2022-01-21 20:14:14,2022-01-21 20:14:15,2022-01-21 20:14:15,2022-01-21 20:14:15,2022-01-21 20:14:19,0.118376016616821,4.12146234512329,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,32,empirical,2022-01-21 20:14:05,2022-01-21 20:14:06,2022-01-21 20:14:06,2022-01-21 20:14:08,2022-01-21 20:14:33,0.114286184310913,24.9186100959778,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,24,ctree,2022-01-21 20:13:53,2022-01-21 20:13:54,2022-01-21 20:13:55,2022-01-21 20:13:55,2022-01-21 20:14:37,0.266960620880127,42.1022305488587,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,24,ctree,2022-01-21 20:13:38,2022-01-21 20:13:40,2022-01-21 20:13:40,2022-01-21 20:13:44,2022-01-21 20:15:03,0.168293476104736,79.4657056331635,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,32,gaussian,2022-01-21 20:14:25,2022-01-21 20:14:26,2022-01-21 20:14:26,2022-01-21 20:14:29,2022-01-21 20:15:07,0.23208475112915,37.8818883895874,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,32,gaussian,2022-01-21 20:14:35,2022-01-21 20:14:36,2022-01-21 20:14:36,2022-01-21 20:14:36,2022-01-21 20:15:11,0.195303440093994,34.1426935195923,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,1,ctree,2022-01-21 20:08:46,2022-01-21 20:08:47,2022-01-21 20:08:47,2022-01-21 20:08:47,2022-01-21 20:15:25,0.0852367877960205,398.283234596252,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,32,ctree,2022-01-21 20:15:04,2022-01-21 20:15:05,2022-01-21 20:15:05,2022-01-21 20:15:06,2022-01-21 20:15:35,0.212375164031982,28.9642522335053,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,1,ctree,2022-01-21 20:08:53,2022-01-21 20:08:54,2022-01-21 20:08:54,2022-01-21 20:08:54,2022-01-21 20:15:42,0.0759241580963135,408.416339635849,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,32,ctree,2022-01-21 20:14:49,2022-01-21 20:14:50,2022-01-21 20:14:51,2022-01-21 20:14:54,2022-01-21 20:15:43,0.282668352127075,49.0856580734253,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,1,empirical,2022-01-21 20:15:13,2022-01-21 20:15:14,2022-01-21 20:15:14,2022-01-21 20:15:15,2022-01-21 20:16:11,0.0885732173919678,56.0222647190094,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,2,empirical,2022-01-21 20:16:06,2022-01-21 20:16:06,2022-01-21 20:16:06,2022-01-21 20:16:06,2022-01-21 20:16:17,0.100633382797241,11.0728497505188,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,1,empirical,2022-01-21 20:15:22,2022-01-21 20:15:22,2022-01-21 20:15:23,2022-01-21 20:15:23,2022-01-21 20:16:19,0.114385604858398,56.4815094470978,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,1,gaussian,2022-01-21 20:15:31,2022-01-21 20:15:31,2022-01-21 20:15:31,2022-01-21 20:15:32,2022-01-21 20:16:56,0.225283861160278,84.2539775371552,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,4,empirical,2022-01-21 20:16:49,2022-01-21 20:16:50,2022-01-21 20:16:51,2022-01-21 20:16:51,2022-01-21 20:17:01,0.270938873291016,10.253130197525,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,2,empirical,2022-01-21 20:15:59,2022-01-21 20:15:59,2022-01-21 20:15:59,2022-01-21 20:16:00,2022-01-21 20:17:11,0.0830924510955811,70.4707696437836,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,1,gaussian,2022-01-21 20:15:39,2022-01-21 20:15:40,2022-01-21 20:15:40,2022-01-21 20:15:40,2022-01-21 20:17:16,0.115403890609741,95.780791759491,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,2,gaussian,2022-01-21 20:16:12,2022-01-21 20:16:13,2022-01-21 20:16:13,2022-01-21 20:16:14,2022-01-21 20:17:27,0.0792553424835205,72.6659426689148,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,2,gaussian,2022-01-21 20:16:19,2022-01-21 20:16:20,2022-01-21 20:16:20,2022-01-21 20:16:20,2022-01-21 20:17:35,0.111799955368042,75.1000399589539,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,4,empirical,2022-01-21 20:16:41,2022-01-21 20:16:42,2022-01-21 20:16:42,2022-01-21 20:16:44,2022-01-21 20:17:55,0.140696287155151,70.410936832428,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,8,empirical,2022-01-21 20:17:48,2022-01-21 20:17:50,2022-01-21 20:17:51,2022-01-21 20:17:52,2022-01-21 20:18:03,0.463979005813599,11.2148358821869,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,4,gaussian,2022-01-21 20:16:58,2022-01-21 20:16:59,2022-01-21 20:16:59,2022-01-21 20:17:01,2022-01-21 20:18:13,0.274870872497559,71.7192182540894,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,4,gaussian,2022-01-21 20:17:06,2022-01-21 20:17:07,2022-01-21 20:17:07,2022-01-21 20:17:08,2022-01-21 20:18:23,0.174767732620239,74.9610559940338,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,8,empirical,2022-01-21 20:17:36,2022-01-21 20:17:37,2022-01-21 20:17:37,2022-01-21 20:17:39,2022-01-21 20:18:25,0.16484522819519,45.1673722267151,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,8,gaussian,2022-01-21 20:17:59,2022-01-21 20:18:02,2022-01-21 20:18:02,2022-01-21 20:18:05,2022-01-21 20:18:57,0.233659982681274,51.3522706031799,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,8,gaussian,2022-01-21 20:18:12,2022-01-21 20:18:13,2022-01-21 20:18:13,2022-01-21 20:18:13,2022-01-21 20:18:57,0.237942457199097,43.4788687229157,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,16,empirical,2022-01-21 20:19:05,2022-01-21 20:19:08,2022-01-21 20:19:09,2022-01-21 20:19:09,2022-01-21 20:19:19,0.34415602684021,9.64531254768372,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,16,empirical,2022-01-21 20:18:52,2022-01-21 20:18:53,2022-01-21 20:18:53,2022-01-21 20:18:56,2022-01-21 20:19:34,0.140913724899292,38.2413604259491,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,4,ctree,2022-01-21 20:17:26,2022-01-21 20:17:27,2022-01-21 20:17:27,2022-01-21 20:17:28,2022-01-21 20:19:55,0.194398641586304,146.996423244476,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,8,ctree,2022-01-21 20:18:38,2022-01-21 20:18:40,2022-01-21 20:18:40,2022-01-21 20:18:40,2022-01-21 20:20:06,0.169980049133301,86.1369121074677,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,16,gaussian,2022-01-21 20:19:35,2022-01-21 20:19:37,2022-01-21 20:19:37,2022-01-21 20:19:37,2022-01-21 20:20:13,0.225265979766846,35.429098367691,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,16,gaussian,2022-01-21 20:19:20,2022-01-21 20:19:22,2022-01-21 20:19:22,2022-01-21 20:19:27,2022-01-21 20:20:14,0.417241334915161,47.14062333107,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,2,ctree,2022-01-21 20:16:34,2022-01-21 20:16:34,2022-01-21 20:16:34,2022-01-21 20:16:35,2022-01-21 20:20:17,0.10867977142334,221.777212619782,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,4,ctree,2022-01-21 20:17:16,2022-01-21 20:17:16,2022-01-21 20:17:16,2022-01-21 20:17:19,2022-01-21 20:20:35,0.153706073760986,195.783322572708,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,8,ctree,2022-01-21 20:18:27,2022-01-21 20:18:28,2022-01-21 20:18:29,2022-01-21 20:18:32,2022-01-21 20:20:39,0.162006139755249,127.041258811951,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,24,empirical,2022-01-21 20:20:47,2022-01-21 20:20:49,2022-01-21 20:20:49,2022-01-21 20:20:49,2022-01-21 20:21:00,0.332635164260864,10.2823584079742,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,16,ctree,2022-01-21 20:20:13,2022-01-21 20:20:14,2022-01-21 20:20:15,2022-01-21 20:20:15,2022-01-21 20:21:06,0.219719171524048,50.7119431495667,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,16,ctree,2022-01-21 20:19:53,2022-01-21 20:19:55,2022-01-21 20:19:56,2022-01-21 20:20:02,2022-01-21 20:21:09,0.451148986816406,66.7785174846649,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,24,empirical,2022-01-21 20:20:28,2022-01-21 20:20:30,2022-01-21 20:20:30,2022-01-21 20:20:34,2022-01-21 20:21:10,0.212979555130005,36.5365943908691,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,24,gaussian,2022-01-21 20:21:04,2022-01-21 20:21:05,2022-01-21 20:21:05,2022-01-21 20:21:07,2022-01-21 20:21:35,0.169111251831055,27.5509021282196,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,24,gaussian,2022-01-21 20:21:14,2022-01-21 20:21:15,2022-01-21 20:21:16,2022-01-21 20:21:16,2022-01-21 20:21:38,0.256148815155029,22.0233566761017,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,2,ctree,2022-01-21 20:16:26,2022-01-21 20:16:27,2022-01-21 20:16:27,2022-01-21 20:16:29,2022-01-21 20:22:01,0.124751806259155,331.955757856369,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,32,empirical,2022-01-21 20:22:01,2022-01-21 20:22:02,2022-01-21 20:22:03,2022-01-21 20:22:03,2022-01-21 20:22:14,0.28948450088501,11.0029306411743,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,24,ctree,2022-01-21 20:21:38,2022-01-21 20:21:39,2022-01-21 20:21:39,2022-01-21 20:21:39,2022-01-21 20:22:16,0.0951733589172363,37.3643593788147,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,32,empirical,2022-01-21 20:21:48,2022-01-21 20:21:48,2022-01-21 20:21:48,2022-01-21 20:21:52,2022-01-21 20:22:30,0.141396999359131,37.8950510025024,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,24,ctree,2022-01-21 20:21:27,2022-01-21 20:21:29,2022-01-21 20:21:29,2022-01-21 20:21:33,2022-01-21 20:22:31,0.302100419998169,57.6968989372254,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,32,gaussian,2022-01-21 20:22:29,2022-01-21 20:22:31,2022-01-21 20:22:31,2022-01-21 20:22:31,2022-01-21 20:22:53,0.175512075424194,22.0318653583527,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,32,gaussian,2022-01-21 20:22:17,2022-01-21 20:22:19,2022-01-21 20:22:19,2022-01-21 20:22:23,2022-01-21 20:22:53,0.284876585006714,30.6179020404816,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,32,ctree,2022-01-21 20:22:55,2022-01-21 20:22:56,2022-01-21 20:22:56,2022-01-21 20:22:56,2022-01-21 20:23:23,0.0971512794494629,26.5797426700592,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,32,ctree,2022-01-21 20:22:45,2022-01-21 20:22:47,2022-01-21 20:22:47,2022-01-21 20:22:51,2022-01-21 20:23:32,0.353890895843506,40.7921936511993,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,1,ctree,2022-01-21 20:15:46,2022-01-21 20:15:46,2022-01-21 20:15:47,2022-01-21 20:15:47,2022-01-21 20:23:42,0.0768370628356934,475.078960418701,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,1,ctree,2022-01-21 20:15:52,2022-01-21 20:15:53,2022-01-21 20:15:53,2022-01-21 20:15:53,2022-01-21 20:23:49,0.0899558067321777,476.388217449188,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,1,empirical,2022-01-21 20:23:05,2022-01-21 20:23:06,2022-01-21 20:23:06,2022-01-21 20:23:06,2022-01-21 20:24:08,0.192572832107544,61.8940536975861,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,1,empirical,2022-01-21 20:23:15,2022-01-21 20:23:16,2022-01-21 20:23:16,2022-01-21 20:23:17,2022-01-21 20:24:14,0.228681802749634,57.8439428806305,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,2,empirical,2022-01-21 20:23:59,2022-01-21 20:23:59,2022-01-21 20:23:59,2022-01-21 20:24:00,2022-01-21 20:24:15,0.112568616867065,14.9745237827301,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,4,empirical,2022-01-21 20:24:42,2022-01-21 20:24:43,2022-01-21 20:24:43,2022-01-21 20:24:43,2022-01-21 20:24:56,0.10149884223938,12.6714670658112,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,1,gaussian,2022-01-21 20:23:25,2022-01-21 20:23:26,2022-01-21 20:23:26,2022-01-21 20:23:26,2022-01-21 20:25:09,0.154900312423706,102.915100097656,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,2,empirical,2022-01-21 20:23:52,2022-01-21 20:23:52,2022-01-21 20:23:53,2022-01-21 20:23:54,2022-01-21 20:25:12,0.076507568359375,78.3995487689972,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,1,gaussian,2022-01-21 20:23:33,2022-01-21 20:23:33,2022-01-21 20:23:33,2022-01-21 20:23:33,2022-01-21 20:25:25,0.0845088958740234,111.871523618698,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,2,gaussian,2022-01-21 20:24:06,2022-01-21 20:24:06,2022-01-21 20:24:06,2022-01-21 20:24:07,2022-01-21 20:25:28,0.132264375686646,80.6459562778473,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,2,gaussian,2022-01-21 20:24:13,2022-01-21 20:24:13,2022-01-21 20:24:13,2022-01-21 20:24:13,2022-01-21 20:25:33,0.0865104198455811,79.1543364524841,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,4,empirical,2022-01-21 20:24:34,2022-01-21 20:24:35,2022-01-21 20:24:35,2022-01-21 20:24:37,2022-01-21 20:25:59,0.130098819732666,82.2518985271454,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,8,empirical,2022-01-21 20:25:42,2022-01-21 20:25:44,2022-01-21 20:25:44,2022-01-21 20:25:44,2022-01-21 20:26:01,0.45146656036377,16.7653634548187,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,4,gaussian,2022-01-21 20:24:51,2022-01-21 20:24:52,2022-01-21 20:24:52,2022-01-21 20:24:54,2022-01-21 20:26:16,0.13486385345459,82.1180536746979,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,4,gaussian,2022-01-21 20:25:01,2022-01-21 20:25:02,2022-01-21 20:25:02,2022-01-21 20:25:02,2022-01-21 20:26:22,0.141163349151611,79.802610874176,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,8,empirical,2022-01-21 20:25:31,2022-01-21 20:25:32,2022-01-21 20:25:32,2022-01-21 20:25:35,2022-01-21 20:26:28,0.152444362640381,53.02769947052,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,8,gaussian,2022-01-21 20:25:56,2022-01-21 20:25:57,2022-01-21 20:25:57,2022-01-21 20:26:00,2022-01-21 20:26:50,0.130305051803589,50.0632665157318,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,8,gaussian,2022-01-21 20:26:11,2022-01-21 20:26:12,2022-01-21 20:26:13,2022-01-21 20:26:13,2022-01-21 20:26:59,0.386332273483276,45.6640758514404,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,16,empirical,2022-01-21 20:27:00,2022-01-21 20:27:02,2022-01-21 20:27:02,2022-01-21 20:27:03,2022-01-21 20:27:17,0.379444122314453,13.8426496982574,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,16,empirical,2022-01-21 20:26:49,2022-01-21 20:26:51,2022-01-21 20:26:51,2022-01-21 20:26:55,2022-01-21 20:27:49,0.237590789794922,54.0743391513825,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,4,ctree,2022-01-21 20:25:21,2022-01-21 20:25:22,2022-01-21 20:25:22,2022-01-21 20:25:23,2022-01-21 20:28:02,0.198917865753174,158.905059814453,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,16,gaussian,2022-01-21 20:27:30,2022-01-21 20:27:31,2022-01-21 20:27:31,2022-01-21 20:27:32,2022-01-21 20:28:16,0.469269275665283,43.8945298194885,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,16,gaussian,2022-01-21 20:27:15,2022-01-21 20:27:16,2022-01-21 20:27:16,2022-01-21 20:27:20,2022-01-21 20:28:21,0.30811882019043,60.9312980175018,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,8,ctree,2022-01-21 20:26:36,2022-01-21 20:26:38,2022-01-21 20:26:38,2022-01-21 20:26:39,2022-01-21 20:28:22,0.306416749954224,102.996356248856,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,8,ctree,2022-01-21 20:26:24,2022-01-21 20:26:25,2022-01-21 20:26:25,2022-01-21 20:26:28,2022-01-21 20:28:41,0.205635786056519,133.184597730637,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,4,ctree,2022-01-21 20:25:11,2022-01-21 20:25:12,2022-01-21 20:25:12,2022-01-21 20:25:15,2022-01-21 20:28:49,0.212130546569824,214.058547735214,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,2,ctree,2022-01-21 20:24:27,2022-01-21 20:24:27,2022-01-21 20:24:28,2022-01-21 20:24:28,2022-01-21 20:28:49,0.146969556808472,261.301711797714,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,24,empirical,2022-01-21 20:28:42,2022-01-21 20:28:43,2022-01-21 20:28:44,2022-01-21 20:28:44,2022-01-21 20:28:56,0.360613346099854,11.7977015972137,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,16,ctree,2022-01-21 20:28:12,2022-01-21 20:28:13,2022-01-21 20:28:13,2022-01-21 20:28:13,2022-01-21 20:29:08,0.172926187515259,54.6883406639099,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,24,empirical,2022-01-21 20:28:26,2022-01-21 20:28:28,2022-01-21 20:28:28,2022-01-21 20:28:32,2022-01-21 20:29:09,0.31151819229126,37.6733129024506,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,16,ctree,2022-01-21 20:27:54,2022-01-21 20:27:56,2022-01-21 20:27:57,2022-01-21 20:28:01,2022-01-21 20:29:27,0.406774282455444,86.008882522583,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,24,gaussian,2022-01-21 20:29:10,2022-01-21 20:29:10,2022-01-21 20:29:11,2022-01-21 20:29:11,2022-01-21 20:29:36,0.143285512924194,25.2861435413361,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,24,gaussian,2022-01-21 20:28:59,2022-01-21 20:29:00,2022-01-21 20:29:00,2022-01-21 20:29:03,2022-01-21 20:29:40,0.283975124359131,37.498925447464,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,32,empirical,2022-01-21 20:30:08,2022-01-21 20:30:11,2022-01-21 20:30:11,2022-01-21 20:30:12,2022-01-21 20:30:22,0.352094173431397,10.4392850399017,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,24,ctree,2022-01-21 20:29:41,2022-01-21 20:29:42,2022-01-21 20:29:42,2022-01-21 20:29:42,2022-01-21 20:30:24,0.105332374572754,41.9674677848816,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,2,ctree,2022-01-21 20:24:20,2022-01-21 20:24:20,2022-01-21 20:24:20,2022-01-21 20:24:22,2022-01-21 20:30:30,0.12893557548523,368.428048372269,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,24,ctree,2022-01-21 20:29:29,2022-01-21 20:29:32,2022-01-21 20:29:32,2022-01-21 20:29:37,2022-01-21 20:30:34,0.364339113235474,57.5975983142853,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,32,empirical,2022-01-21 20:29:52,2022-01-21 20:29:53,2022-01-21 20:29:54,2022-01-21 20:29:58,2022-01-21 20:30:38,0.241101264953613,39.8892107009888,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,32,gaussian,2022-01-21 20:30:37,2022-01-21 20:30:38,2022-01-21 20:30:38,2022-01-21 20:30:39,2022-01-21 20:31:00,0.0927791595458984,21.6142842769623,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,32,gaussian,2022-01-21 20:30:25,2022-01-21 20:30:26,2022-01-21 20:30:26,2022-01-21 20:30:30,2022-01-21 20:31:02,0.417242050170898,31.8366224765778,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,32,ctree,2022-01-21 20:31:04,2022-01-21 20:31:04,2022-01-21 20:31:04,2022-01-21 20:31:04,2022-01-21 20:31:34,0.0832962989807129,29.8868131637573,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,32,ctree,2022-01-21 20:30:53,2022-01-21 20:30:56,2022-01-21 20:30:56,2022-01-21 20:31:00,2022-01-21 20:31:43,0.288794040679932,42.1808621883392,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,1,ctree,2022-01-21 20:23:39,2022-01-21 20:23:39,2022-01-21 20:23:39,2022-01-21 20:23:40,2022-01-21 20:32:00,0.0756382942199707,500.141303777695,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,24,1,ctree,2022-01-21 20:23:46,2022-01-21 20:23:46,2022-01-21 20:23:46,2022-01-21 20:23:46,2022-01-21 20:32:06,0.0930509567260742,499.362683057785,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,1,empirical,2022-01-21 20:31:14,2022-01-21 20:31:16,2022-01-21 20:31:16,2022-01-21 20:31:17,2022-01-21 20:32:25,0.247167825698853,67.5796875953674,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,1,empirical,2022-01-21 20:31:29,2022-01-21 20:31:30,2022-01-21 20:31:30,2022-01-21 20:31:30,2022-01-21 20:32:29,0.213907241821289,59.1958515644074,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,2,empirical,2022-01-21 20:32:12,2022-01-21 20:32:12,2022-01-21 20:32:12,2022-01-21 20:32:13,2022-01-21 20:32:30,0.0833723545074463,17.8198385238647,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,4,empirical,2022-01-21 20:32:55,2022-01-21 20:32:56,2022-01-21 20:32:56,2022-01-21 20:32:56,2022-01-21 20:33:10,0.134512662887573,13.8006076812744,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,1,gaussian,2022-01-21 20:31:38,2022-01-21 20:31:38,2022-01-21 20:31:39,2022-01-21 20:31:39,2022-01-21 20:33:23,0.181211709976196,104.488753557205,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,2,empirical,2022-01-21 20:32:05,2022-01-21 20:32:06,2022-01-21 20:32:06,2022-01-21 20:32:07,2022-01-21 20:33:29,0.0951323509216309,82.8130259513855,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,2,gaussian,2022-01-21 20:32:19,2022-01-21 20:32:19,2022-01-21 20:32:19,2022-01-21 20:32:21,2022-01-21 20:33:46,0.0783820152282715,85.7858464717865,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,1,gaussian,2022-01-21 20:31:45,2022-01-21 20:31:46,2022-01-21 20:31:46,2022-01-21 20:31:46,2022-01-21 20:33:55,0.0714077949523926,128.956621408463,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,2,gaussian,2022-01-21 20:32:26,2022-01-21 20:32:26,2022-01-21 20:32:26,2022-01-21 20:32:26,2022-01-21 20:34:01,0.09014892578125,94.9147391319275,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,8,empirical,2022-01-21 20:33:56,2022-01-21 20:33:58,2022-01-21 20:33:58,2022-01-21 20:33:59,2022-01-21 20:34:14,0.356815099716187,15.601455450058,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,4,empirical,2022-01-21 20:32:47,2022-01-21 20:32:48,2022-01-21 20:32:48,2022-01-21 20:32:50,2022-01-21 20:34:20,0.22058367729187,90.3257410526276,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,4,gaussian,2022-01-21 20:33:04,2022-01-21 20:33:05,2022-01-21 20:33:05,2022-01-21 20:33:07,2022-01-21 20:34:30,0.20801830291748,82.5363919734955,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,4,gaussian,2022-01-21 20:33:12,2022-01-21 20:33:13,2022-01-21 20:33:14,2022-01-21 20:33:14,2022-01-21 20:34:34,0.151397466659546,80.183765411377,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,8,empirical,2022-01-21 20:33:45,2022-01-21 20:33:46,2022-01-21 20:33:46,2022-01-21 20:33:49,2022-01-21 20:34:46,0.232907772064209,56.7660956382752,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,8,gaussian,2022-01-21 20:34:12,2022-01-21 20:34:15,2022-01-21 20:34:15,2022-01-21 20:34:19,2022-01-21 20:35:18,0.331713199615479,58.4540123939514,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,8,gaussian,2022-01-21 20:34:27,2022-01-21 20:34:28,2022-01-21 20:34:29,2022-01-21 20:34:29,2022-01-21 20:35:20,0.296703338623047,51.1451034545899,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,16,empirical,2022-01-21 20:35:21,2022-01-21 20:35:22,2022-01-21 20:35:22,2022-01-21 20:35:23,2022-01-21 20:35:34,0.222575426101685,11.3234941959381,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,16,empirical,2022-01-21 20:35:08,2022-01-21 20:35:10,2022-01-21 20:35:10,2022-01-21 20:35:15,2022-01-21 20:35:55,0.379893064498901,40.9224302768707,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,4,ctree,2022-01-21 20:33:33,2022-01-21 20:33:34,2022-01-21 20:33:34,2022-01-21 20:33:35,2022-01-21 20:36:07,0.175532817840576,152.374087095261,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,16,gaussian,2022-01-21 20:35:49,2022-01-21 20:35:50,2022-01-21 20:35:50,2022-01-21 20:35:51,2022-01-21 20:36:29,0.232831001281738,37.9455423355103,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,8,ctree,2022-01-21 20:34:53,2022-01-21 20:34:55,2022-01-21 20:34:55,2022-01-21 20:34:56,2022-01-21 20:36:37,0.362067222595215,101.306230068207,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,16,gaussian,2022-01-21 20:35:35,2022-01-21 20:35:37,2022-01-21 20:35:37,2022-01-21 20:35:43,2022-01-21 20:36:39,0.309902906417847,56.7270946502686,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,2,ctree,2022-01-21 20:32:40,2022-01-21 20:32:40,2022-01-21 20:32:40,2022-01-21 20:32:40,2022-01-21 20:36:50,0.0847711563110352,249.612685203552,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,8,ctree,2022-01-21 20:34:40,2022-01-21 20:34:42,2022-01-21 20:34:42,2022-01-21 20:34:46,2022-01-21 20:37:00,0.16476321220398,134.551515340805,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,4,ctree,2022-01-21 20:33:23,2022-01-21 20:33:25,2022-01-21 20:33:25,2022-01-21 20:33:28,2022-01-21 20:37:10,0.192231416702271,222.240759372711,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,24,empirical,2022-01-21 20:37:02,2022-01-21 20:37:03,2022-01-21 20:37:04,2022-01-21 20:37:04,2022-01-21 20:37:15,0.428291320800781,10.6568012237549,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,16,ctree,2022-01-21 20:36:31,2022-01-21 20:36:32,2022-01-21 20:36:32,2022-01-21 20:36:32,2022-01-21 20:37:28,0.241684198379517,55.7998902797699,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,16,ctree,2022-01-21 20:36:09,2022-01-21 20:36:12,2022-01-21 20:36:12,2022-01-21 20:36:19,2022-01-21 20:37:35,0.598961353302002,75.4088227748871,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,24,empirical,2022-01-21 20:36:44,2022-01-21 20:36:45,2022-01-21 20:36:45,2022-01-21 20:36:50,2022-01-21 20:37:44,0.203548669815063,54.2330090999603,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,24,gaussian,2022-01-21 20:37:32,2022-01-21 20:37:33,2022-01-21 20:37:33,2022-01-21 20:37:34,2022-01-21 20:38:00,0.202137470245361,26.2481873035431,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,24,gaussian,2022-01-21 20:37:21,2022-01-21 20:37:22,2022-01-21 20:37:23,2022-01-21 20:37:26,2022-01-21 20:38:12,0.324201345443726,46.0903024673462,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,32,empirical,2022-01-21 20:38:33,2022-01-21 20:38:35,2022-01-21 20:38:35,2022-01-21 20:38:35,2022-01-21 20:38:44,0.189739942550659,8.40194725990295,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,24,ctree,2022-01-21 20:38:02,2022-01-21 20:38:03,2022-01-21 20:38:03,2022-01-21 20:38:03,2022-01-21 20:38:48,0.221226453781128,45.2243721485138,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,32,empirical,2022-01-21 20:38:16,2022-01-21 20:38:18,2022-01-21 20:38:18,2022-01-21 20:38:22,2022-01-21 20:39:03,0.169388055801392,41.093891620636,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,24,ctree,2022-01-21 20:37:51,2022-01-21 20:37:53,2022-01-21 20:37:53,2022-01-21 20:37:57,2022-01-21 20:39:09,0.248333215713501,72.739577293396,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,2,ctree,2022-01-21 20:32:33,2022-01-21 20:32:33,2022-01-21 20:32:33,2022-01-21 20:32:35,2022-01-21 20:39:19,0.17104172706604,403.866662740707,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,32,gaussian,2022-01-21 20:38:59,2022-01-21 20:39:00,2022-01-21 20:39:00,2022-01-21 20:39:00,2022-01-21 20:39:22,0.151162624359131,21.6640906333923,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,32,gaussian,2022-01-21 20:38:46,2022-01-21 20:38:47,2022-01-21 20:38:47,2022-01-21 20:38:51,2022-01-21 20:39:28,0.195052862167358,37.7409205436707,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,32,ctree,2022-01-21 20:39:30,2022-01-21 20:39:30,2022-01-21 20:39:30,2022-01-21 20:39:30,2022-01-21 20:39:59,0.0839934349060059,28.359222650528,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,32,ctree,2022-01-21 20:39:21,2022-01-21 20:39:22,2022-01-21 20:39:22,2022-01-21 20:39:26,2022-01-21 20:40:11,0.213982820510864,45.0394818782806,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,1,ctree,2022-01-21 20:31:52,2022-01-21 20:31:52,2022-01-21 20:31:52,2022-01-21 20:31:53,2022-01-21 20:40:26,0.0849213600158691,513.462594985962,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,1,ctree,2022-01-21 20:31:59,2022-01-21 20:31:59,2022-01-21 20:31:59,2022-01-21 20:31:59,2022-01-21 20:40:39,0.0798075199127197,519.619250059128,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,1,empirical,2022-01-21 20:39:41,2022-01-21 20:39:42,2022-01-21 20:39:43,2022-01-21 20:39:44,2022-01-21 20:41:07,0.514189004898071,83.115002155304,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,1,gaussian,2022-01-21 20:40:05,2022-01-21 20:40:06,2022-01-21 20:40:06,2022-01-21 20:40:07,2022-01-21 20:41:10,0.181352138519287,63.7905759811401,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,1,empirical,2022-01-21 20:39:56,2022-01-21 20:39:57,2022-01-21 20:39:57,2022-01-21 20:39:57,2022-01-21 20:41:11,0.219694137573242,73.331969499588,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,1,gaussian,2022-01-21 20:40:13,2022-01-21 20:40:13,2022-01-21 20:40:14,2022-01-21 20:40:14,2022-01-21 20:41:15,0.0705103874206543,60.8625030517578,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,2,empirical,2022-01-21 20:40:33,2022-01-21 20:40:34,2022-01-21 20:40:34,2022-01-21 20:40:35,2022-01-21 20:41:48,0.0801846981048584,73.6509292125702,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,2,gaussian,2022-01-21 20:40:47,2022-01-21 20:40:47,2022-01-21 20:40:47,2022-01-21 20:40:49,2022-01-21 20:41:56,0.0850775241851807,67.4113500118256,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,2,gaussian,2022-01-21 20:40:54,2022-01-21 20:40:55,2022-01-21 20:40:55,2022-01-21 20:40:55,2022-01-21 20:42:02,0.101362228393555,67.3404161930084,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,2,empirical,2022-01-21 20:40:40,2022-01-21 20:40:41,2022-01-21 20:40:41,2022-01-21 20:40:41,2022-01-21 20:42:12,0.0902249813079834,91.6361484527588,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,4,empirical,2022-01-21 20:41:17,2022-01-21 20:41:18,2022-01-21 20:41:18,2022-01-21 20:41:19,2022-01-21 20:42:37,0.0789525508880615,78.3705594539642,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,4,gaussian,2022-01-21 20:41:32,2022-01-21 20:41:33,2022-01-21 20:41:33,2022-01-21 20:41:34,2022-01-21 20:42:47,0.0763993263244629,73.0424482822418,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,4,gaussian,2022-01-21 20:41:40,2022-01-21 20:41:41,2022-01-21 20:41:41,2022-01-21 20:41:41,2022-01-21 20:42:53,0.0944702625274658,72.0735704898834,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,4,empirical,2022-01-21 20:41:25,2022-01-21 20:41:25,2022-01-21 20:41:25,2022-01-21 20:41:26,2022-01-21 20:42:58,0.0665054321289063,92.3525214195251,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,8,empirical,2022-01-21 20:42:05,2022-01-21 20:42:05,2022-01-21 20:42:05,2022-01-21 20:42:06,2022-01-21 20:43:38,0.0908849239349365,91.9628841876984,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,8,gaussian,2022-01-21 20:42:21,2022-01-21 20:42:22,2022-01-21 20:42:22,2022-01-21 20:42:23,2022-01-21 20:43:47,0.0934679508209229,83.9108798503876,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,8,empirical,2022-01-21 20:42:13,2022-01-21 20:42:13,2022-01-21 20:42:13,2022-01-21 20:42:14,2022-01-21 20:43:51,0.133117914199829,97.358809709549,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,8,gaussian,2022-01-21 20:42:30,2022-01-21 20:42:31,2022-01-21 20:42:31,2022-01-21 20:42:31,2022-01-21 20:43:57,0.150803089141846,85.7089190483093,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,2,ctree,2022-01-21 20:41:10,2022-01-21 20:41:10,2022-01-21 20:41:10,2022-01-21 20:41:11,2022-01-21 20:44:52,0.0881507396697998,221.184534311295,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,16,empirical,2022-01-21 20:43:07,2022-01-21 20:43:08,2022-01-21 20:43:08,2022-01-21 20:43:08,2022-01-21 20:44:55,0.0871436595916748,106.419390439987,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,16,empirical,2022-01-21 20:42:58,2022-01-21 20:42:58,2022-01-21 20:42:58,2022-01-21 20:43:00,2022-01-21 20:44:55,0.117137908935547,115.359238624573,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,16,gaussian,2022-01-21 20:43:17,2022-01-21 20:43:18,2022-01-21 20:43:18,2022-01-21 20:43:20,2022-01-21 20:45:06,0.116492748260498,106.539502382278,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,16,gaussian,2022-01-21 20:43:28,2022-01-21 20:43:29,2022-01-21 20:43:29,2022-01-21 20:43:29,2022-01-21 20:45:12,0.0872268676757813,102.529846906662,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,4,ctree,2022-01-21 20:41:57,2022-01-21 20:41:57,2022-01-21 20:41:57,2022-01-21 20:41:58,2022-01-21 20:45:47,0.0749163627624512,229.18515086174,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,24,empirical,2022-01-21 20:44:13,2022-01-21 20:44:14,2022-01-21 20:44:14,2022-01-21 20:44:14,2022-01-21 20:46:04,0.111527681350708,109.889443635941,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,24,empirical,2022-01-21 20:44:02,2022-01-21 20:44:03,2022-01-21 20:44:03,2022-01-21 20:44:05,2022-01-21 20:46:10,0.093369722366333,125.216494083405,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,24,gaussian,2022-01-21 20:44:25,2022-01-21 20:44:26,2022-01-21 20:44:26,2022-01-21 20:44:28,2022-01-21 20:46:26,0.0979218482971191,117.943421125412,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,24,gaussian,2022-01-21 20:44:39,2022-01-21 20:44:40,2022-01-21 20:44:40,2022-01-21 20:44:40,2022-01-21 20:46:32,0.157740831375122,111.4966173172,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,1,ctree,2022-01-21 20:40:20,2022-01-21 20:40:20,2022-01-21 20:40:20,2022-01-21 20:40:20,2022-01-21 20:46:36,0.0859062671661377,375.549143791199,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,1,ctree,2022-01-21 20:40:26,2022-01-21 20:40:27,2022-01-21 20:40:27,2022-01-21 20:40:27,2022-01-21 20:46:45,0.0841414928436279,377.576674938202,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,8,ctree,2022-01-21 20:42:48,2022-01-21 20:42:49,2022-01-21 20:42:49,2022-01-21 20:42:49,2022-01-21 20:46:47,0.11295485496521,238.121016740799,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,32,empirical,2022-01-21 20:45:33,2022-01-21 20:45:34,2022-01-21 20:45:34,2022-01-21 20:45:34,2022-01-21 20:47:19,0.115691900253296,104.671442508698,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,32,empirical,2022-01-21 20:45:19,2022-01-21 20:45:20,2022-01-21 20:45:20,2022-01-21 20:45:22,2022-01-21 20:47:20,0.107930898666382,117.238768100739,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,32,gaussian,2022-01-21 20:45:48,2022-01-21 20:45:48,2022-01-21 20:45:49,2022-01-21 20:45:51,2022-01-21 20:47:35,0.19084358215332,103.518033742905,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,2,ctree,2022-01-21 20:41:02,2022-01-21 20:41:02,2022-01-21 20:41:03,2022-01-21 20:41:04,2022-01-21 20:47:37,0.134712696075439,392.856748819351,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,32,gaussian,2022-01-21 20:46:05,2022-01-21 20:46:06,2022-01-21 20:46:06,2022-01-21 20:46:06,2022-01-21 20:47:42,0.111264228820801,95.3136060237884,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,16,ctree,2022-01-21 20:43:51,2022-01-21 20:43:52,2022-01-21 20:43:52,2022-01-21 20:43:52,2022-01-21 20:47:46,0.0979311466217041,233.955200910568,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,4,ctree,2022-01-21 20:41:49,2022-01-21 20:41:49,2022-01-21 20:41:49,2022-01-21 20:41:51,2022-01-21 20:48:08,0.0908458232879639,377.439036130905,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,1,empirical,2022-01-21 20:46:50,2022-01-21 20:46:50,2022-01-21 20:46:50,2022-01-21 20:46:51,2022-01-21 20:48:51,0.108370542526245,120.231868982315,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,1,gaussian,2022-01-21 20:47:18,2022-01-21 20:47:19,2022-01-21 20:47:19,2022-01-21 20:47:19,2022-01-21 20:48:54,0.0978591442108154,94.4793810844421,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,24,ctree,2022-01-21 20:45:07,2022-01-21 20:45:08,2022-01-21 20:45:08,2022-01-21 20:45:08,2022-01-21 20:48:58,0.092181921005249,230.083087682724,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,1,empirical,2022-01-21 20:47:04,2022-01-21 20:47:04,2022-01-21 20:47:04,2022-01-21 20:47:05,2022-01-21 20:49:09,0.0792837142944336,124.430074691772,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,1,gaussian,2022-01-21 20:47:32,2022-01-21 20:47:32,2022-01-21 20:47:32,2022-01-21 20:47:32,2022-01-21 20:49:16,0.114082336425781,103.479576587677,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,8,ctree,2022-01-21 20:42:39,2022-01-21 20:42:40,2022-01-21 20:42:40,2022-01-21 20:42:41,2022-01-21 20:49:17,0.109987258911133,395.639775276184,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,2,empirical,2022-01-21 20:48:18,2022-01-21 20:48:19,2022-01-21 20:48:19,2022-01-21 20:48:19,2022-01-21 20:49:21,0.120954990386963,61.8074162006378,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,2,empirical,2022-01-21 20:48:07,2022-01-21 20:48:07,2022-01-21 20:48:07,2022-01-21 20:48:09,2022-01-21 20:49:27,0.132088899612427,77.9539129734039,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,2,gaussian,2022-01-21 20:48:31,2022-01-21 20:48:32,2022-01-21 20:48:32,2022-01-21 20:48:34,2022-01-21 20:49:43,0.170503377914429,69.7559072971344,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,2,gaussian,2022-01-21 20:48:44,2022-01-21 20:48:45,2022-01-21 20:48:45,2022-01-21 20:48:45,2022-01-21 20:49:50,0.142569303512573,64.3325459957123,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,16,ctree,2022-01-21 20:43:40,2022-01-21 20:43:41,2022-01-21 20:43:41,2022-01-21 20:43:43,2022-01-21 20:50:33,0.105155467987061,410.641890048981,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,32,ctree,2022-01-21 20:46:36,2022-01-21 20:46:37,2022-01-21 20:46:37,2022-01-21 20:46:37,2022-01-21 20:50:36,0.11540150642395,238.762038230896,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,4,empirical,2022-01-21 20:49:37,2022-01-21 20:49:38,2022-01-21 20:49:38,2022-01-21 20:49:38,2022-01-21 20:50:36,0.132952928543091,57.566504240036,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,4,empirical,2022-01-21 20:49:25,2022-01-21 20:49:25,2022-01-21 20:49:26,2022-01-21 20:49:27,2022-01-21 20:50:42,0.184035301208496,75.032502412796,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,4,gaussian,2022-01-21 20:49:50,2022-01-21 20:49:50,2022-01-21 20:49:50,2022-01-21 20:49:52,2022-01-21 20:50:56,0.0878503322601318,64.0036766529083,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,4,gaussian,2022-01-21 20:50:02,2022-01-21 20:50:03,2022-01-21 20:50:03,2022-01-21 20:50:03,2022-01-21 20:51:08,0.15785026550293,64.6572296619415,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,2,ctree,2022-01-21 20:49:12,2022-01-21 20:49:12,2022-01-21 20:49:13,2022-01-21 20:49:13,2022-01-21 20:51:18,0.145140886306763,124.979911088944,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,8,empirical,2022-01-21 20:50:57,2022-01-21 20:50:57,2022-01-21 20:50:57,2022-01-21 20:50:58,2022-01-21 20:51:56,0.0942003726959229,58.2835078239441,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,8,empirical,2022-01-21 20:50:44,2022-01-21 20:50:45,2022-01-21 20:50:45,2022-01-21 20:50:47,2022-01-21 20:52:01,0.0997016429901123,74.5951147079468,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,8,gaussian,2022-01-21 20:51:09,2022-01-21 20:51:10,2022-01-21 20:51:10,2022-01-21 20:51:11,2022-01-21 20:52:19,0.0858395099639893,67.3495314121246,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,2,ctree,2022-01-21 20:48:59,2022-01-21 20:48:59,2022-01-21 20:49:00,2022-01-21 20:49:02,2022-01-21 20:52:27,0.130018472671509,205.433418512344,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,24,ctree,2022-01-21 20:44:53,2022-01-21 20:44:54,2022-01-21 20:44:54,2022-01-21 20:44:57,2022-01-21 20:52:33,0.160648822784424,456.004871368408,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,8,gaussian,2022-01-21 20:51:21,2022-01-21 20:51:22,2022-01-21 20:51:22,2022-01-21 20:51:22,2022-01-21 20:52:34,0.117274522781372,71.3184123039246,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,4,ctree,2022-01-21 20:50:30,2022-01-21 20:50:31,2022-01-21 20:50:31,2022-01-21 20:50:32,2022-01-21 20:52:43,0.132680892944336,131.224489688873,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,16,empirical,2022-01-21 20:52:17,2022-01-21 20:52:18,2022-01-21 20:52:18,2022-01-21 20:52:18,2022-01-21 20:53:18,0.182514667510986,59.5530655384064,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,16,empirical,2022-01-21 20:52:03,2022-01-21 20:52:04,2022-01-21 20:52:04,2022-01-21 20:52:06,2022-01-21 20:53:21,0.143407106399536,75.0731844902039,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,16,gaussian,2022-01-21 20:52:31,2022-01-21 20:52:31,2022-01-21 20:52:31,2022-01-21 20:52:33,2022-01-21 20:53:41,0.0980119705200195,67.5845458507538,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,4,ctree,2022-01-21 20:50:16,2022-01-21 20:50:16,2022-01-21 20:50:16,2022-01-21 20:50:18,2022-01-21 20:53:43,0.128473281860352,204.495072841644,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,16,gaussian,2022-01-21 20:52:44,2022-01-21 20:52:45,2022-01-21 20:52:45,2022-01-21 20:52:45,2022-01-21 20:53:50,0.0959305763244629,64.6132051944733,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,1,32,ctree,2022-01-21 20:46:20,2022-01-21 20:46:21,2022-01-21 20:46:21,2022-01-21 20:46:24,2022-01-21 20:53:59,0.0981271266937256,455.146957874298,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,8,ctree,2022-01-21 20:51:48,2022-01-21 20:51:49,2022-01-21 20:51:49,2022-01-21 20:51:49,2022-01-21 20:54:00,0.113694906234741,130.574969768524,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,1,ctree,2022-01-21 20:47:44,2022-01-21 20:47:44,2022-01-21 20:47:45,2022-01-21 20:47:45,2022-01-21 20:54:09,0.112956523895264,384.384921073914,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,1,ctree,2022-01-21 20:47:55,2022-01-21 20:47:56,2022-01-21 20:47:56,2022-01-21 20:47:56,2022-01-21 20:54:20,0.0777542591094971,384.216646432877,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,24,empirical,2022-01-21 20:53:37,2022-01-21 20:53:37,2022-01-21 20:53:38,2022-01-21 20:53:38,2022-01-21 20:54:34,0.137854814529419,56.156763792038,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,24,empirical,2022-01-21 20:53:23,2022-01-21 20:53:24,2022-01-21 20:53:24,2022-01-21 20:53:27,2022-01-21 20:54:36,0.216530323028564,69.1749243736267,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,8,ctree,2022-01-21 20:51:34,2022-01-21 20:51:35,2022-01-21 20:51:35,2022-01-21 20:51:37,2022-01-21 20:54:51,0.138494491577148,193.775209188461,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,24,gaussian,2022-01-21 20:53:50,2022-01-21 20:53:51,2022-01-21 20:53:51,2022-01-21 20:53:53,2022-01-21 20:54:52,0.111333131790161,58.6032857894898,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,24,gaussian,2022-01-21 20:54:02,2022-01-21 20:54:03,2022-01-21 20:54:03,2022-01-21 20:54:03,2022-01-21 20:55:00,0.0959129333496094,56.1699120998383,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,16,ctree,2022-01-21 20:52:57,2022-01-21 20:52:57,2022-01-21 20:52:57,2022-01-21 20:53:00,2022-01-21 20:55:07,0.140775918960571,126.774674892426,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,16,ctree,2022-01-21 20:53:10,2022-01-21 20:53:11,2022-01-21 20:53:11,2022-01-21 20:53:12,2022-01-21 20:55:15,0.17417311668396,123.475018024445,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,32,empirical,2022-01-21 20:54:38,2022-01-21 20:54:38,2022-01-21 20:54:38,2022-01-21 20:54:41,2022-01-21 20:55:32,0.0884103775024414,51.1614468097687,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,32,gaussian,2022-01-21 20:55:02,2022-01-21 20:55:02,2022-01-21 20:55:03,2022-01-21 20:55:04,2022-01-21 20:55:43,0.084935188293457,38.6708788871765,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,32,empirical,2022-01-21 20:54:50,2022-01-21 20:54:51,2022-01-21 20:54:51,2022-01-21 20:54:51,2022-01-21 20:55:44,0.18653392791748,53.2604284286499,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,32,gaussian,2022-01-21 20:55:13,2022-01-21 20:55:14,2022-01-21 20:55:14,2022-01-21 20:55:14,2022-01-21 20:55:53,0.0951611995697021,39.0729277133942,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,24,ctree,2022-01-21 20:54:14,2022-01-21 20:54:14,2022-01-21 20:54:14,2022-01-21 20:54:17,2022-01-21 20:56:03,0.1542067527771,105.781499862671,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,24,ctree,2022-01-21 20:54:26,2022-01-21 20:54:27,2022-01-21 20:54:27,2022-01-21 20:54:27,2022-01-21 20:56:18,0.12476372718811,110.91094994545,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,1,empirical,2022-01-21 20:55:45,2022-01-21 20:55:46,2022-01-21 20:55:46,2022-01-21 20:55:46,2022-01-21 20:57:16,0.079878568649292,90.2866969108582,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,32,ctree,2022-01-21 20:55:35,2022-01-21 20:55:36,2022-01-21 20:55:36,2022-01-21 20:55:36,2022-01-21 20:57:17,0.110094547271729,101.071091890335,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,1,gaussian,2022-01-21 20:56:04,2022-01-21 20:56:04,2022-01-21 20:56:04,2022-01-21 20:56:04,2022-01-21 20:57:25,0.0749552249908447,81.18088722229,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,1,empirical,2022-01-21 20:55:54,2022-01-21 20:55:55,2022-01-21 20:55:55,2022-01-21 20:55:55,2022-01-21 20:57:39,0.0815427303314209,103.489189624786,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,1,gaussian,2022-01-21 20:56:12,2022-01-21 20:56:12,2022-01-21 20:56:12,2022-01-21 20:56:12,2022-01-21 20:57:43,0.08514404296875,90.8046274185181,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,2,empirical,2022-01-21 20:56:46,2022-01-21 20:56:46,2022-01-21 20:56:46,2022-01-21 20:56:46,2022-01-21 20:57:48,0.115150928497314,61.817697763443,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,2,gaussian,2022-01-21 20:56:55,2022-01-21 20:56:55,2022-01-21 20:56:56,2022-01-21 20:56:57,2022-01-21 20:58:11,0.106011152267456,74.1335828304291,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,2,gaussian,2022-01-21 20:57:05,2022-01-21 20:57:06,2022-01-21 20:57:06,2022-01-21 20:57:06,2022-01-21 20:58:25,0.151498794555664,78.4240067005158,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,2,empirical,2022-01-21 20:56:37,2022-01-21 20:56:37,2022-01-21 20:56:37,2022-01-21 20:56:38,2022-01-21 20:58:29,0.102128744125366,111.225126266479,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,4,empirical,2022-01-21 20:57:49,2022-01-21 20:57:49,2022-01-21 20:57:50,2022-01-21 20:57:50,2022-01-21 20:58:32,0.188371181488037,41.8680233955383,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,2,32,ctree,2022-01-21 20:55:24,2022-01-21 20:55:25,2022-01-21 20:55:25,2022-01-21 20:55:27,2022-01-21 20:58:50,0.0877871513366699,203.081659317017,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,4,empirical,2022-01-21 20:57:38,2022-01-21 20:57:39,2022-01-21 20:57:39,2022-01-21 20:57:41,2022-01-21 20:58:52,0.183685064315796,70.5046737194061,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,4,gaussian,2022-01-21 20:58:01,2022-01-21 20:58:02,2022-01-21 20:58:02,2022-01-21 20:58:04,2022-01-21 20:58:54,0.191133975982666,49.4916274547577,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,4,gaussian,2022-01-21 20:58:14,2022-01-21 20:58:15,2022-01-21 20:58:15,2022-01-21 20:58:16,2022-01-21 20:59:02,0.170344591140747,46.8073053359985,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,8,empirical,2022-01-21 20:59:03,2022-01-21 20:59:04,2022-01-21 20:59:04,2022-01-21 20:59:04,2022-01-21 20:59:45,0.103648900985718,41.3012111186981,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,8,empirical,2022-01-21 20:58:54,2022-01-21 20:58:54,2022-01-21 20:58:55,2022-01-21 20:58:57,2022-01-21 21:00:07,0.159465789794922,70.3617722988129,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,8,gaussian,2022-01-21 20:59:13,2022-01-21 20:59:13,2022-01-21 20:59:13,2022-01-21 20:59:15,2022-01-21 21:00:17,0.108479976654053,61.4196181297302,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,4,ctree,2022-01-21 20:58:42,2022-01-21 20:58:43,2022-01-21 20:58:43,2022-01-21 20:58:43,2022-01-21 21:00:21,0.197139501571655,97.4192190170288,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,2,ctree,2022-01-21 20:57:27,2022-01-21 20:57:28,2022-01-21 20:57:28,2022-01-21 20:57:28,2022-01-21 21:00:23,0.149991035461426,174.387036085129,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,8,gaussian,2022-01-21 20:59:24,2022-01-21 20:59:25,2022-01-21 20:59:25,2022-01-21 20:59:25,2022-01-21 21:00:28,0.179873466491699,62.4359295368195,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,16,empirical,2022-01-21 21:00:20,2022-01-21 21:00:21,2022-01-21 21:00:21,2022-01-21 21:00:22,2022-01-21 21:01:10,0.139067888259888,47.9953508377075,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,4,ctree,2022-01-21 20:58:28,2022-01-21 20:58:29,2022-01-21 20:58:29,2022-01-21 20:58:32,2022-01-21 21:01:12,0.208264112472534,160.388398647308,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,16,empirical,2022-01-21 21:00:07,2022-01-21 21:00:08,2022-01-21 21:00:08,2022-01-21 21:00:11,2022-01-21 21:01:29,0.191035747528076,78.1037952899933,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,8,ctree,2022-01-21 20:59:51,2022-01-21 20:59:52,2022-01-21 20:59:53,2022-01-21 20:59:53,2022-01-21 21:01:41,0.289092540740967,107.949241161346,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,16,gaussian,2022-01-21 21:00:31,2022-01-21 21:00:32,2022-01-21 21:00:32,2022-01-21 21:00:35,2022-01-21 21:01:44,0.139708518981934,69.2671241760254,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,16,gaussian,2022-01-21 21:00:44,2022-01-21 21:00:45,2022-01-21 21:00:46,2022-01-21 21:00:46,2022-01-21 21:01:47,0.230913162231445,61.3942022323608,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,2,ctree,2022-01-21 20:57:17,2022-01-21 20:57:18,2022-01-21 20:57:18,2022-01-21 20:57:19,2022-01-21 21:01:59,0.130386114120483,280.008693695068,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,8,ctree,2022-01-21 20:59:37,2022-01-21 20:59:38,2022-01-21 20:59:39,2022-01-21 20:59:42,2022-01-21 21:02:24,0.158949136734009,162.668064832687,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,24,empirical,2022-01-21 21:01:47,2022-01-21 21:01:48,2022-01-21 21:01:48,2022-01-21 21:01:48,2022-01-21 21:02:28,0.165472269058228,40.3758878707886,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,24,empirical,2022-01-21 21:01:33,2022-01-21 21:01:34,2022-01-21 21:01:34,2022-01-21 21:01:38,2022-01-21 21:02:48,0.14913821220398,70.2134475708008,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,16,ctree,2022-01-21 21:01:17,2022-01-21 21:01:18,2022-01-21 21:01:19,2022-01-21 21:01:19,2022-01-21 21:02:56,0.305893421173096,96.9376883506775,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,24,gaussian,2022-01-21 21:01:59,2022-01-21 21:02:00,2022-01-21 21:02:00,2022-01-21 21:02:02,2022-01-21 21:02:59,0.18554425239563,56.98051404953,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,24,gaussian,2022-01-21 21:02:13,2022-01-21 21:02:14,2022-01-21 21:02:14,2022-01-21 21:02:14,2022-01-21 21:03:05,0.0917379856109619,50.3771817684174,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,16,ctree,2022-01-21 21:01:00,2022-01-21 21:01:02,2022-01-21 21:01:02,2022-01-21 21:01:05,2022-01-21 21:03:20,0.268455982208252,135.148362159729,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,32,empirical,2022-01-21 21:03:10,2022-01-21 21:03:11,2022-01-21 21:03:11,2022-01-21 21:03:11,2022-01-21 21:03:50,0.17202615737915,38.376627445221,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,32,empirical,2022-01-21 21:02:59,2022-01-21 21:02:59,2022-01-21 21:03:00,2022-01-21 21:03:02,2022-01-21 21:03:57,0.181943416595459,54.7125444412232,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,24,ctree,2022-01-21 21:02:46,2022-01-21 21:02:47,2022-01-21 21:02:47,2022-01-21 21:02:48,2022-01-21 21:04:12,0.35809850692749,83.8257744312286,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,32,gaussian,2022-01-21 21:03:22,2022-01-21 21:03:22,2022-01-21 21:03:22,2022-01-21 21:03:25,2022-01-21 21:04:14,0.120844125747681,49.3672523498535,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,32,gaussian,2022-01-21 21:03:34,2022-01-21 21:03:35,2022-01-21 21:03:35,2022-01-21 21:03:35,2022-01-21 21:04:19,0.178531885147095,44.2253189086914,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,1,ctree,2022-01-21 20:56:20,2022-01-21 20:56:20,2022-01-21 20:56:21,2022-01-21 20:56:21,2022-01-21 21:04:31,0.0908744335174561,489.950117826462,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,24,ctree,2022-01-21 21:02:29,2022-01-21 21:02:30,2022-01-21 21:02:31,2022-01-21 21:02:34,2022-01-21 21:04:32,0.476623058319092,117.975797176361,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,1,ctree,2022-01-21 20:56:28,2022-01-21 20:56:29,2022-01-21 20:56:29,2022-01-21 20:56:29,2022-01-21 21:04:33,0.0756206512451172,483.763912677765,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,32,ctree,2022-01-21 21:04:05,2022-01-21 21:04:06,2022-01-21 21:04:06,2022-01-21 21:04:06,2022-01-21 21:05:03,0.187911510467529,56.9690225124359,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,4,32,ctree,2022-01-21 21:03:49,2022-01-21 21:03:50,2022-01-21 21:03:50,2022-01-21 21:03:54,2022-01-21 21:05:04,0.238729476928711,70.4672458171845,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,1,gaussian,2022-01-21 21:04:37,2022-01-21 21:04:37,2022-01-21 21:04:37,2022-01-21 21:04:37,2022-01-21 21:05:55,0.0798604488372803,78.0865747928619,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,1,gaussian,2022-01-21 21:04:45,2022-01-21 21:04:45,2022-01-21 21:04:45,2022-01-21 21:04:46,2022-01-21 21:06:19,0.0907771587371826,92.9808647632599,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,2,empirical,2022-01-21 21:05:17,2022-01-21 21:05:17,2022-01-21 21:05:17,2022-01-21 21:05:17,2022-01-21 21:06:23,0.0776762962341309,66.1056880950928,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,2,gaussian,2022-01-21 21:05:24,2022-01-21 21:05:24,2022-01-21 21:05:24,2022-01-21 21:05:26,2022-01-21 21:06:45,0.143327713012695,79.417430639267,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,4,empirical,2022-01-21 21:06:05,2022-01-21 21:06:06,2022-01-21 21:06:06,2022-01-21 21:06:07,2022-01-21 21:07:00,0.157199859619141,52.6849505901337,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,2,gaussian,2022-01-21 21:05:31,2022-01-21 21:05:32,2022-01-21 21:05:32,2022-01-21 21:05:32,2022-01-21 21:07:06,0.111085653305054,94.3574590682984,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,4,gaussian,2022-01-21 21:06:15,2022-01-21 21:06:16,2022-01-21 21:06:16,2022-01-21 21:06:18,2022-01-21 21:07:38,0.204633712768555,79.2583937644959,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,4,gaussian,2022-01-21 21:06:26,2022-01-21 21:06:27,2022-01-21 21:06:28,2022-01-21 21:06:28,2022-01-21 21:07:52,0.264756202697754,84.2117490768433,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,8,empirical,2022-01-21 21:07:20,2022-01-21 21:07:22,2022-01-21 21:07:22,2022-01-21 21:07:22,2022-01-21 21:08:06,0.188937187194824,43.6903123855591,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,4,empirical,2022-01-21 21:05:56,2022-01-21 21:05:57,2022-01-21 21:05:57,2022-01-21 21:05:59,2022-01-21 21:08:14,0.171584844589233,134.929827213287,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,2,empirical,2022-01-21 21:05:10,2022-01-21 21:05:10,2022-01-21 21:05:10,2022-01-21 21:05:11,2022-01-21 21:08:19,0.0868418216705322,188.043449640274,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,1,empirical,2022-01-21 21:04:17,2022-01-21 21:04:18,2022-01-21 21:04:18,2022-01-21 21:04:18,2022-01-21 21:08:27,0.103017568588257,248.826789140701,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,8,empirical,2022-01-21 21:07:06,2022-01-21 21:07:07,2022-01-21 21:07:07,2022-01-21 21:07:10,2022-01-21 21:08:34,0.292656183242798,84.337461233139,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,1,empirical,2022-01-21 21:04:28,2022-01-21 21:04:28,2022-01-21 21:04:28,2022-01-21 21:04:29,2022-01-21 21:08:45,0.0950651168823242,255.985460519791,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,8,gaussian,2022-01-21 21:07:37,2022-01-21 21:07:38,2022-01-21 21:07:39,2022-01-21 21:07:42,2022-01-21 21:08:45,0.399717569351196,62.5868482589722,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,8,gaussian,2022-01-21 21:07:54,2022-01-21 21:07:56,2022-01-21 21:07:56,2022-01-21 21:07:57,2022-01-21 21:08:50,0.593955755233765,53.5022542476654,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,16,empirical,2022-01-21 21:09:01,2022-01-21 21:09:02,2022-01-21 21:09:02,2022-01-21 21:09:03,2022-01-21 21:09:46,0.152786254882813,43.164598941803,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,4,ctree,2022-01-21 21:06:53,2022-01-21 21:06:55,2022-01-21 21:06:55,2022-01-21 21:06:55,2022-01-21 21:09:50,0.256888389587402,174.191545248032,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,16,empirical,2022-01-21 21:08:49,2022-01-21 21:08:50,2022-01-21 21:08:51,2022-01-21 21:08:53,2022-01-21 21:10:18,0.172556400299072,84.9139215946198,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,8,ctree,2022-01-21 21:08:37,2022-01-21 21:08:39,2022-01-21 21:08:39,2022-01-21 21:08:39,2022-01-21 21:10:18,0.248854875564575,99.4150605201721,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,8,ctree,2022-01-21 21:08:17,2022-01-21 21:08:18,2022-01-21 21:08:19,2022-01-21 21:08:23,2022-01-21 21:10:23,0.350428342819214,120.313968896866,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,4,ctree,2022-01-21 21:06:40,2022-01-21 21:06:41,2022-01-21 21:06:42,2022-01-21 21:06:45,2022-01-21 21:10:25,0.427752733230591,220.616188764572,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,16,gaussian,2022-01-21 21:09:16,2022-01-21 21:09:17,2022-01-21 21:09:18,2022-01-21 21:09:22,2022-01-21 21:10:28,0.311072587966919,66.6818714141846,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,2,ctree,2022-01-21 21:05:47,2022-01-21 21:05:48,2022-01-21 21:05:48,2022-01-21 21:05:48,2022-01-21 21:10:29,0.119645595550537,280.962194919586,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,16,gaussian,2022-01-21 21:09:37,2022-01-21 21:09:38,2022-01-21 21:09:39,2022-01-21 21:09:39,2022-01-21 21:10:31,0.337527513504028,51.241792678833,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,24,empirical,2022-01-21 21:10:45,2022-01-21 21:10:46,2022-01-21 21:10:46,2022-01-21 21:10:47,2022-01-21 21:11:14,0.191702842712402,27.2636015415192,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,16,ctree,2022-01-21 21:10:26,2022-01-21 21:10:27,2022-01-21 21:10:27,2022-01-21 21:10:28,2022-01-21 21:11:36,0.164134502410889,67.9979479312897,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,16,ctree,2022-01-21 21:10:04,2022-01-21 21:10:07,2022-01-21 21:10:07,2022-01-21 21:10:12,2022-01-21 21:11:47,0.607365846633911,95.4136109352112,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,24,empirical,2022-01-21 21:10:36,2022-01-21 21:10:36,2022-01-21 21:10:36,2022-01-21 21:10:39,2022-01-21 21:11:51,0.0865225791931152,72.074743270874,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,2,ctree,2022-01-21 21:05:39,2022-01-21 21:05:39,2022-01-21 21:05:40,2022-01-21 21:05:41,2022-01-21 21:11:56,0.115771532058716,374.887598276138,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,24,gaussian,2022-01-21 21:10:58,2022-01-21 21:10:59,2022-01-21 21:10:59,2022-01-21 21:11:03,2022-01-21 21:11:56,0.237247228622437,53.7692830562592,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,24,gaussian,2022-01-21 21:11:16,2022-01-21 21:11:18,2022-01-21 21:11:19,2022-01-21 21:11:19,2022-01-21 21:11:59,0.377049684524536,40.2000601291657,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,32,empirical,2022-01-21 21:12:14,2022-01-21 21:12:15,2022-01-21 21:12:15,2022-01-21 21:12:16,2022-01-21 21:12:46,0.116685628890991,30.0075914859772,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,24,ctree,2022-01-21 21:11:55,2022-01-21 21:11:56,2022-01-21 21:11:57,2022-01-21 21:11:57,2022-01-21 21:12:50,0.166159391403198,53.3284509181976,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,24,ctree,2022-01-21 21:11:38,2022-01-21 21:11:40,2022-01-21 21:11:40,2022-01-21 21:11:44,2022-01-21 21:13:09,0.340238094329834,85.1530411243439,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,32,empirical,2022-01-21 21:12:04,2022-01-21 21:12:05,2022-01-21 21:12:05,2022-01-21 21:12:07,2022-01-21 21:13:15,0.101136445999146,67.9506716728211,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,32,gaussian,2022-01-21 21:12:27,2022-01-21 21:12:28,2022-01-21 21:12:29,2022-01-21 21:12:32,2022-01-21 21:13:21,0.203037977218628,48.8864440917969,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,32,gaussian,2022-01-21 21:12:46,2022-01-21 21:12:47,2022-01-21 21:12:47,2022-01-21 21:12:47,2022-01-21 21:13:22,0.184819459915161,34.9163496494293,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,1,ctree,2022-01-21 21:04:53,2022-01-21 21:04:54,2022-01-21 21:04:54,2022-01-21 21:04:54,2022-01-21 21:13:52,0.105205059051514,537.621712446213,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,32,ctree,2022-01-21 21:13:22,2022-01-21 21:13:22,2022-01-21 21:13:22,2022-01-21 21:13:23,2022-01-21 21:13:57,0.0760343074798584,33.991997718811,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,32,ctree,2022-01-21 21:13:09,2022-01-21 21:13:11,2022-01-21 21:13:11,2022-01-21 21:13:14,2022-01-21 21:14:04,0.259145975112915,49.4829413890839,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,8,1,ctree,2022-01-21 21:05:02,2022-01-21 21:05:03,2022-01-21 21:05:03,2022-01-21 21:05:03,2022-01-21 21:14:06,0.109845399856567,543.068265914917,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,1,gaussian,2022-01-21 21:13:47,2022-01-21 21:13:48,2022-01-21 21:13:48,2022-01-21 21:13:48,2022-01-21 21:15:34,0.124045372009277,106.016930341721,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,2,empirical,2022-01-21 21:14:24,2022-01-21 21:14:25,2022-01-21 21:14:25,2022-01-21 21:14:25,2022-01-21 21:15:42,0.0927612781524658,77.3450326919556,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,1,gaussian,2022-01-21 21:13:56,2022-01-21 21:13:57,2022-01-21 21:13:57,2022-01-21 21:13:57,2022-01-21 21:15:54,0.108012437820435,116.191929101944,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,2,gaussian,2022-01-21 21:14:31,2022-01-21 21:14:32,2022-01-21 21:14:32,2022-01-21 21:14:33,2022-01-21 21:15:57,0.0921623706817627,84.4271998405457,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,4,empirical,2022-01-21 21:15:11,2022-01-21 21:15:12,2022-01-21 21:15:12,2022-01-21 21:15:12,2022-01-21 21:16:24,0.215361595153809,71.0502712726593,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,2,gaussian,2022-01-21 21:14:38,2022-01-21 21:14:39,2022-01-21 21:14:39,2022-01-21 21:14:39,2022-01-21 21:16:26,0.146959543228149,106.851487398148,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,4,gaussian,2022-01-21 21:15:21,2022-01-21 21:15:22,2022-01-21 21:15:22,2022-01-21 21:15:25,2022-01-21 21:16:56,0.251926898956299,90.7974946498871,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,4,gaussian,2022-01-21 21:15:31,2022-01-21 21:15:32,2022-01-21 21:15:32,2022-01-21 21:15:33,2022-01-21 21:17:28,0.341072797775269,114.798723459244,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,8,empirical,2022-01-21 21:16:27,2022-01-21 21:16:29,2022-01-21 21:16:29,2022-01-21 21:16:30,2022-01-21 21:17:29,0.382034778594971,59.2331337928772,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,8,gaussian,2022-01-21 21:16:43,2022-01-21 21:16:45,2022-01-21 21:16:46,2022-01-21 21:16:50,2022-01-21 21:18:11,0.536580562591553,81.4892568588257,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,8,gaussian,2022-01-21 21:17:00,2022-01-21 21:17:03,2022-01-21 21:17:03,2022-01-21 21:17:04,2022-01-21 21:18:15,0.362274885177612,70.5533213615418,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,16,empirical,2022-01-21 21:18:30,2022-01-21 21:18:32,2022-01-21 21:18:33,2022-01-21 21:18:33,2022-01-21 21:19:19,0.223151683807373,45.638147354126,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,8,empirical,2022-01-21 21:16:13,2022-01-21 21:16:14,2022-01-21 21:16:15,2022-01-21 21:16:18,2022-01-21 21:19:25,0.28002142906189,186.538064718246,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,4,empirical,2022-01-21 21:15:02,2022-01-21 21:15:03,2022-01-21 21:15:03,2022-01-21 21:15:05,2022-01-21 21:19:55,0.0735135078430176,290.416796207428,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,4,ctree,2022-01-21 21:15:59,2022-01-21 21:16:00,2022-01-21 21:16:00,2022-01-21 21:16:00,2022-01-21 21:19:59,0.245657682418823,238.891503334045,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,16,empirical,2022-01-21 21:18:08,2022-01-21 21:18:10,2022-01-21 21:18:10,2022-01-21 21:18:14,2022-01-21 21:20:07,0.243280410766602,112.631034851074,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,16,gaussian,2022-01-21 21:18:54,2022-01-21 21:18:56,2022-01-21 21:18:56,2022-01-21 21:19:01,2022-01-21 21:20:12,0.275424003601074,70.3043127059937,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,16,gaussian,2022-01-21 21:19:26,2022-01-21 21:19:30,2022-01-21 21:19:31,2022-01-21 21:19:32,2022-01-21 21:20:14,0.813745021820068,41.8549983501434,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,8,ctree,2022-01-21 21:17:45,2022-01-21 21:17:47,2022-01-21 21:17:48,2022-01-21 21:17:49,2022-01-21 21:20:17,0.379645824432373,148.861283540726,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,8,ctree,2022-01-21 21:17:23,2022-01-21 21:17:26,2022-01-21 21:17:26,2022-01-21 21:17:32,2022-01-21 21:20:37,0.652283191680908,185.617542266846,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,4,ctree,2022-01-21 21:15:45,2022-01-21 21:15:47,2022-01-21 21:15:48,2022-01-21 21:15:51,2022-01-21 21:20:45,0.433119297027588,293.340547323227,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,2,ctree,2022-01-21 21:14:54,2022-01-21 21:14:55,2022-01-21 21:14:55,2022-01-21 21:14:55,2022-01-21 21:21:14,0.108402490615845,379.187018156052,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,16,ctree,2022-01-21 21:20:19,2022-01-21 21:20:20,2022-01-21 21:20:20,2022-01-21 21:20:21,2022-01-21 21:21:19,0.201935529708862,58.4909372329712,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,24,empirical,2022-01-21 21:20:50,2022-01-21 21:20:52,2022-01-21 21:20:52,2022-01-21 21:20:53,2022-01-21 21:21:26,0.336327791213989,32.9388563632965,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,16,ctree,2022-01-21 21:19:53,2022-01-21 21:19:56,2022-01-21 21:19:56,2022-01-21 21:20:03,2022-01-21 21:21:32,0.27570366859436,89.5509271621704,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,2,empirical,2022-01-21 21:14:17,2022-01-21 21:14:18,2022-01-21 21:14:18,2022-01-21 21:14:19,2022-01-21 21:21:49,0.0706212520599365,449.803378820419,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,24,gaussian,2022-01-21 21:21:16,2022-01-21 21:21:19,2022-01-21 21:21:19,2022-01-21 21:21:23,2022-01-21 21:22:10,0.507633209228516,46.8364727497101,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,24,gaussian,2022-01-21 21:21:32,2022-01-21 21:21:33,2022-01-21 21:21:33,2022-01-21 21:21:34,2022-01-21 21:22:11,0.355782270431519,37.2925474643707,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,24,empirical,2022-01-21 21:20:34,2022-01-21 21:20:35,2022-01-21 21:20:35,2022-01-21 21:20:39,2022-01-21 21:22:13,0.149597644805908,93.8490464687347,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,2,ctree,2022-01-21 21:14:46,2022-01-21 21:14:46,2022-01-21 21:14:47,2022-01-21 21:14:48,2022-01-21 21:22:58,0.119531154632568,489.637268066406,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,24,ctree,2022-01-21 21:22:15,2022-01-21 21:22:15,2022-01-21 21:22:15,2022-01-21 21:22:16,2022-01-21 21:23:12,0.124479055404663,56.7212684154511,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,24,ctree,2022-01-21 21:21:59,2022-01-21 21:22:01,2022-01-21 21:22:01,2022-01-21 21:22:06,2022-01-21 21:23:16,0.31951117515564,69.857203245163,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,32,empirical,2022-01-21 21:22:43,2022-01-21 21:22:45,2022-01-21 21:22:46,2022-01-21 21:22:47,2022-01-21 21:23:18,0.514694452285767,31.1206960678101,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,32,gaussian,2022-01-21 21:23:19,2022-01-21 21:23:20,2022-01-21 21:23:21,2022-01-21 21:23:21,2022-01-21 21:23:56,0.180426597595215,35.622038602829,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,32,gaussian,2022-01-21 21:23:02,2022-01-21 21:23:04,2022-01-21 21:23:04,2022-01-21 21:23:08,2022-01-21 21:23:57,0.19591236114502,48.5168907642365,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,32,empirical,2022-01-21 21:22:25,2022-01-21 21:22:27,2022-01-21 21:22:27,2022-01-21 21:22:31,2022-01-21 21:24:03,0.267998456954956,92.2569513320923,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,1,empirical,2022-01-21 21:13:30,2022-01-21 21:13:31,2022-01-21 21:13:31,2022-01-21 21:13:31,2022-01-21 21:24:29,0.0851345062255859,657.828667640686,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,32,ctree,2022-01-21 21:23:58,2022-01-21 21:23:59,2022-01-21 21:23:59,2022-01-21 21:24:00,2022-01-21 21:24:33,0.137048959732056,33.4353752136231,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,32,ctree,2022-01-21 21:23:42,2022-01-21 21:23:45,2022-01-21 21:23:45,2022-01-21 21:23:51,2022-01-21 21:24:41,0.557592868804932,49.9368736743927,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,1,empirical,2022-01-21 21:13:38,2022-01-21 21:13:39,2022-01-21 21:13:39,2022-01-21 21:13:39,2022-01-21 21:24:43,0.0958406925201416,664.118632078171,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,1,ctree,2022-01-21 21:14:04,2022-01-21 21:14:05,2022-01-21 21:14:05,2022-01-21 21:14:05,2022-01-21 21:25:04,0.0676724910736084,658.752881765366,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,16,1,ctree,2022-01-21 21:14:11,2022-01-21 21:14:11,2022-01-21 21:14:11,2022-01-21 21:14:12,2022-01-21 21:25:17,0.0730216503143311,665.175843477249,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,1,gaussian,2022-01-21 21:24:34,2022-01-21 21:24:35,2022-01-21 21:24:35,2022-01-21 21:24:36,2022-01-21 21:26:35,0.30742359161377,119.041927099228,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,2,empirical,2022-01-21 21:25:09,2022-01-21 21:25:09,2022-01-21 21:25:09,2022-01-21 21:25:10,2022-01-21 21:26:36,0.0966546535491943,86.2835886478424,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,1,gaussian,2022-01-21 21:24:42,2022-01-21 21:24:42,2022-01-21 21:24:42,2022-01-21 21:24:43,2022-01-21 21:27:02,0.0847799777984619,139.866026163101,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,2,gaussian,2022-01-21 21:25:16,2022-01-21 21:25:16,2022-01-21 21:25:16,2022-01-21 21:25:18,2022-01-21 21:27:07,0.119027376174927,109.410991430283,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,4,empirical,2022-01-21 21:25:55,2022-01-21 21:25:56,2022-01-21 21:25:56,2022-01-21 21:25:57,2022-01-21 21:27:17,0.184245109558105,80.4567439556122,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,2,gaussian,2022-01-21 21:25:23,2022-01-21 21:25:23,2022-01-21 21:25:24,2022-01-21 21:25:24,2022-01-21 21:27:27,0.121721506118774,123.322007894516,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,4,gaussian,2022-01-21 21:26:13,2022-01-21 21:26:15,2022-01-21 21:26:15,2022-01-21 21:26:15,2022-01-21 21:27:54,0.232003450393677,99.0742924213409,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,4,gaussian,2022-01-21 21:26:04,2022-01-21 21:26:05,2022-01-21 21:26:05,2022-01-21 21:26:08,2022-01-21 21:27:58,0.22277307510376,110.526182889938,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,8,empirical,2022-01-21 21:27:09,2022-01-21 21:27:11,2022-01-21 21:27:11,2022-01-21 21:27:11,2022-01-21 21:28:24,0.226193428039551,72.9715957641602,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,8,gaussian,2022-01-21 21:27:28,2022-01-21 21:27:29,2022-01-21 21:27:30,2022-01-21 21:27:35,2022-01-21 21:28:59,0.508949756622315,83.8114700317383,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,8,gaussian,2022-01-21 21:27:47,2022-01-21 21:27:49,2022-01-21 21:27:49,2022-01-21 21:27:50,2022-01-21 21:29:07,0.217011690139771,76.522379398346,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,16,empirical,2022-01-21 21:29:17,2022-01-21 21:29:18,2022-01-21 21:29:18,2022-01-21 21:29:19,2022-01-21 21:30:34,0.294175863265991,74.7833287715912,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,8,empirical,2022-01-21 21:26:53,2022-01-21 21:26:55,2022-01-21 21:26:55,2022-01-21 21:26:59,2022-01-21 21:31:31,0.339540243148804,271.496822834015,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,16,gaussian,2022-01-21 21:29:43,2022-01-21 21:29:46,2022-01-21 21:29:46,2022-01-21 21:29:53,2022-01-21 21:31:32,0.46642279624939,98.785829782486,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,16,gaussian,2022-01-21 21:30:20,2022-01-21 21:30:24,2022-01-21 21:30:25,2022-01-21 21:30:26,2022-01-21 21:31:33,0.905242443084717,66.3387489318848,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,4,ctree,2022-01-21 21:26:39,2022-01-21 21:26:40,2022-01-21 21:26:40,2022-01-21 21:26:41,2022-01-21 21:31:35,0.436992168426514,293.527332782745,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,8,ctree,2022-01-21 21:28:32,2022-01-21 21:28:35,2022-01-21 21:28:36,2022-01-21 21:28:37,2022-01-21 21:31:41,0.565577268600464,184.314444541931,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,8,ctree,2022-01-21 21:28:08,2022-01-21 21:28:09,2022-01-21 21:28:10,2022-01-21 21:28:14,2022-01-21 21:31:41,0.48603630065918,206.862575531006,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,4,ctree,2022-01-21 21:26:28,2022-01-21 21:26:29,2022-01-21 21:26:29,2022-01-21 21:26:32,2022-01-21 21:32:01,0.323044776916504,328.846762418747,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,16,empirical,2022-01-21 21:28:56,2022-01-21 21:28:58,2022-01-21 21:28:59,2022-01-21 21:29:04,2022-01-21 21:32:28,0.231225490570068,204.396010160446,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,2,ctree,2022-01-21 21:25:38,2022-01-21 21:25:39,2022-01-21 21:25:39,2022-01-21 21:25:39,2022-01-21 21:32:45,0.139758586883545,425.231558322907,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,24,empirical,2022-01-21 21:32:20,2022-01-21 21:32:23,2022-01-21 21:32:23,2022-01-21 21:32:24,2022-01-21 21:32:55,0.23017954826355,31.5129499435425,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,16,ctree,2022-01-21 21:31:39,2022-01-21 21:31:40,2022-01-21 21:31:41,2022-01-21 21:31:41,2022-01-21 21:33:12,0.467198610305786,90.5791802406311,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,16,ctree,2022-01-21 21:31:09,2022-01-21 21:31:11,2022-01-21 21:31:12,2022-01-21 21:31:19,2022-01-21 21:33:15,0.578039646148682,115.481181621552,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,4,empirical,2022-01-21 21:25:47,2022-01-21 21:25:48,2022-01-21 21:25:48,2022-01-21 21:25:50,2022-01-21 21:33:31,0.126460790634155,461.169310092926,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,24,gaussian,2022-01-21 21:33:15,2022-01-21 21:33:17,2022-01-21 21:33:18,2022-01-21 21:33:18,2022-01-21 21:33:55,0.476824283599854,36.0940475463867,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,24,empirical,2022-01-21 21:31:59,2022-01-21 21:32:00,2022-01-21 21:32:01,2022-01-21 21:32:05,2022-01-21 21:33:56,0.360566139221191,110.686193466187,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,24,gaussian,2022-01-21 21:32:46,2022-01-21 21:32:49,2022-01-21 21:32:49,2022-01-21 21:32:56,2022-01-21 21:33:58,0.36862325668335,62.9366602897644,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,2,ctree,2022-01-21 21:25:30,2022-01-21 21:25:31,2022-01-21 21:25:31,2022-01-21 21:25:33,2022-01-21 21:34:29,0.133883953094482,536.059300422668,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,24,ctree,2022-01-21 21:34:03,2022-01-21 21:34:04,2022-01-21 21:34:04,2022-01-21 21:34:04,2022-01-21 21:34:53,0.130608320236206,49.1582133769989,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,24,ctree,2022-01-21 21:33:48,2022-01-21 21:33:50,2022-01-21 21:33:51,2022-01-21 21:33:55,2022-01-21 21:35:04,0.371647357940674,69.4296364784241,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,32,empirical,2022-01-21 21:34:40,2022-01-21 21:34:41,2022-01-21 21:34:42,2022-01-21 21:34:42,2022-01-21 21:35:11,0.251516580581665,28.5495471954346,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,32,gaussian,2022-01-21 21:35:16,2022-01-21 21:35:17,2022-01-21 21:35:17,2022-01-21 21:35:18,2022-01-21 21:35:57,0.216872692108154,39.7184617519379,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,32,gaussian,2022-01-21 21:35:01,2022-01-21 21:35:04,2022-01-21 21:35:05,2022-01-21 21:35:09,2022-01-21 21:36:07,0.288581371307373,58.3261322975159,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,32,empirical,2022-01-21 21:34:18,2022-01-21 21:34:20,2022-01-21 21:34:20,2022-01-21 21:34:26,2022-01-21 21:36:09,0.355702877044678,102.635520219803,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,32,ctree,2022-01-21 21:36:08,2022-01-21 21:36:09,2022-01-21 21:36:09,2022-01-21 21:36:10,2022-01-21 21:36:48,0.209416627883911,38.4663996696472,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,32,ctree,2022-01-21 21:35:51,2022-01-21 21:35:53,2022-01-21 21:35:53,2022-01-21 21:35:59,2022-01-21 21:36:53,0.233638048171997,54.0048789978027,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,2,empirical,2022-01-21 21:25:02,2022-01-21 21:25:02,2022-01-21 21:25:02,2022-01-21 21:25:03,2022-01-21 21:36:59,0.094907283782959,715.46152639389,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,1,ctree,2022-01-21 21:24:48,2022-01-21 21:24:49,2022-01-21 21:24:49,2022-01-21 21:24:49,2022-01-21 21:37:37,0.0688414573669434,768.219142913818,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,1,ctree,2022-01-21 21:24:55,2022-01-21 21:24:56,2022-01-21 21:24:56,2022-01-21 21:24:56,2022-01-21 21:37:53,0.0867717266082764,776.810942173004,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,2,empirical,2022-01-21 21:37:27,2022-01-21 21:37:28,2022-01-21 21:37:28,2022-01-21 21:37:28,2022-01-21 21:39:15,0.0800116062164307,107.160700798035,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,1,gaussian,2022-01-21 21:36:52,2022-01-21 21:36:52,2022-01-21 21:36:53,2022-01-21 21:36:53,2022-01-21 21:39:35,0.101114273071289,162.176388978958,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,4,empirical,2022-01-21 21:38:15,2022-01-21 21:38:16,2022-01-21 21:38:16,2022-01-21 21:38:16,2022-01-21 21:39:58,0.136723756790161,101.457249164581,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,2,gaussian,2022-01-21 21:37:34,2022-01-21 21:37:35,2022-01-21 21:37:35,2022-01-21 21:37:37,2022-01-21 21:40:04,0.164344072341919,147.035058259964,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,1,gaussian,2022-01-21 21:36:59,2022-01-21 21:37:00,2022-01-21 21:37:00,2022-01-21 21:37:00,2022-01-21 21:40:18,0.127327680587769,198.591254711151,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,2,gaussian,2022-01-21 21:37:42,2022-01-21 21:37:43,2022-01-21 21:37:43,2022-01-21 21:37:43,2022-01-21 21:40:27,0.145722150802612,164.032037496567,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,4,gaussian,2022-01-21 21:38:25,2022-01-21 21:38:26,2022-01-21 21:38:26,2022-01-21 21:38:29,2022-01-21 21:40:37,0.164116144180298,127.752472400665,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,4,gaussian,2022-01-21 21:38:38,2022-01-21 21:38:39,2022-01-21 21:38:39,2022-01-21 21:38:40,2022-01-21 21:40:41,0.146379947662354,121.688840150833,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,1,empirical,2022-01-21 21:24:11,2022-01-21 21:24:12,2022-01-21 21:24:12,2022-01-21 21:24:12,2022-01-21 21:40:52,0.195000171661377,999.505385160446,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,24,1,empirical,2022-01-21 21:24:23,2022-01-21 21:24:25,2022-01-21 21:24:25,2022-01-21 21:24:25,2022-01-21 21:40:55,0.256623268127441,989.782598972321,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,8,empirical,2022-01-21 21:39:39,2022-01-21 21:39:42,2022-01-21 21:39:42,2022-01-21 21:39:43,2022-01-21 21:41:16,0.472242593765259,93.2722721099853,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,8,gaussian,2022-01-21 21:40:01,2022-01-21 21:40:03,2022-01-21 21:40:03,2022-01-21 21:40:08,2022-01-21 21:41:38,0.336188554763794,89.9355893135071,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,8,gaussian,2022-01-21 21:40:25,2022-01-21 21:40:28,2022-01-21 21:40:29,2022-01-21 21:40:30,2022-01-21 21:41:49,0.683731079101563,79.5202100276947,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,16,empirical,2022-01-21 21:41:58,2022-01-21 21:42:00,2022-01-21 21:42:01,2022-01-21 21:42:02,2022-01-21 21:42:54,0.502792596817017,52.7055804729462,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,16,gaussian,2022-01-21 21:42:25,2022-01-21 21:42:28,2022-01-21 21:42:29,2022-01-21 21:42:36,2022-01-21 21:44:03,0.841117858886719,87.118138551712,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,16,gaussian,2022-01-21 21:42:57,2022-01-21 21:43:00,2022-01-21 21:43:00,2022-01-21 21:43:02,2022-01-21 21:44:11,0.53568434715271,68.9963009357452,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,8,ctree,2022-01-21 21:41:14,2022-01-21 21:41:16,2022-01-21 21:41:16,2022-01-21 21:41:17,2022-01-21 21:44:17,0.383826494216919,180.081275463104,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,4,ctree,2022-01-21 21:39:04,2022-01-21 21:39:06,2022-01-21 21:39:07,2022-01-21 21:39:07,2022-01-21 21:44:27,0.415200233459473,319.746484041214,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,8,ctree,2022-01-21 21:40:52,2022-01-21 21:40:53,2022-01-21 21:40:54,2022-01-21 21:40:59,2022-01-21 21:45:01,0.641110420227051,241.246463060379,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,4,ctree,2022-01-21 21:38:49,2022-01-21 21:38:50,2022-01-21 21:38:51,2022-01-21 21:38:55,2022-01-21 21:45:20,0.406576156616211,385.773517131805,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,16,empirical,2022-01-21 21:41:37,2022-01-21 21:41:39,2022-01-21 21:41:39,2022-01-21 21:41:45,2022-01-21 21:45:28,0.531155347824097,223.692606687546,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,8,empirical,2022-01-21 21:39:22,2022-01-21 21:39:24,2022-01-21 21:39:24,2022-01-21 21:39:29,2022-01-21 21:45:29,0.322055339813232,359.806304216385,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,16,ctree,2022-01-21 21:44:20,2022-01-21 21:44:22,2022-01-21 21:44:23,2022-01-21 21:44:23,2022-01-21 21:45:53,0.283797264099121,89.9418413639069,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,2,ctree,2022-01-21 21:37:58,2022-01-21 21:37:59,2022-01-21 21:37:59,2022-01-21 21:37:59,2022-01-21 21:46:04,0.124407052993774,484.549674510956,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,16,ctree,2022-01-21 21:43:48,2022-01-21 21:43:53,2022-01-21 21:43:54,2022-01-21 21:44:02,2022-01-21 21:46:05,0.60678243637085,122.520214319229,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,24,empirical,2022-01-21 21:45:21,2022-01-21 21:45:23,2022-01-21 21:45:23,2022-01-21 21:45:24,2022-01-21 21:46:09,0.380441904067993,45.0068895816803,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,24,gaussian,2022-01-21 21:46:13,2022-01-21 21:46:15,2022-01-21 21:46:16,2022-01-21 21:46:16,2022-01-21 21:47:03,0.545144319534302,46.9774036407471,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,24,gaussian,2022-01-21 21:45:53,2022-01-21 21:45:55,2022-01-21 21:45:55,2022-01-21 21:46:01,2022-01-21 21:47:15,0.516844987869263,74.4752373695374,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,24,ctree,2022-01-21 21:47:04,2022-01-21 21:47:06,2022-01-21 21:47:06,2022-01-21 21:47:06,2022-01-21 21:48:14,0.128614187240601,67.0886564254761,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,24,empirical,2022-01-21 21:44:50,2022-01-21 21:44:52,2022-01-21 21:44:53,2022-01-21 21:44:59,2022-01-21 21:48:14,0.461406946182251,194.963154554367,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,4,empirical,2022-01-21 21:38:06,2022-01-21 21:38:07,2022-01-21 21:38:07,2022-01-21 21:38:09,2022-01-21 21:48:22,0.209931373596191,612.431309461594,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,2,ctree,2022-01-21 21:37:50,2022-01-21 21:37:50,2022-01-21 21:37:51,2022-01-21 21:37:52,2022-01-21 21:48:22,0.124840974807739,629.658906459808,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,32,empirical,2022-01-21 21:48:00,2022-01-21 21:48:02,2022-01-21 21:48:03,2022-01-21 21:48:03,2022-01-21 21:48:28,0.61471152305603,24.480751991272,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,24,ctree,2022-01-21 21:46:47,2022-01-21 21:46:49,2022-01-21 21:46:49,2022-01-21 21:46:55,2022-01-21 21:48:41,0.687000751495361,106.168217182159,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,32,gaussian,2022-01-21 21:48:44,2022-01-21 21:48:46,2022-01-21 21:48:46,2022-01-21 21:48:47,2022-01-21 21:49:21,0.4290611743927,34.3318228721619,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,32,empirical,2022-01-21 21:47:33,2022-01-21 21:47:35,2022-01-21 21:47:35,2022-01-21 21:47:40,2022-01-21 21:49:35,0.266908407211304,114.692779064178,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,32,gaussian,2022-01-21 21:48:27,2022-01-21 21:48:28,2022-01-21 21:48:29,2022-01-21 21:48:34,2022-01-21 21:49:39,0.435132741928101,65.0631065368652,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,32,ctree,2022-01-21 21:49:39,2022-01-21 21:49:40,2022-01-21 21:49:40,2022-01-21 21:49:40,2022-01-21 21:50:20,0.103464365005493,39.6891441345215,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,32,ctree,2022-01-21 21:49:22,2022-01-21 21:49:24,2022-01-21 21:49:24,2022-01-21 21:49:29,2022-01-21 21:50:29,0.232711791992188,60.2891592979431,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,1,empirical,2022-01-21 21:49:52,2022-01-21 21:49:54,2022-01-21 21:49:54,2022-01-21 21:49:55,2022-01-21 21:50:45,0.314820528030396,49.5270221233368,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,1,empirical,2022-01-21 21:50:12,2022-01-21 21:50:14,2022-01-21 21:50:14,2022-01-21 21:50:14,2022-01-21 21:50:48,0.376124858856201,33.9582526683807,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,1,ctree,2022-01-21 21:37:06,2022-01-21 21:37:07,2022-01-21 21:37:07,2022-01-21 21:37:07,2022-01-21 21:51:22,0.100116968154907,854.830652475357,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,2,empirical,2022-01-21 21:51:02,2022-01-21 21:51:02,2022-01-21 21:51:02,2022-01-21 21:51:02,2022-01-21 21:51:26,0.140056848526001,23.3518037796021,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,2,empirical,2022-01-21 21:50:54,2022-01-21 21:50:55,2022-01-21 21:50:55,2022-01-21 21:50:56,2022-01-21 21:51:30,0.11153507232666,33.1718173027039,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,1,ctree,2022-01-21 21:37:13,2022-01-21 21:37:13,2022-01-21 21:37:14,2022-01-21 21:37:14,2022-01-21 21:51:35,0.0966775417327881,861.255119562149,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,2,empirical,2022-01-21 21:37:20,2022-01-21 21:37:21,2022-01-21 21:37:21,2022-01-21 21:37:22,2022-01-21 21:51:44,0.154094934463501,862.11428976059,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,4,empirical,2022-01-21 21:51:47,2022-01-21 21:51:47,2022-01-21 21:51:47,2022-01-21 21:51:48,2022-01-21 21:52:12,0.118838787078857,24.670215845108,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,4,empirical,2022-01-21 21:51:39,2022-01-21 21:51:40,2022-01-21 21:51:40,2022-01-21 21:51:41,2022-01-21 21:52:19,0.14535403251648,38.2653274536133,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,8,empirical,2022-01-21 21:52:37,2022-01-21 21:52:37,2022-01-21 21:52:38,2022-01-21 21:52:38,2022-01-21 21:53:09,0.138319969177246,30.8951942920685,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,8,empirical,2022-01-21 21:52:28,2022-01-21 21:52:28,2022-01-21 21:52:29,2022-01-21 21:52:30,2022-01-21 21:53:20,0.18703818321228,49.6046886444092,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,1,gaussian,2022-01-21 21:50:25,2022-01-21 21:50:26,2022-01-21 21:50:26,2022-01-21 21:50:27,2022-01-21 21:53:52,0.227774620056152,205.436056375504,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,1,gaussian,2022-01-21 21:50:33,2022-01-21 21:50:34,2022-01-21 21:50:34,2022-01-21 21:50:34,2022-01-21 21:54:09,0.095834493637085,215.114421606064,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,16,empirical,2022-01-21 21:53:36,2022-01-21 21:53:37,2022-01-21 21:53:37,2022-01-21 21:53:37,2022-01-21 21:54:11,0.156553506851196,33.7957053184509,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,16,empirical,2022-01-21 21:53:25,2022-01-21 21:53:26,2022-01-21 21:53:26,2022-01-21 21:53:29,2022-01-21 21:54:24,0.121114253997803,55.4692192077637,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,2,gaussian,2022-01-21 21:51:09,2022-01-21 21:51:09,2022-01-21 21:51:10,2022-01-21 21:51:11,2022-01-21 21:55:30,0.103042364120483,259.250361919403,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,24,empirical,2022-01-21 21:54:55,2022-01-21 21:54:56,2022-01-21 21:54:56,2022-01-21 21:54:56,2022-01-21 21:55:32,0.212277173995972,35.7914118766785,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,24,empirical,2022-01-21 21:54:40,2022-01-21 21:54:41,2022-01-21 21:54:42,2022-01-21 21:54:45,2022-01-21 21:55:44,0.220999956130981,59.7503657341003,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,2,gaussian,2022-01-21 21:51:16,2022-01-21 21:51:17,2022-01-21 21:51:17,2022-01-21 21:51:17,2022-01-21 21:55:47,0.122857570648193,269.671572208405,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,1,empirical,2022-01-21 21:36:23,2022-01-21 21:36:24,2022-01-21 21:36:24,2022-01-21 21:36:25,2022-01-21 21:56:56,0.225949048995972,1230.64059138298,0,1e+05,13,0.3,1,0,1,1
+8,10000,100,32,1,empirical,2022-01-21 21:36:39,2022-01-21 21:36:41,2022-01-21 21:36:42,2022-01-21 21:36:42,2022-01-21 21:57:04,0.345942974090576,1222.28535413742,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,32,empirical,2022-01-21 21:56:32,2022-01-21 21:56:33,2022-01-21 21:56:33,2022-01-21 21:56:33,2022-01-21 21:57:09,0.202940702438355,35.6931293010712,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,4,gaussian,2022-01-21 21:51:54,2022-01-21 21:51:55,2022-01-21 21:51:55,2022-01-21 21:51:57,2022-01-21 21:57:14,0.115460157394409,316.977005243301,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,4,gaussian,2022-01-21 21:52:02,2022-01-21 21:52:03,2022-01-21 21:52:03,2022-01-21 21:52:03,2022-01-21 21:57:19,0.157488822937012,315.62021446228,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,32,empirical,2022-01-21 21:56:15,2022-01-21 21:56:16,2022-01-21 21:56:16,2022-01-21 21:56:19,2022-01-21 21:57:19,0.19478702545166,60.0290837287903,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,1,empirical,2022-01-21 21:58:07,2022-01-21 21:58:08,2022-01-21 21:58:08,2022-01-21 21:58:09,2022-01-21 21:59:34,0.141458511352539,85.2378029823303,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,8,gaussian,2022-01-21 21:52:55,2022-01-21 21:52:56,2022-01-21 21:52:56,2022-01-21 21:52:56,2022-01-21 21:59:55,0.102338314056396,418.586623191834,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,1,empirical,2022-01-21 21:58:28,2022-01-21 21:58:31,2022-01-21 21:58:32,2022-01-21 21:58:32,2022-01-21 21:59:59,1.18911218643188,87.1899955272675,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,2,empirical,2022-01-21 22:00:44,2022-01-21 22:00:45,2022-01-21 22:00:46,2022-01-21 22:00:46,2022-01-21 22:01:05,0.337473392486572,19.2976343631744,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,2,empirical,2022-01-21 22:00:18,2022-01-21 22:00:19,2022-01-21 22:00:19,2022-01-21 22:00:26,2022-01-21 22:01:26,0.231690406799316,59.5328805446625,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,4,empirical,2022-01-21 22:03:02,2022-01-21 22:03:03,2022-01-21 22:03:03,2022-01-21 22:03:04,2022-01-21 22:03:26,0.305055141448975,22.5605819225311,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,4,empirical,2022-01-21 22:02:35,2022-01-21 22:02:37,2022-01-21 22:02:37,2022-01-21 22:02:39,2022-01-21 22:03:28,0.244565725326538,48.8238210678101,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,2,gaussian,2022-01-21 22:01:03,2022-01-21 22:01:05,2022-01-21 22:01:05,2022-01-21 22:01:07,2022-01-21 22:04:36,0.151224374771118,209.681002616882,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,2,gaussian,2022-01-21 22:01:23,2022-01-21 22:01:24,2022-01-21 22:01:24,2022-01-21 22:01:25,2022-01-21 22:04:43,0.14403223991394,198.822361946106,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,8,empirical,2022-01-21 22:05:23,2022-01-21 22:05:24,2022-01-21 22:05:24,2022-01-21 22:05:25,2022-01-21 22:05:49,0.205525636672974,24.5690989494324,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,8,empirical,2022-01-21 22:05:01,2022-01-21 22:05:02,2022-01-21 22:05:02,2022-01-21 22:05:04,2022-01-21 22:06:03,0.136787891387939,58.4930775165558,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,32,gaussian,2022-01-21 21:57:13,2022-01-21 21:57:14,2022-01-21 21:57:15,2022-01-21 21:57:15,2022-01-21 22:06:06,0.205446004867554,531.462213039398,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,2,ctree,2022-01-21 21:51:32,2022-01-21 21:51:32,2022-01-21 21:51:32,2022-01-21 21:51:33,2022-01-21 22:07:32,0.105569839477539,959.760097503662,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,4,gaussian,2022-01-21 22:03:22,2022-01-21 22:03:23,2022-01-21 22:03:23,2022-01-21 22:03:25,2022-01-21 22:07:57,0.139589309692383,272.022380828857,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,4,gaussian,2022-01-21 22:03:54,2022-01-21 22:03:55,2022-01-21 22:03:56,2022-01-21 22:03:56,2022-01-21 22:07:59,0.177375793457031,242.945282697678,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,16,empirical,2022-01-21 22:07:48,2022-01-21 22:07:50,2022-01-21 22:07:50,2022-01-21 22:07:50,2022-01-21 22:08:06,0.131866216659546,15.4726448059082,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,1,gaussian,2022-01-21 21:59:02,2022-01-21 21:59:08,2022-01-21 21:59:09,2022-01-21 21:59:09,2022-01-21 22:08:13,0.597739219665527,543.518223285675,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,16,empirical,2022-01-21 22:07:24,2022-01-21 22:07:26,2022-01-21 22:07:26,2022-01-21 22:07:29,2022-01-21 22:08:14,0.141277551651001,45.8937659263611,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,8,gaussian,2022-01-21 22:06:13,2022-01-21 22:06:14,2022-01-21 22:06:14,2022-01-21 22:06:14,2022-01-21 22:09:31,0.275805473327637,196.473051071167,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,2,ctree,2022-01-21 22:02:10,2022-01-21 22:02:12,2022-01-21 22:02:13,2022-01-21 22:02:13,2022-01-21 22:09:35,0.650844573974609,441.69122672081,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,24,empirical,2022-01-21 22:10:02,2022-01-21 22:10:03,2022-01-21 22:10:03,2022-01-21 22:10:04,2022-01-21 22:10:25,0.111140489578247,21.0787835121155,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,24,empirical,2022-01-21 22:09:42,2022-01-21 22:09:43,2022-01-21 22:09:43,2022-01-21 22:09:46,2022-01-21 22:10:44,0.188132524490356,58.1565132141113,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,4,ctree,2022-01-21 22:04:41,2022-01-21 22:04:42,2022-01-21 22:04:42,2022-01-21 22:04:43,2022-01-21 22:11:11,0.17656135559082,387.862432956696,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,8,gaussian,2022-01-21 22:05:50,2022-01-21 22:05:51,2022-01-21 22:05:51,2022-01-21 22:05:54,2022-01-21 22:11:37,0.20248556137085,342.39463019371,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,16,gaussian,2022-01-21 22:08:06,2022-01-21 22:08:07,2022-01-21 22:08:08,2022-01-21 22:08:10,2022-01-21 22:12:15,0.251741886138916,244.439931154251,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,32,empirical,2022-01-21 22:12:29,2022-01-21 22:12:30,2022-01-21 22:12:30,2022-01-21 22:12:31,2022-01-21 22:12:50,0.241857767105103,18.8952739238739,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,32,empirical,2022-01-21 22:12:10,2022-01-21 22:12:11,2022-01-21 22:12:11,2022-01-21 22:12:14,2022-01-21 22:13:04,0.169980525970459,50.3863186836243,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,8,ctree,2022-01-21 22:07:01,2022-01-21 22:07:03,2022-01-21 22:07:03,2022-01-21 22:07:03,2022-01-21 22:13:47,0.476006984710693,403.676571130753,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,16,ctree,2022-01-21 22:09:14,2022-01-21 22:09:15,2022-01-21 22:09:16,2022-01-21 22:09:16,2022-01-21 22:14:28,0.198874711990356,312.332421779633,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,24,gaussian,2022-01-21 22:11:06,2022-01-21 22:11:07,2022-01-21 22:11:07,2022-01-21 22:11:08,2022-01-21 22:14:47,0.324310302734375,219.77875828743,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,24,gaussian,2022-01-21 22:10:27,2022-01-21 22:10:29,2022-01-21 22:10:29,2022-01-21 22:11:26,2022-01-21 22:15:05,0.343616008758545,219.071800708771,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,24,ctree,2022-01-21 21:55:59,2022-01-21 21:56:00,2022-01-21 21:56:00,2022-01-21 21:56:00,2022-01-21 22:15:36,0.255512237548828,1175.62971973419,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,1,32,ctree,2022-01-21 21:57:50,2022-01-21 21:57:50,2022-01-21 21:57:51,2022-01-21 21:57:51,2022-01-21 22:16:05,0.216298818588257,1093.91692209244,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,24,ctree,2022-01-21 22:11:52,2022-01-21 22:11:53,2022-01-21 22:11:53,2022-01-21 22:11:53,2022-01-21 22:16:39,0.415038347244263,285.934188365936,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,32,gaussian,2022-01-21 22:13:11,2022-01-21 22:13:11,2022-01-21 22:13:12,2022-01-21 22:13:12,2022-01-21 22:16:45,0.162230730056763,212.970506191254,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,32,gaussian,2022-01-21 22:12:48,2022-01-21 22:12:49,2022-01-21 22:12:49,2022-01-21 22:12:54,2022-01-21 22:16:46,0.274789094924927,232.688220262527,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,1,empirical,2022-01-21 22:14:30,2022-01-21 22:14:31,2022-01-21 22:14:32,2022-01-21 22:14:32,2022-01-21 22:16:50,0.216944694519043,138.203840017319,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,2,ctree,2022-01-21 22:01:48,2022-01-21 22:01:53,2022-01-21 22:01:53,2022-01-21 22:02:07,2022-01-21 22:16:51,0.46225118637085,883.582092761994,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,1,empirical,2022-01-21 22:14:57,2022-01-21 22:14:58,2022-01-21 22:14:58,2022-01-21 22:14:59,2022-01-21 22:17:08,0.200497388839722,129.156509160995,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,2,empirical,2022-01-21 22:17:01,2022-01-21 22:17:02,2022-01-21 22:17:02,2022-01-21 22:17:02,2022-01-21 22:17:18,0.233529567718506,15.48814868927,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,2,empirical,2022-01-21 22:16:46,2022-01-21 22:16:47,2022-01-21 22:16:47,2022-01-21 22:16:49,2022-01-21 22:17:51,0.175598859786987,61.9615774154663,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,32,ctree,2022-01-21 22:14:00,2022-01-21 22:14:04,2022-01-21 22:14:04,2022-01-21 22:14:05,2022-01-21 22:18:41,0.36746621131897,276.714837312698,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,4,ctree,2022-01-21 22:04:15,2022-01-21 22:04:18,2022-01-21 22:04:18,2022-01-21 22:04:22,2022-01-21 22:18:42,0.271044731140137,860.798024177551,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,8,ctree,2022-01-21 22:06:43,2022-01-21 22:06:47,2022-01-21 22:06:48,2022-01-21 22:06:57,2022-01-21 22:18:58,0.485182285308838,721.030483961105,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,4,empirical,2022-01-21 22:18:48,2022-01-21 22:18:49,2022-01-21 22:18:49,2022-01-21 22:18:49,2022-01-21 22:19:03,0.176929712295532,13.4992830753326,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,4,empirical,2022-01-21 22:18:29,2022-01-21 22:18:30,2022-01-21 22:18:31,2022-01-21 22:18:33,2022-01-21 22:19:14,0.15146279335022,41.4915561676025,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,16,ctree,2022-01-21 22:08:47,2022-01-21 22:08:48,2022-01-21 22:08:48,2022-01-21 22:08:56,2022-01-21 22:20:56,0.186589002609253,719.957575082779,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,2,gaussian,2022-01-21 22:17:16,2022-01-21 22:17:17,2022-01-21 22:17:17,2022-01-21 22:17:18,2022-01-21 22:21:27,0.127319812774658,248.970601797104,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,2,gaussian,2022-01-21 22:17:33,2022-01-21 22:17:33,2022-01-21 22:17:34,2022-01-21 22:17:34,2022-01-21 22:21:42,0.303115367889404,247.949193477631,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,4,gaussian,2022-01-21 22:19:07,2022-01-21 22:19:08,2022-01-21 22:19:08,2022-01-21 22:19:10,2022-01-21 22:21:50,0.137515306472778,159.775513410568,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,8,empirical,2022-01-21 22:21:33,2022-01-21 22:21:34,2022-01-21 22:21:34,2022-01-21 22:21:35,2022-01-21 22:21:53,0.410574197769165,17.8846871852875,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,8,empirical,2022-01-21 22:21:02,2022-01-21 22:21:03,2022-01-21 22:21:04,2022-01-21 22:21:08,2022-01-21 22:21:58,0.326882839202881,50.183333158493,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,4,gaussian,2022-01-21 22:19:24,2022-01-21 22:19:25,2022-01-21 22:19:25,2022-01-21 22:19:25,2022-01-21 22:22:00,0.134849786758423,154.92019534111,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,1,gaussian,2022-01-21 22:15:18,2022-01-21 22:15:20,2022-01-21 22:15:20,2022-01-21 22:15:20,2022-01-21 22:22:04,0.273510456085205,403.633595228195,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,24,ctree,2022-01-21 22:11:29,2022-01-21 22:11:30,2022-01-21 22:11:31,2022-01-21 22:11:37,2022-01-21 22:22:38,0.227318286895752,660.360733270645,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,1,gaussian,2022-01-21 22:15:42,2022-01-21 22:15:43,2022-01-21 22:15:43,2022-01-21 22:15:44,2022-01-21 22:22:40,0.187559843063355,416.699294805527,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,16,empirical,2022-01-21 22:23:45,2022-01-21 22:23:46,2022-01-21 22:23:46,2022-01-21 22:23:47,2022-01-21 22:24:09,0.345642805099487,21.8081345558167,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,16,empirical,2022-01-21 22:23:18,2022-01-21 22:23:20,2022-01-21 22:23:20,2022-01-21 22:23:25,2022-01-21 22:24:15,0.343698978424072,50.4578335285187,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,4,ctree,2022-01-21 22:20:27,2022-01-21 22:20:29,2022-01-21 22:20:29,2022-01-21 22:20:30,2022-01-21 22:24:25,0.429012537002564,235.408743143082,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,8,gaussian,2022-01-21 22:21:57,2022-01-21 22:21:58,2022-01-21 22:21:58,2022-01-21 22:22:01,2022-01-21 22:24:35,0.177173137664795,154.475384950638,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,2,ctree,2022-01-21 22:18:09,2022-01-21 22:18:09,2022-01-21 22:18:10,2022-01-21 22:18:10,2022-01-21 22:24:51,0.168188810348511,401.378915071487,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,8,gaussian,2022-01-21 22:22:14,2022-01-21 22:22:15,2022-01-21 22:22:15,2022-01-21 22:22:15,2022-01-21 22:24:56,0.211163282394409,160.510772228241,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,32,ctree,2022-01-21 22:13:35,2022-01-21 22:13:37,2022-01-21 22:13:37,2022-01-21 22:13:41,2022-01-21 22:25:02,0.452039480209351,681.259838581085,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,4,ctree,2022-01-21 22:19:54,2022-01-21 22:19:55,2022-01-21 22:19:56,2022-01-21 22:20:00,2022-01-21 22:26:05,0.428579330444336,365.407131910324,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,24,empirical,2022-01-21 22:26:09,2022-01-21 22:26:12,2022-01-21 22:26:12,2022-01-21 22:26:13,2022-01-21 22:26:30,0.41444730758667,17.750617980957,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,24,empirical,2022-01-21 22:25:42,2022-01-21 22:25:43,2022-01-21 22:25:43,2022-01-21 22:25:47,2022-01-21 22:26:40,0.21017599105835,53.4012956619263,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,16,gaussian,2022-01-21 22:24:13,2022-01-21 22:24:14,2022-01-21 22:24:15,2022-01-21 22:24:18,2022-01-21 22:26:47,0.262914657592773,149.178348064423,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,8,ctree,2022-01-21 22:22:55,2022-01-21 22:22:56,2022-01-21 22:22:56,2022-01-21 22:22:57,2022-01-21 22:26:50,0.159201383590698,233.722866296768,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,16,gaussian,2022-01-21 22:24:40,2022-01-21 22:24:41,2022-01-21 22:24:41,2022-01-21 22:24:42,2022-01-21 22:27:09,0.257635116577148,147.821232318878,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,1,ctree,2022-01-21 22:00:00,2022-01-21 22:00:01,2022-01-21 22:00:01,2022-01-21 22:00:02,2022-01-21 22:27:40,0.206462144851685,1658.67733025551,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,32,empirical,2022-01-21 22:28:24,2022-01-21 22:28:26,2022-01-21 22:28:26,2022-01-21 22:28:26,2022-01-21 22:28:43,0.189979553222656,16.4995386600494,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,8,ctree,2022-01-21 22:22:34,2022-01-21 22:22:36,2022-01-21 22:22:36,2022-01-21 22:22:39,2022-01-21 22:28:45,0.194582939147949,366.230029344559,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,32,empirical,2022-01-21 22:27:51,2022-01-21 22:27:52,2022-01-21 22:27:52,2022-01-21 22:27:56,2022-01-21 22:28:46,0.310261726379395,50.0165915489197,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,2,ctree,2022-01-21 22:17:50,2022-01-21 22:17:51,2022-01-21 22:17:51,2022-01-21 22:17:53,2022-01-21 22:29:01,0.205642700195313,667.131421327591,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,16,ctree,2022-01-21 22:25:17,2022-01-21 22:25:18,2022-01-21 22:25:19,2022-01-21 22:25:19,2022-01-21 22:29:03,0.205032825469971,223.933054924011,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,2,1,ctree,2022-01-21 21:59:42,2022-01-21 21:59:43,2022-01-21 21:59:43,2022-01-21 21:59:43,2022-01-21 22:29:05,0.192127704620361,1761.23698711395,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,24,gaussian,2022-01-21 22:26:35,2022-01-21 22:26:36,2022-01-21 22:26:36,2022-01-21 22:26:40,2022-01-21 22:29:07,0.280040502548218,146.89582657814,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,24,gaussian,2022-01-21 22:26:53,2022-01-21 22:26:54,2022-01-21 22:26:54,2022-01-21 22:26:55,2022-01-21 22:29:13,0.193342447280884,138.21481347084,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,24,ctree,2022-01-21 22:27:30,2022-01-21 22:27:31,2022-01-21 22:27:32,2022-01-21 22:27:32,2022-01-21 22:30:53,0.284122467041016,201.362976789475,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,16,ctree,2022-01-21 22:24:57,2022-01-21 22:24:58,2022-01-21 22:24:59,2022-01-21 22:25:02,2022-01-21 22:30:54,0.250876903533936,352.183906078339,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,32,gaussian,2022-01-21 22:28:49,2022-01-21 22:28:50,2022-01-21 22:28:50,2022-01-21 22:28:54,2022-01-21 22:30:55,0.219277620315552,121.395689725876,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,32,gaussian,2022-01-21 22:29:08,2022-01-21 22:29:09,2022-01-21 22:29:09,2022-01-21 22:29:09,2022-01-21 22:31:03,0.145594358444214,113.794147491455,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,24,ctree,2022-01-21 22:27:11,2022-01-21 22:27:12,2022-01-21 22:27:13,2022-01-21 22:27:16,2022-01-21 22:31:50,0.311970710754395,274.085108757019,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,32,ctree,2022-01-21 22:29:40,2022-01-21 22:29:41,2022-01-21 22:29:41,2022-01-21 22:29:41,2022-01-21 22:31:55,0.211369752883911,133.464083433151,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,2,empirical,2022-01-21 22:31:47,2022-01-21 22:31:48,2022-01-21 22:31:48,2022-01-21 22:31:48,2022-01-21 22:32:05,0.126852989196777,16.9229083061218,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,1,empirical,2022-01-21 22:30:03,2022-01-21 22:30:05,2022-01-21 22:30:05,2022-01-21 22:30:05,2022-01-21 22:32:44,0.36572790145874,158.928721666336,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,2,empirical,2022-01-21 22:31:35,2022-01-21 22:31:36,2022-01-21 22:31:36,2022-01-21 22:31:38,2022-01-21 22:33:02,0.172738313674927,84.8098220825195,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,1,empirical,2022-01-21 22:30:28,2022-01-21 22:30:30,2022-01-21 22:30:30,2022-01-21 22:30:30,2022-01-21 22:33:04,0.256429672241211,153.903678894043,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,4,empirical,2022-01-21 22:32:57,2022-01-21 22:32:58,2022-01-21 22:32:59,2022-01-21 22:32:59,2022-01-21 22:33:13,0.255167722702026,14.6000862121582,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,32,ctree,2022-01-21 22:29:23,2022-01-21 22:29:23,2022-01-21 22:29:24,2022-01-21 22:29:27,2022-01-21 22:33:27,0.177758693695068,240.008117675781,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,4,empirical,2022-01-21 22:32:44,2022-01-21 22:32:45,2022-01-21 22:32:45,2022-01-21 22:32:47,2022-01-21 22:33:40,0.147699356079102,52.8816111087799,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,1,ctree,2022-01-21 22:16:03,2022-01-21 22:16:03,2022-01-21 22:16:04,2022-01-21 22:16:04,2022-01-21 22:34:39,0.255949020385742,1114.83027148247,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,8,empirical,2022-01-21 22:34:30,2022-01-21 22:34:32,2022-01-21 22:34:33,2022-01-21 22:34:33,2022-01-21 22:34:53,0.517178535461426,19.2127959728241,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,8,empirical,2022-01-21 22:34:08,2022-01-21 22:34:10,2022-01-21 22:34:10,2022-01-21 22:34:14,2022-01-21 22:34:58,0.311906814575195,44.1680457592011,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,4,1,ctree,2022-01-21 22:16:26,2022-01-21 22:16:30,2022-01-21 22:16:30,2022-01-21 22:16:30,2022-01-21 22:35:20,0.145765066146851,1129.97586965561,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,4,gaussian,2022-01-21 22:33:11,2022-01-21 22:33:12,2022-01-21 22:33:12,2022-01-21 22:33:15,2022-01-21 22:35:50,0.253901481628418,154.907715559006,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,4,gaussian,2022-01-21 22:33:25,2022-01-21 22:33:26,2022-01-21 22:33:27,2022-01-21 22:33:27,2022-01-21 22:36:21,0.228247404098511,174.19814491272,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,2,gaussian,2022-01-21 22:31:59,2022-01-21 22:32:00,2022-01-21 22:32:00,2022-01-21 22:32:01,2022-01-21 22:36:32,0.104673147201538,270.136843681335,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,8,gaussian,2022-01-21 22:34:53,2022-01-21 22:34:54,2022-01-21 22:34:54,2022-01-21 22:34:58,2022-01-21 22:37:00,0.317301511764526,121.768710613251,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,8,gaussian,2022-01-21 22:35:11,2022-01-21 22:35:13,2022-01-21 22:35:13,2022-01-21 22:35:14,2022-01-21 22:37:11,0.24849534034729,117.243046760559,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,16,empirical,2022-01-21 22:36:59,2022-01-21 22:37:01,2022-01-21 22:37:01,2022-01-21 22:37:02,2022-01-21 22:37:15,0.271949529647827,13.7412049770355,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,2,gaussian,2022-01-21 22:32:09,2022-01-21 22:32:10,2022-01-21 22:32:10,2022-01-21 22:32:10,2022-01-21 22:37:18,0.193725109100342,308.168631076813,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,16,empirical,2022-01-21 22:36:31,2022-01-21 22:36:33,2022-01-21 22:36:33,2022-01-21 22:36:38,2022-01-21 22:37:24,0.286097288131714,46.4927845001221,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,1,gaussian,2022-01-21 22:30:46,2022-01-21 22:30:46,2022-01-21 22:30:47,2022-01-21 22:30:47,2022-01-21 22:38:40,0.1725754737854,473.471204280853,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,1,gaussian,2022-01-21 22:31:00,2022-01-21 22:31:01,2022-01-21 22:31:01,2022-01-21 22:31:01,2022-01-21 22:39:01,0.213510274887085,480.263280630112,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,16,gaussian,2022-01-21 22:37:17,2022-01-21 22:37:19,2022-01-21 22:37:19,2022-01-21 22:37:22,2022-01-21 22:39:26,0.287959814071655,124.199512958527,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,8,ctree,2022-01-21 22:36:01,2022-01-21 22:36:04,2022-01-21 22:36:04,2022-01-21 22:36:05,2022-01-21 22:39:38,0.491583108901978,212.733715772629,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,16,gaussian,2022-01-21 22:37:36,2022-01-21 22:37:37,2022-01-21 22:37:37,2022-01-21 22:37:38,2022-01-21 22:39:39,0.302842855453491,121.034599304199,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,24,empirical,2022-01-21 22:39:38,2022-01-21 22:39:40,2022-01-21 22:39:40,2022-01-21 22:39:40,2022-01-21 22:39:53,0.283218383789063,13.1604814529419,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,24,empirical,2022-01-21 22:39:09,2022-01-21 22:39:10,2022-01-21 22:39:11,2022-01-21 22:39:17,2022-01-21 22:40:06,0.521362543106079,49.1333849430084,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,4,ctree,2022-01-21 22:33:54,2022-01-21 22:33:55,2022-01-21 22:33:55,2022-01-21 22:33:56,2022-01-21 22:40:17,0.245711803436279,381.208502531052,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,8,ctree,2022-01-21 22:35:36,2022-01-21 22:35:38,2022-01-21 22:35:38,2022-01-21 22:35:43,2022-01-21 22:40:38,0.375783920288086,294.619994878769,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,24,gaussian,2022-01-21 22:39:59,2022-01-21 22:40:00,2022-01-21 22:40:01,2022-01-21 22:40:05,2022-01-21 22:42:05,0.236182689666748,120.445372343063,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,16,ctree,2022-01-21 22:38:31,2022-01-21 22:38:33,2022-01-21 22:38:34,2022-01-21 22:38:35,2022-01-21 22:42:06,0.33737325668335,211.672404527664,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,4,ctree,2022-01-21 22:33:39,2022-01-21 22:33:41,2022-01-21 22:33:41,2022-01-21 22:33:43,2022-01-21 22:42:06,0.152687311172485,503.346331834793,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,24,gaussian,2022-01-21 22:40:18,2022-01-21 22:40:20,2022-01-21 22:40:20,2022-01-21 22:40:20,2022-01-21 22:42:20,0.185132026672363,119.76815199852,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,32,empirical,2022-01-21 22:42:17,2022-01-21 22:42:18,2022-01-21 22:42:19,2022-01-21 22:42:19,2022-01-21 22:42:30,0.329325675964355,10.8604383468628,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,16,ctree,2022-01-21 22:38:01,2022-01-21 22:38:03,2022-01-21 22:38:03,2022-01-21 22:38:09,2022-01-21 22:42:33,0.311623573303223,264.84286570549,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,32,empirical,2022-01-21 22:41:52,2022-01-21 22:41:54,2022-01-21 22:41:54,2022-01-21 22:42:00,2022-01-21 22:42:37,0.454149007797241,37.1734952926636,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,2,ctree,2022-01-21 22:32:32,2022-01-21 22:32:33,2022-01-21 22:32:33,2022-01-21 22:32:33,2022-01-21 22:43:25,0.259046316146851,652.208637714386,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,24,ctree,2022-01-21 22:41:17,2022-01-21 22:41:19,2022-01-21 22:41:19,2022-01-21 22:41:19,2022-01-21 22:44:12,0.218549966812134,172.9876101017,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,32,gaussian,2022-01-21 22:42:33,2022-01-21 22:42:33,2022-01-21 22:42:34,2022-01-21 22:42:36,2022-01-21 22:44:18,0.147002696990967,101.280863046646,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,32,gaussian,2022-01-21 22:42:48,2022-01-21 22:42:49,2022-01-21 22:42:49,2022-01-21 22:42:49,2022-01-21 22:44:23,0.14326548576355,93.6687562465668,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,24,ctree,2022-01-21 22:40:46,2022-01-21 22:40:48,2022-01-21 22:40:48,2022-01-21 22:40:53,2022-01-21 22:44:45,0.319091796875,232.262341737747,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,32,ctree,2022-01-21 22:43:37,2022-01-21 22:43:39,2022-01-21 22:43:40,2022-01-21 22:43:41,2022-01-21 22:45:14,0.371606349945068,93.1474964618683,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,2,ctree,2022-01-21 22:32:20,2022-01-21 22:32:21,2022-01-21 22:32:21,2022-01-21 22:32:23,2022-01-21 22:45:26,0.255661487579346,782.361234426498,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,32,ctree,2022-01-21 22:43:08,2022-01-21 22:43:10,2022-01-21 22:43:10,2022-01-21 22:43:15,2022-01-21 22:45:50,0.454951763153076,155.522286653519,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,2,empirical,2022-01-21 22:45:31,2022-01-21 22:45:32,2022-01-21 22:45:32,2022-01-21 22:45:32,2022-01-21 22:45:53,0.167878866195679,21.1563355922699,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,4,empirical,2022-01-21 22:46:25,2022-01-21 22:46:26,2022-01-21 22:46:26,2022-01-21 22:46:26,2022-01-21 22:46:45,0.302005529403687,18.4034526348114,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,4,empirical,2022-01-21 22:46:16,2022-01-21 22:46:17,2022-01-21 22:46:17,2022-01-21 22:46:19,2022-01-21 22:47:50,0.162072896957397,91.4509291648865,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,2,empirical,2022-01-21 22:45:20,2022-01-21 22:45:21,2022-01-21 22:45:21,2022-01-21 22:45:23,2022-01-21 22:47:52,0.239159345626831,149.316841840744,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,8,empirical,2022-01-21 22:47:54,2022-01-21 22:47:56,2022-01-21 22:47:56,2022-01-21 22:47:57,2022-01-21 22:48:20,0.356923818588257,22.9967947006226,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,8,empirical,2022-01-21 22:47:35,2022-01-21 22:47:37,2022-01-21 22:47:37,2022-01-21 22:47:41,2022-01-21 22:48:44,0.542655229568481,62.5721321105957,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,1,empirical,2022-01-21 22:44:07,2022-01-21 22:44:09,2022-01-21 22:44:10,2022-01-21 22:44:10,2022-01-21 22:49:22,0.4885573387146,311.512584686279,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,1,empirical,2022-01-21 22:44:25,2022-01-21 22:44:26,2022-01-21 22:44:26,2022-01-21 22:44:27,2022-01-21 22:49:42,0.149182796478271,315.930994510651,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,4,gaussian,2022-01-21 22:46:35,2022-01-21 22:46:36,2022-01-21 22:46:36,2022-01-21 22:46:38,2022-01-21 22:50:11,0.320524454116821,213.06708574295,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,4,gaussian,2022-01-21 22:46:48,2022-01-21 22:46:49,2022-01-21 22:46:49,2022-01-21 22:46:49,2022-01-21 22:50:41,0.181196689605713,232.186753034592,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,8,gaussian,2022-01-21 22:48:18,2022-01-21 22:48:20,2022-01-21 22:48:20,2022-01-21 22:48:26,2022-01-21 22:50:51,0.626577854156494,144.440980195999,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,16,empirical,2022-01-21 22:50:39,2022-01-21 22:50:43,2022-01-21 22:50:43,2022-01-21 22:50:44,2022-01-21 22:51:01,0.550537586212158,17.2531402111053,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,8,gaussian,2022-01-21 22:48:39,2022-01-21 22:48:42,2022-01-21 22:48:42,2022-01-21 22:48:43,2022-01-21 22:51:04,0.529030561447144,140.757581233978,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,2,gaussian,2022-01-21 22:45:41,2022-01-21 22:45:42,2022-01-21 22:45:42,2022-01-21 22:45:43,2022-01-21 22:51:14,0.124796390533447,330.832180023193,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,16,empirical,2022-01-21 22:50:06,2022-01-21 22:50:08,2022-01-21 22:50:09,2022-01-21 22:50:15,2022-01-21 22:51:19,0.780651330947876,64.0196824073792,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,2,gaussian,2022-01-21 22:45:51,2022-01-21 22:45:52,2022-01-21 22:45:52,2022-01-21 22:45:52,2022-01-21 22:52:09,0.153620004653931,377.223563194275,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,16,gaussian,2022-01-21 22:51:10,2022-01-21 22:51:11,2022-01-21 22:51:11,2022-01-21 22:51:15,2022-01-21 22:52:47,0.254809617996216,91.6232008934021,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,16,gaussian,2022-01-21 22:51:37,2022-01-21 22:51:40,2022-01-21 22:51:41,2022-01-21 22:51:42,2022-01-21 22:53:01,0.68389630317688,79.4774351119995,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,24,empirical,2022-01-21 22:53:47,2022-01-21 22:53:49,2022-01-21 22:53:50,2022-01-21 22:53:51,2022-01-21 22:54:12,0.660815000534058,21.2565610408783,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,24,empirical,2022-01-21 22:53:14,2022-01-21 22:53:15,2022-01-21 22:53:16,2022-01-21 22:53:21,2022-01-21 22:54:27,0.398909568786621,66.5011882781982,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,8,ctree,2022-01-21 22:49:34,2022-01-21 22:49:37,2022-01-21 22:49:37,2022-01-21 22:49:38,2022-01-21 22:54:30,0.44926643371582,291.756458282471,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,8,ctree,2022-01-21 22:49:05,2022-01-21 22:49:08,2022-01-21 22:49:09,2022-01-21 22:49:14,2022-01-21 22:54:50,0.588739156723023,335.885450839996,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,16,ctree,2022-01-21 22:52:52,2022-01-21 22:52:54,2022-01-21 22:52:55,2022-01-21 22:52:56,2022-01-21 22:55:31,0.405108451843262,155.535728693008,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,16,ctree,2022-01-21 22:52:15,2022-01-21 22:52:18,2022-01-21 22:52:20,2022-01-21 22:52:27,2022-01-21 22:55:44,1.1738178730011,197.750079154968,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,1,gaussian,2022-01-21 22:44:37,2022-01-21 22:44:38,2022-01-21 22:44:38,2022-01-21 22:44:38,2022-01-21 22:55:51,0.133188247680664,672.828920841217,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,1,gaussian,2022-01-21 22:44:48,2022-01-21 22:44:50,2022-01-21 22:44:50,2022-01-21 22:44:50,2022-01-21 22:55:54,0.238940715789795,664.258563518524,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,4,ctree,2022-01-21 22:47:20,2022-01-21 22:47:21,2022-01-21 22:47:21,2022-01-21 22:47:22,2022-01-21 22:56:00,0.413654804229736,518.207196235657,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,24,gaussian,2022-01-21 22:54:29,2022-01-21 22:54:30,2022-01-21 22:54:30,2022-01-21 22:54:35,2022-01-21 22:56:14,0.443702220916748,99.0784475803375,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,24,gaussian,2022-01-21 22:54:56,2022-01-21 22:55:00,2022-01-21 22:55:00,2022-01-21 22:55:02,2022-01-21 22:56:20,0.511928558349609,78.5577299594879,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,1,ctree,2022-01-21 22:31:11,2022-01-21 22:31:12,2022-01-21 22:31:12,2022-01-21 22:31:12,2022-01-21 22:56:29,0.109898328781128,1517.13978362083,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,32,empirical,2022-01-21 22:56:38,2022-01-21 22:56:40,2022-01-21 22:56:40,2022-01-21 22:56:40,2022-01-21 22:56:55,0.234601020812988,15.2211899757385,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,4,ctree,2022-01-21 22:47:03,2022-01-21 22:47:04,2022-01-21 22:47:05,2022-01-21 22:47:08,2022-01-21 22:57:12,0.387108325958252,604.210825204849,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,32,empirical,2022-01-21 22:56:24,2022-01-21 22:56:26,2022-01-21 22:56:26,2022-01-21 22:56:31,2022-01-21 22:57:26,0.307132720947266,55.1622960567474,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,24,ctree,2022-01-21 22:56:05,2022-01-21 22:56:06,2022-01-21 22:56:07,2022-01-21 22:56:07,2022-01-21 22:58:08,0.132061719894409,121.364614963532,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,8,1,ctree,2022-01-21 22:31:22,2022-01-21 22:31:23,2022-01-21 22:31:23,2022-01-21 22:31:23,2022-01-21 22:58:13,0.120223999023438,1609.75892066956,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,24,ctree,2022-01-21 22:55:37,2022-01-21 22:55:41,2022-01-21 22:55:41,2022-01-21 22:55:48,2022-01-21 22:58:21,0.708167791366577,152.317051649094,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,32,gaussian,2022-01-21 22:57:02,2022-01-21 22:57:03,2022-01-21 22:57:04,2022-01-21 22:57:09,2022-01-21 22:58:40,0.346423149108887,90.6698167324066,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,32,gaussian,2022-01-21 22:57:31,2022-01-21 22:57:33,2022-01-21 22:57:34,2022-01-21 22:57:35,2022-01-21 22:58:46,0.689708232879639,71.2142984867096,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,2,ctree,2022-01-21 22:46:07,2022-01-21 22:46:08,2022-01-21 22:46:08,2022-01-21 22:46:08,2022-01-21 22:59:10,0.228174209594727,782.302576780319,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,32,ctree,2022-01-21 22:58:39,2022-01-21 22:58:40,2022-01-21 22:58:40,2022-01-21 22:58:41,2022-01-21 22:59:37,0.253966808319092,56.2891671657562,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,32,ctree,2022-01-21 22:58:11,2022-01-21 22:58:13,2022-01-21 22:58:14,2022-01-21 22:58:19,2022-01-21 23:00:02,0.597131729125977,102.375074863434,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,2,empirical,2022-01-21 23:00:12,2022-01-21 23:00:12,2022-01-21 23:00:12,2022-01-21 23:00:12,2022-01-21 23:00:36,0.101426362991333,23.8866410255432,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,2,ctree,2022-01-21 22:45:59,2022-01-21 22:45:59,2022-01-21 22:45:59,2022-01-21 22:46:01,2022-01-21 23:01:07,0.219992160797119,905.683482170105,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,4,empirical,2022-01-21 23:01:03,2022-01-21 23:01:04,2022-01-21 23:01:04,2022-01-21 23:01:04,2022-01-21 23:01:23,0.158360242843628,19.0518290996552,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,8,empirical,2022-01-21 23:02:31,2022-01-21 23:02:33,2022-01-21 23:02:34,2022-01-21 23:02:35,2022-01-21 23:03:08,0.616332769393921,33.3605146408081,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,4,empirical,2022-01-21 23:00:53,2022-01-21 23:00:54,2022-01-21 23:00:54,2022-01-21 23:00:56,2022-01-21 23:03:19,0.173843383789063,142.868554592133,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,2,empirical,2022-01-21 23:00:04,2022-01-21 23:00:05,2022-01-21 23:00:05,2022-01-21 23:00:06,2022-01-21 23:03:55,0.0894968509674072,228.905282974243,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,8,empirical,2022-01-21 23:02:11,2022-01-21 23:02:13,2022-01-21 23:02:13,2022-01-21 23:02:17,2022-01-21 23:03:55,0.285260677337647,98.3122055530548,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,4,gaussian,2022-01-21 23:01:22,2022-01-21 23:01:23,2022-01-21 23:01:24,2022-01-21 23:01:24,2022-01-21 23:05:19,0.214018106460571,235.138467073441,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,4,gaussian,2022-01-21 23:01:13,2022-01-21 23:01:14,2022-01-21 23:01:14,2022-01-21 23:01:17,2022-01-21 23:05:19,0.236996173858643,242.379977464676,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,8,gaussian,2022-01-21 23:02:56,2022-01-21 23:02:58,2022-01-21 23:02:59,2022-01-21 23:03:05,2022-01-21 23:05:47,0.69096851348877,162.256893634796,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,16,empirical,2022-01-21 23:05:32,2022-01-21 23:05:35,2022-01-21 23:05:36,2022-01-21 23:05:37,2022-01-21 23:06:06,0.658001899719238,28.8231976032257,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,8,gaussian,2022-01-21 23:03:25,2022-01-21 23:03:28,2022-01-21 23:03:29,2022-01-21 23:03:30,2022-01-21 23:06:09,0.725349187850952,159.656928300858,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,16,empirical,2022-01-21 23:04:54,2022-01-21 23:04:58,2022-01-21 23:04:59,2022-01-21 23:05:06,2022-01-21 23:06:45,0.702497005462647,98.9050166606903,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,2,gaussian,2022-01-21 23:00:19,2022-01-21 23:00:20,2022-01-21 23:00:20,2022-01-21 23:00:21,2022-01-21 23:06:55,0.132981061935425,393.448242902756,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,1,empirical,2022-01-21 22:58:54,2022-01-21 22:58:55,2022-01-21 22:58:55,2022-01-21 22:58:55,2022-01-21 23:06:55,0.15290379524231,480.150446891785,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,1,empirical,2022-01-21 22:59:07,2022-01-21 22:59:08,2022-01-21 22:59:08,2022-01-21 22:59:08,2022-01-21 23:07:24,0.135558366775513,496.058737754822,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,2,gaussian,2022-01-21 23:00:27,2022-01-21 23:00:27,2022-01-21 23:00:28,2022-01-21 23:00:28,2022-01-21 23:07:41,0.183258771896362,433.611840724945,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,16,gaussian,2022-01-21 23:06:11,2022-01-21 23:06:12,2022-01-21 23:06:13,2022-01-21 23:06:17,2022-01-21 23:08:20,0.300452709197998,123.592937707901,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,16,gaussian,2022-01-21 23:06:39,2022-01-21 23:06:42,2022-01-21 23:06:42,2022-01-21 23:06:43,2022-01-21 23:08:28,0.427873134613037,104.869209527969,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,24,empirical,2022-01-21 23:08:55,2022-01-21 23:08:58,2022-01-21 23:08:59,2022-01-21 23:09:00,2022-01-21 23:09:23,0.662010192871094,22.8727989196777,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,8,ctree,2022-01-21 23:04:22,2022-01-21 23:04:25,2022-01-21 23:04:26,2022-01-21 23:04:27,2022-01-21 23:09:42,0.91907525062561,314.682576417923,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,24,empirical,2022-01-21 23:08:27,2022-01-21 23:08:28,2022-01-21 23:08:29,2022-01-21 23:08:35,2022-01-21 23:09:52,0.622437715530396,77.2132482528687,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,8,ctree,2022-01-21 23:03:56,2022-01-21 23:03:58,2022-01-21 23:03:59,2022-01-21 23:04:04,2022-01-21 23:10:29,0.372728586196899,384.311139583588,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,16,ctree,2022-01-21 23:07:48,2022-01-21 23:07:51,2022-01-21 23:07:52,2022-01-21 23:07:53,2022-01-21 23:11:22,0.732694625854492,209.310985565186,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,4,ctree,2022-01-21 23:01:52,2022-01-21 23:01:55,2022-01-21 23:01:55,2022-01-21 23:01:56,2022-01-21 23:11:24,0.377866744995117,568.152215003967,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,24,gaussian,2022-01-21 23:10:10,2022-01-21 23:10:12,2022-01-21 23:10:13,2022-01-21 23:10:14,2022-01-21 23:11:24,0.535529136657715,70.1305189132691,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,24,gaussian,2022-01-21 23:09:48,2022-01-21 23:09:50,2022-01-21 23:09:50,2022-01-21 23:09:55,2022-01-21 23:11:29,0.369015216827393,94.3659627437592,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,1,gaussian,2022-01-21 22:59:22,2022-01-21 22:59:23,2022-01-21 22:59:23,2022-01-21 22:59:23,2022-01-21 23:11:46,0.354739189147949,742.093995809555,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,1,gaussian,2022-01-21 22:59:36,2022-01-21 22:59:36,2022-01-21 22:59:37,2022-01-21 22:59:37,2022-01-21 23:12:04,0.201120615005493,747.384329557419,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,16,ctree,2022-01-21 23:07:13,2022-01-21 23:07:16,2022-01-21 23:07:17,2022-01-21 23:07:23,2022-01-21 23:12:09,0.567658185958862,285.673801422119,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,4,ctree,2022-01-21 23:01:36,2022-01-21 23:01:38,2022-01-21 23:01:38,2022-01-21 23:01:42,2022-01-21 23:12:23,0.232872486114502,640.908837795258,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,32,empirical,2022-01-21 23:12:27,2022-01-21 23:12:30,2022-01-21 23:12:31,2022-01-21 23:12:32,2022-01-21 23:12:48,1.05334401130676,16.4307479858398,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,32,empirical,2022-01-21 23:11:53,2022-01-21 23:11:54,2022-01-21 23:11:55,2022-01-21 23:11:58,2022-01-21 23:13:02,0.275591135025024,63.8064095973969,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,24,ctree,2022-01-21 23:11:30,2022-01-21 23:11:31,2022-01-21 23:11:31,2022-01-21 23:11:32,2022-01-21 23:13:05,0.232386589050293,93.2567884922028,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,24,ctree,2022-01-21 23:10:59,2022-01-21 23:11:04,2022-01-21 23:11:05,2022-01-21 23:11:12,2022-01-21 23:13:35,0.741848707199097,142.907009840012,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,32,gaussian,2022-01-21 23:13:16,2022-01-21 23:13:18,2022-01-21 23:13:19,2022-01-21 23:13:19,2022-01-21 23:14:15,0.341586112976074,55.6804964542389,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,32,gaussian,2022-01-21 23:13:02,2022-01-21 23:13:03,2022-01-21 23:13:03,2022-01-21 23:13:07,2022-01-21 23:14:27,0.443306922912598,80.574419260025,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,2,ctree,2022-01-21 23:00:44,2022-01-21 23:00:45,2022-01-21 23:00:45,2022-01-21 23:00:45,2022-01-21 23:14:45,0.141685724258423,839.488871097565,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,1,ctree,2022-01-21 22:44:59,2022-01-21 22:45:00,2022-01-21 22:45:00,2022-01-21 22:45:00,2022-01-21 23:15:13,0.166231155395508,1813.10887289047,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,32,ctree,2022-01-21 23:14:16,2022-01-21 23:14:18,2022-01-21 23:14:18,2022-01-21 23:14:18,2022-01-21 23:15:29,0.159716844558716,70.7030262947083,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,32,ctree,2022-01-21 23:13:47,2022-01-21 23:13:51,2022-01-21 23:13:51,2022-01-21 23:13:59,2022-01-21 23:15:42,0.58564019203186,102.828152894974,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,16,1,ctree,2022-01-21 22:45:10,2022-01-21 22:45:11,2022-01-21 22:45:11,2022-01-21 22:45:11,2022-01-21 23:15:45,0.211512327194214,1833.67788076401,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,2,empirical,2022-01-21 23:15:58,2022-01-21 23:15:58,2022-01-21 23:15:58,2022-01-21 23:15:59,2022-01-21 23:16:27,0.115360021591187,28.3638520240784,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,2,ctree,2022-01-21 23:00:36,2022-01-21 23:00:37,2022-01-21 23:00:37,2022-01-21 23:00:39,2022-01-21 23:16:48,0.199713230133057,969.217360973358,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,4,empirical,2022-01-21 23:16:47,2022-01-21 23:16:48,2022-01-21 23:16:48,2022-01-21 23:16:48,2022-01-21 23:17:09,0.316717624664307,20.2307696342468,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,8,empirical,2022-01-21 23:18:08,2022-01-21 23:18:10,2022-01-21 23:18:11,2022-01-21 23:18:11,2022-01-21 23:18:53,0.361157894134522,41.7231628894806,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,4,empirical,2022-01-21 23:16:38,2022-01-21 23:16:39,2022-01-21 23:16:39,2022-01-21 23:16:41,2022-01-21 23:19:56,0.139171600341797,194.434577465057,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,8,empirical,2022-01-21 23:17:51,2022-01-21 23:17:53,2022-01-21 23:17:54,2022-01-21 23:17:57,2022-01-21 23:20:03,0.339982986450195,125.338730812073,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,2,empirical,2022-01-21 23:15:50,2022-01-21 23:15:51,2022-01-21 23:15:51,2022-01-21 23:15:52,2022-01-21 23:21:17,0.107144594192505,324.658476829529,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,8,gaussian,2022-01-21 23:18:31,2022-01-21 23:18:34,2022-01-21 23:18:34,2022-01-21 23:18:41,2022-01-21 23:21:48,0.6770920753479,186.761570453644,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,16,empirical,2022-01-21 23:21:28,2022-01-21 23:21:33,2022-01-21 23:21:34,2022-01-21 23:21:34,2022-01-21 23:22:05,0.769256353378296,30.0707681179047,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,4,gaussian,2022-01-21 23:17:08,2022-01-21 23:17:09,2022-01-21 23:17:10,2022-01-21 23:17:10,2022-01-21 23:22:07,0.356031656265259,297.543975114822,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,4,gaussian,2022-01-21 23:16:58,2022-01-21 23:16:59,2022-01-21 23:16:59,2022-01-21 23:17:02,2022-01-21 23:22:08,0.3267822265625,305.888471364975,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,8,gaussian,2022-01-21 23:19:01,2022-01-21 23:19:05,2022-01-21 23:19:06,2022-01-21 23:19:07,2022-01-21 23:22:09,0.639943361282349,181.976780653,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,16,empirical,2022-01-21 23:20:48,2022-01-21 23:20:51,2022-01-21 23:20:52,2022-01-21 23:20:58,2022-01-21 23:22:36,0.788543701171875,98.364565372467,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,2,gaussian,2022-01-21 23:16:05,2022-01-21 23:16:06,2022-01-21 23:16:06,2022-01-21 23:16:07,2022-01-21 23:23:15,0.171708822250366,427.113997459412,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,2,gaussian,2022-01-21 23:16:13,2022-01-21 23:16:14,2022-01-21 23:16:14,2022-01-21 23:16:14,2022-01-21 23:23:58,0.118020296096802,463.605856895447,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,16,gaussian,2022-01-21 23:22:12,2022-01-21 23:22:13,2022-01-21 23:22:13,2022-01-21 23:22:18,2022-01-21 23:24:13,0.205774784088135,114.940622806549,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,16,gaussian,2022-01-21 23:22:35,2022-01-21 23:22:38,2022-01-21 23:22:38,2022-01-21 23:22:39,2022-01-21 23:24:14,0.787665367126465,95.1328811645508,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,24,empirical,2022-01-21 23:24:54,2022-01-21 23:24:57,2022-01-21 23:24:58,2022-01-21 23:24:59,2022-01-21 23:25:29,0.920004606246948,30.150486946106,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,1,empirical,2022-01-21 23:14:33,2022-01-21 23:14:34,2022-01-21 23:14:34,2022-01-21 23:14:35,2022-01-21 23:25:46,0.340062141418457,671.17283654213,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,8,ctree,2022-01-21 23:20:14,2022-01-21 23:20:17,2022-01-21 23:20:17,2022-01-21 23:20:19,2022-01-21 23:25:52,0.716333866119385,333.34334564209,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,1,empirical,2022-01-21 23:14:51,2022-01-21 23:14:53,2022-01-21 23:14:53,2022-01-21 23:14:54,2022-01-21 23:26:05,0.190628051757813,671.602699279785,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,24,empirical,2022-01-21 23:24:23,2022-01-21 23:24:25,2022-01-21 23:24:25,2022-01-21 23:24:31,2022-01-21 23:26:22,0.386958837509155,110.625061988831,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,8,ctree,2022-01-21 23:19:36,2022-01-21 23:19:40,2022-01-21 23:19:40,2022-01-21 23:19:47,2022-01-21 23:26:51,0.722717046737671,424.375296592712,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,16,ctree,2022-01-21 23:23:54,2022-01-21 23:23:58,2022-01-21 23:23:58,2022-01-21 23:23:59,2022-01-21 23:27:05,0.375831365585327,185.630403995514,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,16,ctree,2022-01-21 23:23:12,2022-01-21 23:23:16,2022-01-21 23:23:17,2022-01-21 23:23:25,2022-01-21 23:27:33,0.929568529129028,248.059343338013,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,24,gaussian,2022-01-21 23:26:15,2022-01-21 23:26:18,2022-01-21 23:26:18,2022-01-21 23:26:19,2022-01-21 23:27:46,0.484882593154907,86.7589671611786,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,4,ctree,2022-01-21 23:17:35,2022-01-21 23:17:37,2022-01-21 23:17:38,2022-01-21 23:17:38,2022-01-21 23:27:46,0.38923192024231,607.946191072464,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,24,gaussian,2022-01-21 23:25:42,2022-01-21 23:25:44,2022-01-21 23:25:45,2022-01-21 23:25:51,2022-01-21 23:27:54,0.337574243545532,123.366424798965,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,32,empirical,2022-01-21 23:28:26,2022-01-21 23:28:29,2022-01-21 23:28:29,2022-01-21 23:28:30,2022-01-21 23:28:49,0.422631978988647,19.1013867855072,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,1,gaussian,2022-01-21 23:15:08,2022-01-21 23:15:08,2022-01-21 23:15:09,2022-01-21 23:15:09,2022-01-21 23:28:50,0.344911575317383,820.982033967972,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,1,gaussian,2022-01-21 23:15:23,2022-01-21 23:15:24,2022-01-21 23:15:24,2022-01-21 23:15:24,2022-01-21 23:29:33,0.264777898788452,849.050582885742,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,32,empirical,2022-01-21 23:27:59,2022-01-21 23:28:01,2022-01-21 23:28:01,2022-01-21 23:28:06,2022-01-21 23:29:35,0.129807233810425,88.9248158931732,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,4,ctree,2022-01-21 23:17:20,2022-01-21 23:17:22,2022-01-21 23:17:22,2022-01-21 23:17:26,2022-01-21 23:29:36,0.635373115539551,730.156134605408,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,24,ctree,2022-01-21 23:27:39,2022-01-21 23:27:41,2022-01-21 23:27:41,2022-01-21 23:27:41,2022-01-21 23:30:13,0.296672582626343,151.561917066574,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,32,gaussian,2022-01-21 23:29:29,2022-01-21 23:29:31,2022-01-21 23:29:31,2022-01-21 23:29:32,2022-01-21 23:30:29,0.697615385055542,56.9771840572357,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,32,gaussian,2022-01-21 23:29:07,2022-01-21 23:29:08,2022-01-21 23:29:08,2022-01-21 23:29:14,2022-01-21 23:30:39,0.479684352874756,84.5930240154266,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,24,ctree,2022-01-21 23:27:11,2022-01-21 23:27:15,2022-01-21 23:27:16,2022-01-21 23:27:22,2022-01-21 23:30:57,0.700387001037598,215.529710769653,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,32,ctree,2022-01-21 23:30:41,2022-01-21 23:30:42,2022-01-21 23:30:42,2022-01-21 23:30:42,2022-01-21 23:31:52,0.25790548324585,69.5653491020203,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,2,ctree,2022-01-21 23:16:29,2022-01-21 23:16:31,2022-01-21 23:16:31,2022-01-21 23:16:31,2022-01-21 23:31:57,0.202917337417603,926.150607585907,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,1,ctree,2022-01-21 22:59:46,2022-01-21 22:59:46,2022-01-21 22:59:47,2022-01-21 22:59:47,2022-01-21 23:32:01,0.300891637802124,1934.46302509308,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,32,ctree,2022-01-21 23:30:17,2022-01-21 23:30:21,2022-01-21 23:30:22,2022-01-21 23:30:28,2022-01-21 23:32:06,0.595257759094238,98.6756672859192,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,24,1,ctree,2022-01-21 22:59:56,2022-01-21 22:59:57,2022-01-21 22:59:57,2022-01-21 22:59:57,2022-01-21 23:32:22,0.228708744049072,1944.59611845017,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,2,ctree,2022-01-21 23:16:21,2022-01-21 23:16:22,2022-01-21 23:16:22,2022-01-21 23:16:24,2022-01-21 23:33:10,0.143362998962402,1006.09124326706,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,1,ctree,2022-01-21 23:15:35,2022-01-21 23:15:35,2022-01-21 23:15:36,2022-01-21 23:15:36,2022-01-21 23:41:05,0.308120727539063,1528.82672333717,0,1e+05,13,0.3,1,0,1,1
+9,1000,100,32,1,ctree,2022-01-21 23:15:43,2022-01-21 23:15:44,2022-01-21 23:15:44,2022-01-21 23:15:44,2022-01-21 23:42:46,0.137923240661621,1622.01966881752,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,2,empirical,2022-01-21 23:45:03,2022-01-21 23:45:08,2022-01-21 23:45:08,2022-01-21 23:45:08,2022-01-21 23:47:40,0.259602069854736,151.541785955429,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,2,empirical,2022-01-21 23:44:35,2022-01-21 23:44:36,2022-01-21 23:44:36,2022-01-21 23:44:44,2022-01-21 23:47:54,0.0859007835388184,189.539999723434,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,1,empirical,2022-01-21 23:42:58,2022-01-21 23:42:59,2022-01-21 23:42:59,2022-01-21 23:42:59,2022-01-21 23:48:07,0.126839876174927,307.438761472702,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,1,empirical,2022-01-21 23:42:39,2022-01-21 23:42:40,2022-01-21 23:42:40,2022-01-21 23:42:40,2022-01-21 23:48:09,0.125292539596558,329.293765306473,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,2,gaussian,2022-01-21 23:45:24,2022-01-21 23:45:26,2022-01-21 23:45:26,2022-01-21 23:45:31,2022-01-21 23:48:32,0.491873025894165,180.712240934372,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,2,gaussian,2022-01-21 23:45:41,2022-01-21 23:45:43,2022-01-21 23:45:43,2022-01-21 23:45:43,2022-01-21 23:48:49,0.383482933044434,185.265007019043,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,4,empirical,2022-01-21 23:47:07,2022-01-21 23:47:11,2022-01-21 23:47:11,2022-01-21 23:47:11,2022-01-21 23:49:54,0.176090955734253,163.357348680496,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,4,empirical,2022-01-21 23:46:43,2022-01-21 23:46:44,2022-01-21 23:46:44,2022-01-21 23:46:46,2022-01-21 23:50:07,0.154705286026001,200.106759309769,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,4,gaussian,2022-01-21 23:47:32,2022-01-21 23:47:34,2022-01-21 23:47:34,2022-01-21 23:47:37,2022-01-21 23:50:41,0.110007047653198,184.219397306442,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,4,gaussian,2022-01-21 23:47:54,2022-01-21 23:47:55,2022-01-21 23:47:55,2022-01-21 23:47:55,2022-01-21 23:50:51,0.128975868225098,175.251116991043,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,8,empirical,2022-01-21 23:49:18,2022-01-21 23:49:20,2022-01-21 23:49:20,2022-01-21 23:49:20,2022-01-21 23:52:05,0.158977031707764,165.097994804382,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,8,empirical,2022-01-21 23:48:53,2022-01-21 23:48:54,2022-01-21 23:48:54,2022-01-21 23:48:56,2022-01-21 23:52:18,0.176050424575806,201.731809139252,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,8,gaussian,2022-01-21 23:50:00,2022-01-21 23:50:01,2022-01-21 23:50:01,2022-01-21 23:50:01,2022-01-21 23:53:18,0.17525577545166,196.500575065613,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,16,empirical,2022-01-21 23:51:19,2022-01-21 23:51:20,2022-01-21 23:51:20,2022-01-21 23:51:21,2022-01-21 23:54:11,0.19235634803772,170.304957151413,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,16,empirical,2022-01-21 23:51:01,2022-01-21 23:51:02,2022-01-21 23:51:02,2022-01-21 23:51:04,2022-01-21 23:54:31,0.138709306716919,206.372300386429,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,16,gaussian,2022-01-21 23:52:13,2022-01-21 23:52:14,2022-01-21 23:52:15,2022-01-21 23:52:15,2022-01-21 23:55:37,0.24111819267273,201.864651203156,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,24,empirical,2022-01-21 23:53:44,2022-01-21 23:53:45,2022-01-21 23:53:46,2022-01-21 23:53:46,2022-01-21 23:56:42,0.143988370895386,176.26457285881,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,24,empirical,2022-01-21 23:53:20,2022-01-21 23:53:21,2022-01-21 23:53:21,2022-01-21 23:53:24,2022-01-21 23:57:08,0.12809419631958,224.134032964706,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,24,gaussian,2022-01-21 23:54:27,2022-01-21 23:54:28,2022-01-21 23:54:28,2022-01-21 23:54:29,2022-01-21 23:57:28,0.213754653930664,179.775923728943,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,32,empirical,2022-01-21 23:56:04,2022-01-21 23:56:05,2022-01-21 23:56:05,2022-01-21 23:56:05,2022-01-21 23:58:46,0.16818642616272,160.449657917023,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,32,empirical,2022-01-21 23:55:41,2022-01-21 23:55:42,2022-01-21 23:55:43,2022-01-21 23:55:46,2022-01-21 23:58:58,0.107287168502808,192.195042133331,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,32,gaussian,2022-01-21 23:56:48,2022-01-21 23:56:49,2022-01-21 23:56:49,2022-01-21 23:56:51,2022-01-21 23:59:34,0.136141061782837,162.692548513412,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,32,gaussian,2022-01-21 23:57:12,2022-01-21 23:57:13,2022-01-21 23:57:13,2022-01-21 23:57:14,2022-01-21 23:59:41,0.144119262695313,147.837868213654,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,16,ctree,2022-01-21 23:52:56,2022-01-21 23:52:57,2022-01-21 23:52:57,2022-01-21 23:52:58,2022-01-22 00:00:40,0.252333164215088,462.654721975327,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,24,ctree,2022-01-21 23:55:17,2022-01-21 23:55:19,2022-01-21 23:55:19,2022-01-21 23:55:20,2022-01-22 00:02:00,0.332910299301147,399.990538358688,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,2,empirical,2022-01-22 00:00:28,2022-01-22 00:00:28,2022-01-22 00:00:29,2022-01-22 00:00:29,2022-01-22 00:03:10,0.220245361328125,161.383081912994,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,2,empirical,2022-01-22 00:00:09,2022-01-22 00:00:10,2022-01-22 00:00:10,2022-01-22 00:00:12,2022-01-22 00:03:38,0.135678052902222,206.263612508774,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,4,empirical,2022-01-22 00:02:16,2022-01-22 00:02:17,2022-01-22 00:02:17,2022-01-22 00:02:23,2022-01-22 00:05:11,0.177535772323608,168.04819059372,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,2,32,ctree,2022-01-21 23:57:50,2022-01-21 23:57:51,2022-01-21 23:57:51,2022-01-21 23:57:51,2022-01-22 00:05:17,0.139546871185303,445.846391201019,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,4,empirical,2022-01-22 00:02:45,2022-01-22 00:02:47,2022-01-22 00:02:47,2022-01-22 00:02:48,2022-01-22 00:05:22,0.240315198898315,154.110302448273,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,1,empirical,2022-01-21 23:58:11,2022-01-21 23:58:11,2022-01-21 23:58:12,2022-01-21 23:58:12,2022-01-22 00:05:30,0.157306671142578,437.728199005127,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,1,gaussian,2022-01-21 23:58:59,2022-01-21 23:59:00,2022-01-21 23:59:00,2022-01-21 23:59:01,2022-01-22 00:05:33,0.204936265945435,392.501891851425,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,2,gaussian,2022-01-22 00:00:56,2022-01-22 00:00:57,2022-01-22 00:00:57,2022-01-22 00:00:59,2022-01-22 00:05:40,0.156799554824829,280.752032995224,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,1,empirical,2022-01-21 23:58:41,2022-01-21 23:58:43,2022-01-21 23:58:43,2022-01-21 23:58:43,2022-01-22 00:05:49,0.161206007003784,425.689492940903,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,2,gaussian,2022-01-22 00:01:14,2022-01-22 00:01:15,2022-01-22 00:01:15,2022-01-22 00:01:15,2022-01-22 00:06:25,0.144938945770264,309.708197116852,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,4,gaussian,2022-01-22 00:03:16,2022-01-22 00:03:17,2022-01-22 00:03:18,2022-01-22 00:03:21,2022-01-22 00:06:29,0.261320352554321,187.884455919266,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,4,gaussian,2022-01-22 00:03:41,2022-01-22 00:03:43,2022-01-22 00:03:43,2022-01-22 00:03:44,2022-01-22 00:06:37,0.224979162216187,172.63569688797,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,1,gaussian,2022-01-21 23:59:24,2022-01-21 23:59:28,2022-01-21 23:59:28,2022-01-21 23:59:28,2022-01-22 00:06:46,0.124329090118408,437.600485563278,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,8,empirical,2022-01-22 00:05:21,2022-01-22 00:05:23,2022-01-22 00:05:23,2022-01-22 00:05:26,2022-01-22 00:07:45,0.263403415679932,138.696480989456,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,8,empirical,2022-01-22 00:05:50,2022-01-22 00:05:51,2022-01-22 00:05:51,2022-01-22 00:05:51,2022-01-22 00:08:15,0.144243001937866,143.470705509186,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,16,empirical,2022-01-22 00:07:46,2022-01-22 00:07:47,2022-01-22 00:07:48,2022-01-22 00:07:51,2022-01-22 00:10:47,0.311504364013672,176.461219787598,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,4,ctree,2022-01-22 00:04:45,2022-01-22 00:04:47,2022-01-22 00:04:48,2022-01-22 00:04:49,2022-01-22 00:11:18,0.452795267105103,389.520493984222,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,4,ctree,2022-01-22 00:04:13,2022-01-22 00:04:15,2022-01-22 00:04:16,2022-01-22 00:04:19,2022-01-22 00:11:29,0.525002002716065,429.647247076035,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,16,empirical,2022-01-22 00:08:12,2022-01-22 00:08:14,2022-01-22 00:08:14,2022-01-22 00:08:14,2022-01-22 00:11:50,0.135880470275879,216.064201831818,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,24,empirical,2022-01-22 00:10:56,2022-01-22 00:10:57,2022-01-22 00:10:57,2022-01-22 00:11:02,2022-01-22 00:13:45,0.21747899055481,163.167289972305,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,2,ctree,2022-01-22 00:01:55,2022-01-22 00:01:56,2022-01-22 00:01:56,2022-01-22 00:01:57,2022-01-22 00:13:51,0.174901962280273,714.155141115189,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,24,empirical,2022-01-22 00:11:26,2022-01-22 00:11:27,2022-01-22 00:11:27,2022-01-22 00:11:28,2022-01-22 00:14:04,0.284063339233398,156.44540309906,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,8,ctree,2022-01-22 00:07:23,2022-01-22 00:07:24,2022-01-22 00:07:25,2022-01-22 00:07:25,2022-01-22 00:14:12,0.218754529953003,407.031522989273,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,16,ctree,2022-01-22 00:10:24,2022-01-22 00:10:26,2022-01-22 00:10:26,2022-01-22 00:10:27,2022-01-22 00:16:14,0.350234508514404,346.560861587524,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,32,empirical,2022-01-22 00:13:54,2022-01-22 00:13:55,2022-01-22 00:13:55,2022-01-22 00:14:00,2022-01-22 00:16:51,0.133309602737427,171.693699598312,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,32,empirical,2022-01-22 00:14:28,2022-01-22 00:14:29,2022-01-22 00:14:29,2022-01-22 00:14:30,2022-01-22 00:17:02,0.24024772644043,152.427399158478,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,32,gaussian,2022-01-22 00:15:38,2022-01-22 00:15:39,2022-01-22 00:15:40,2022-01-22 00:15:41,2022-01-22 00:17:37,1.03340101242065,116.364461421967,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,32,gaussian,2022-01-22 00:15:12,2022-01-22 00:15:23,2022-01-22 00:15:24,2022-01-22 00:15:37,2022-01-22 00:17:44,0.205392122268677,126.366458415985,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,24,ctree,2022-01-22 00:13:22,2022-01-22 00:13:24,2022-01-22 00:13:24,2022-01-22 00:13:25,2022-01-22 00:18:12,0.377152442932129,287.093768596649,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,24,ctree,2022-01-22 00:12:53,2022-01-22 00:12:55,2022-01-22 00:12:55,2022-01-22 00:12:59,2022-01-22 00:19:02,0.371990203857422,362.543828725815,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,32,ctree,2022-01-22 00:16:27,2022-01-22 00:16:28,2022-01-22 00:16:28,2022-01-22 00:16:29,2022-01-22 00:19:16,0.173864364624023,167.117560386658,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,32,ctree,2022-01-22 00:16:03,2022-01-22 00:16:05,2022-01-22 00:16:05,2022-01-22 00:16:09,2022-01-22 00:21:27,0.223615884780884,318.196619749069,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,2,empirical,2022-01-22 00:18:47,2022-01-22 00:18:48,2022-01-22 00:18:48,2022-01-22 00:18:48,2022-01-22 00:22:03,0.213789224624634,194.670427560806,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,4,empirical,2022-01-22 00:20:17,2022-01-22 00:20:19,2022-01-22 00:20:19,2022-01-22 00:20:19,2022-01-22 00:23:19,0.228528738021851,179.822612285614,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,4,empirical,2022-01-22 00:20:00,2022-01-22 00:20:01,2022-01-22 00:20:01,2022-01-22 00:20:04,2022-01-22 00:23:28,0.105710744857788,204.595075845718,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,2,gaussian,2022-01-22 00:19:03,2022-01-22 00:19:04,2022-01-22 00:19:04,2022-01-22 00:19:06,2022-01-22 00:24:05,0.113917112350464,299.086584329605,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,4,gaussian,2022-01-22 00:20:38,2022-01-22 00:20:39,2022-01-22 00:20:39,2022-01-22 00:20:42,2022-01-22 00:24:10,0.263284921646118,207.605838537216,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,2,empirical,2022-01-22 00:18:32,2022-01-22 00:18:32,2022-01-22 00:18:32,2022-01-22 00:18:34,2022-01-22 00:24:33,0.14330005645752,358.819204330444,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,2,gaussian,2022-01-22 00:19:16,2022-01-22 00:19:17,2022-01-22 00:19:17,2022-01-22 00:19:17,2022-01-22 00:24:48,0.238066911697388,330.341274023056,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,4,gaussian,2022-01-22 00:21:08,2022-01-22 00:21:10,2022-01-22 00:21:11,2022-01-22 00:21:11,2022-01-22 00:24:51,0.394684791564941,219.658683538437,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,8,empirical,2022-01-22 00:22:36,2022-01-22 00:22:37,2022-01-22 00:22:38,2022-01-22 00:22:42,2022-01-22 00:24:53,0.394059181213379,131.442513942719,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,8,empirical,2022-01-22 00:23:12,2022-01-22 00:23:13,2022-01-22 00:23:14,2022-01-22 00:23:14,2022-01-22 00:25:18,0.318946599960327,124.100888729095,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,1,gaussian,2022-01-22 00:17:34,2022-01-22 00:17:35,2022-01-22 00:17:35,2022-01-22 00:17:35,2022-01-22 00:25:49,0.121601343154907,493.762038946152,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,8,gaussian,2022-01-22 00:23:47,2022-01-22 00:23:50,2022-01-22 00:23:50,2022-01-22 00:23:55,2022-01-22 00:25:51,0.514194965362549,116.117251634598,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,8,gaussian,2022-01-22 00:24:23,2022-01-22 00:24:25,2022-01-22 00:24:26,2022-01-22 00:24:26,2022-01-22 00:26:09,0.586534261703491,102.69692158699,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,1,gaussian,2022-01-22 00:17:49,2022-01-22 00:17:50,2022-01-22 00:17:50,2022-01-22 00:17:50,2022-01-22 00:26:33,0.12436580657959,522.362556695938,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,1,empirical,2022-01-22 00:16:51,2022-01-22 00:16:52,2022-01-22 00:16:52,2022-01-22 00:16:53,2022-01-22 00:27:37,0.319175958633423,643.956770658493,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,16,empirical,2022-01-22 00:26:26,2022-01-22 00:26:27,2022-01-22 00:26:27,2022-01-22 00:26:28,2022-01-22 00:28:12,0.174864292144775,104.851170301437,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,16,empirical,2022-01-22 00:26:02,2022-01-22 00:26:04,2022-01-22 00:26:04,2022-01-22 00:26:07,2022-01-22 00:28:13,0.160935640335083,125.941323518753,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,1,empirical,2022-01-22 00:17:12,2022-01-22 00:17:14,2022-01-22 00:17:14,2022-01-22 00:17:14,2022-01-22 00:28:26,0.235838890075684,671.502711772919,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,16,gaussian,2022-01-22 00:26:57,2022-01-22 00:26:59,2022-01-22 00:27:00,2022-01-22 00:27:04,2022-01-22 00:29:26,0.365767240524292,142.308668613434,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,8,ctree,2022-01-22 00:25:31,2022-01-22 00:25:33,2022-01-22 00:25:34,2022-01-22 00:25:35,2022-01-22 00:29:31,0.405417919158936,236.971807718277,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,16,gaussian,2022-01-22 00:27:34,2022-01-22 00:27:37,2022-01-22 00:27:37,2022-01-22 00:27:38,2022-01-22 00:29:36,0.536219120025635,117.436851501465,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,4,ctree,2022-01-22 00:22:07,2022-01-22 00:22:09,2022-01-22 00:22:10,2022-01-22 00:22:10,2022-01-22 00:29:39,0.415358781814575,449.0838367939,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,8,ctree,2022-01-22 00:25:00,2022-01-22 00:25:02,2022-01-22 00:25:02,2022-01-22 00:25:06,2022-01-22 00:30:25,0.367226362228394,318.389145851135,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,24,empirical,2022-01-22 00:29:36,2022-01-22 00:29:37,2022-01-22 00:29:38,2022-01-22 00:29:41,2022-01-22 00:31:32,0.330016851425171,110.997332572937,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,24,empirical,2022-01-22 00:29:54,2022-01-22 00:29:55,2022-01-22 00:29:55,2022-01-22 00:29:56,2022-01-22 00:31:36,0.393418550491333,99.948324918747,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,4,ctree,2022-01-22 00:21:41,2022-01-22 00:21:42,2022-01-22 00:21:42,2022-01-22 00:21:46,2022-01-22 00:31:52,0.3515465259552,605.213157176971,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,1,ctree,2022-01-21 23:59:38,2022-01-21 23:59:39,2022-01-21 23:59:39,2022-01-21 23:59:39,2022-01-22 00:32:05,0.130911350250244,1946.13237524033,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,24,gaussian,2022-01-22 00:30:23,2022-01-22 00:30:25,2022-01-22 00:30:25,2022-01-22 00:30:29,2022-01-22 00:32:36,0.260666370391846,126.316056013107,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,16,ctree,2022-01-22 00:29:11,2022-01-22 00:29:14,2022-01-22 00:29:15,2022-01-22 00:29:16,2022-01-22 00:32:43,0.903154373168945,206.772490739822,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,24,gaussian,2022-01-22 00:30:55,2022-01-22 00:30:56,2022-01-22 00:30:57,2022-01-22 00:30:57,2022-01-22 00:32:52,0.43907618522644,114.813937187195,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,4,1,ctree,2022-01-21 23:59:54,2022-01-21 23:59:54,2022-01-21 23:59:54,2022-01-21 23:59:55,2022-01-22 00:33:20,0.141476631164551,2005.1497604847,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,2,ctree,2022-01-22 00:19:44,2022-01-22 00:19:45,2022-01-22 00:19:45,2022-01-22 00:19:45,2022-01-22 00:33:35,0.198578834533691,829.780259370804,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,16,ctree,2022-01-22 00:28:23,2022-01-22 00:28:26,2022-01-22 00:28:26,2022-01-22 00:28:31,2022-01-22 00:33:37,0.29680061340332,306.306308031082,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,32,empirical,2022-01-22 00:33:06,2022-01-22 00:33:06,2022-01-22 00:33:07,2022-01-22 00:33:07,2022-01-22 00:34:11,0.221571683883667,64.3871071338654,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,32,empirical,2022-01-22 00:32:46,2022-01-22 00:32:47,2022-01-22 00:32:47,2022-01-22 00:32:50,2022-01-22 00:34:34,0.379937410354614,104.152796506882,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,32,gaussian,2022-01-22 00:33:28,2022-01-22 00:33:30,2022-01-22 00:33:30,2022-01-22 00:33:34,2022-01-22 00:35:23,0.369773149490356,108.813843011856,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,24,ctree,2022-01-22 00:32:18,2022-01-22 00:32:20,2022-01-22 00:32:20,2022-01-22 00:32:21,2022-01-22 00:35:26,0.485552072525024,184.968723297119,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,32,gaussian,2022-01-22 00:34:02,2022-01-22 00:34:03,2022-01-22 00:34:03,2022-01-22 00:34:04,2022-01-22 00:35:34,0.156780004501343,90.2864699363709,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,24,ctree,2022-01-22 00:31:42,2022-01-22 00:31:45,2022-01-22 00:31:46,2022-01-22 00:31:51,2022-01-22 00:35:58,0.570005416870117,247.049502849579,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,32,ctree,2022-01-22 00:35:14,2022-01-22 00:35:16,2022-01-22 00:35:16,2022-01-22 00:35:17,2022-01-22 00:36:47,0.295845746994019,90.1422259807587,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,2,ctree,2022-01-22 00:19:30,2022-01-22 00:19:31,2022-01-22 00:19:31,2022-01-22 00:19:33,2022-01-22 00:37:07,0.260430574417114,1053.96999835968,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,32,ctree,2022-01-22 00:34:39,2022-01-22 00:34:41,2022-01-22 00:34:41,2022-01-22 00:34:47,2022-01-22 00:37:21,0.325368404388428,154.057362318039,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,2,empirical,2022-01-22 00:37:05,2022-01-22 00:37:05,2022-01-22 00:37:06,2022-01-22 00:37:06,2022-01-22 00:41:26,0.198206663131714,260.210177183151,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,4,empirical,2022-01-22 00:38:06,2022-01-22 00:38:06,2022-01-22 00:38:07,2022-01-22 00:38:07,2022-01-22 00:42:00,0.194207191467285,232.913385391235,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,4,gaussian,2022-01-22 00:38:18,2022-01-22 00:38:19,2022-01-22 00:38:19,2022-01-22 00:38:21,2022-01-22 00:42:37,0.308275938034058,255.396221637726,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,4,gaussian,2022-01-22 00:38:33,2022-01-22 00:38:34,2022-01-22 00:38:34,2022-01-22 00:38:34,2022-01-22 00:43:12,0.303925037384033,277.403713464737,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,8,empirical,2022-01-22 00:40:04,2022-01-22 00:40:07,2022-01-22 00:40:08,2022-01-22 00:40:09,2022-01-22 00:43:13,0.621465921401978,184.616212844849,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,8,empirical,2022-01-22 00:39:35,2022-01-22 00:39:37,2022-01-22 00:39:38,2022-01-22 00:39:42,2022-01-22 00:43:26,0.543291091918945,224.043934345245,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,2,gaussian,2022-01-22 00:37:17,2022-01-22 00:37:18,2022-01-22 00:37:18,2022-01-22 00:37:19,2022-01-22 00:43:32,0.127069711685181,372.482070684433,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,4,empirical,2022-01-22 00:37:55,2022-01-22 00:37:56,2022-01-22 00:37:56,2022-01-22 00:37:58,2022-01-22 00:43:47,0.133932113647461,349.239078521729,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,8,gaussian,2022-01-22 00:40:44,2022-01-22 00:40:47,2022-01-22 00:40:48,2022-01-22 00:40:54,2022-01-22 00:43:49,0.605763673782349,175.793090820313,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,8,gaussian,2022-01-22 00:41:28,2022-01-22 00:41:32,2022-01-22 00:41:33,2022-01-22 00:41:34,2022-01-22 00:44:06,0.720996856689453,151.639906644821,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,2,gaussian,2022-01-22 00:37:27,2022-01-22 00:37:27,2022-01-22 00:37:27,2022-01-22 00:37:28,2022-01-22 00:44:15,0.15282416343689,407.644268751144,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,16,empirical,2022-01-22 00:44:14,2022-01-22 00:44:16,2022-01-22 00:44:16,2022-01-22 00:44:17,2022-01-22 00:45:51,0.456368923187256,94.2123739719391,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,16,empirical,2022-01-22 00:43:52,2022-01-22 00:43:53,2022-01-22 00:43:53,2022-01-22 00:43:57,2022-01-22 00:46:17,0.151166439056396,139.408195734024,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,1,gaussian,2022-01-22 00:36:02,2022-01-22 00:36:03,2022-01-22 00:36:03,2022-01-22 00:36:03,2022-01-22 00:46:53,0.161900520324707,650.075906276703,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,16,gaussian,2022-01-22 00:44:56,2022-01-22 00:44:58,2022-01-22 00:44:59,2022-01-22 00:45:05,2022-01-22 00:46:58,0.818410634994507,112.681494474411,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,2,empirical,2022-01-22 00:36:52,2022-01-22 00:36:53,2022-01-22 00:36:53,2022-01-22 00:36:54,2022-01-22 00:47:06,0.218976020812988,611.386895179749,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,16,gaussian,2022-01-22 00:45:51,2022-01-22 00:45:55,2022-01-22 00:45:55,2022-01-22 00:45:56,2022-01-22 00:47:17,0.346254110336304,80.6972205638886,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,1,gaussian,2022-01-22 00:36:14,2022-01-22 00:36:15,2022-01-22 00:36:15,2022-01-22 00:36:15,2022-01-22 00:47:19,0.181397914886475,663.9934425354,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,8,ctree,2022-01-22 00:43:15,2022-01-22 00:43:17,2022-01-22 00:43:18,2022-01-22 00:43:18,2022-01-22 00:48:19,0.415080785751343,300.199335813522,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,8,ctree,2022-01-22 00:42:23,2022-01-22 00:42:26,2022-01-22 00:42:27,2022-01-22 00:42:33,2022-01-22 00:49:17,0.745680570602417,403.496193647385,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,4,ctree,2022-01-22 00:39:13,2022-01-22 00:39:15,2022-01-22 00:39:15,2022-01-22 00:39:15,2022-01-22 00:49:30,0.237137794494629,615.247409820557,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,24,empirical,2022-01-22 00:48:24,2022-01-22 00:48:26,2022-01-22 00:48:26,2022-01-22 00:48:27,2022-01-22 00:50:00,0.407120943069458,93.3155579566956,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,24,empirical,2022-01-22 00:47:44,2022-01-22 00:47:46,2022-01-22 00:47:46,2022-01-22 00:47:51,2022-01-22 00:50:20,0.290511131286621,148.672857046127,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,16,ctree,2022-01-22 00:47:17,2022-01-22 00:47:18,2022-01-22 00:47:18,2022-01-22 00:47:18,2022-01-22 00:50:25,0.206394672393799,186.436529159546,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,16,ctree,2022-01-22 00:46:50,2022-01-22 00:46:52,2022-01-22 00:46:53,2022-01-22 00:46:58,2022-01-22 00:50:39,0.467600345611572,221.192490339279,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,24,gaussian,2022-01-22 00:49:16,2022-01-22 00:49:19,2022-01-22 00:49:19,2022-01-22 00:49:26,2022-01-22 00:51:08,0.606553316116333,101.851763248444,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,24,gaussian,2022-01-22 00:50:05,2022-01-22 00:50:07,2022-01-22 00:50:07,2022-01-22 00:50:08,2022-01-22 00:51:17,0.542969942092896,69.0861201286316,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,4,ctree,2022-01-22 00:38:54,2022-01-22 00:38:56,2022-01-22 00:38:56,2022-01-22 00:39:01,2022-01-22 00:51:44,0.448035478591919,763.012451410294,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,1,ctree,2022-01-22 00:18:17,2022-01-22 00:18:18,2022-01-22 00:18:18,2022-01-22 00:18:19,2022-01-22 00:52:59,0.179383993148804,2080.43359661102,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,8,1,ctree,2022-01-22 00:18:04,2022-01-22 00:18:04,2022-01-22 00:18:05,2022-01-22 00:18:05,2022-01-22 00:52:59,0.107439041137695,2094.62745237351,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,32,empirical,2022-01-22 00:51:55,2022-01-22 00:51:57,2022-01-22 00:51:58,2022-01-22 00:51:59,2022-01-22 00:53:21,0.435993909835815,81.7191488742829,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,24,ctree,2022-01-22 00:51:12,2022-01-22 00:51:14,2022-01-22 00:51:14,2022-01-22 00:51:14,2022-01-22 00:53:44,0.280441045761108,149.494758367538,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,32,empirical,2022-01-22 00:51:30,2022-01-22 00:51:32,2022-01-22 00:51:32,2022-01-22 00:51:36,2022-01-22 00:53:47,0.313796043395996,130.518866539001,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,24,ctree,2022-01-22 00:50:42,2022-01-22 00:50:44,2022-01-22 00:50:45,2022-01-22 00:50:51,2022-01-22 00:54:13,0.647085189819336,202.169643163681,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,32,gaussian,2022-01-22 00:52:33,2022-01-22 00:52:36,2022-01-22 00:52:36,2022-01-22 00:52:43,2022-01-22 00:54:24,0.516229391098023,100.847553491592,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,32,gaussian,2022-01-22 00:53:22,2022-01-22 00:53:25,2022-01-22 00:53:25,2022-01-22 00:53:26,2022-01-22 00:54:29,0.473212957382202,63.3109831809998,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,2,ctree,2022-01-22 00:37:45,2022-01-22 00:37:46,2022-01-22 00:37:46,2022-01-22 00:37:47,2022-01-22 00:55:09,0.120632648468018,1042.07389187813,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,1,empirical,2022-01-22 00:35:36,2022-01-22 00:35:37,2022-01-22 00:35:37,2022-01-22 00:35:37,2022-01-22 00:55:43,0.151748657226563,1205.67083859444,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,32,ctree,2022-01-22 00:54:29,2022-01-22 00:54:29,2022-01-22 00:54:30,2022-01-22 00:54:30,2022-01-22 00:55:44,0.18700122833252,74.0043988227844,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,1,empirical,2022-01-22 00:35:49,2022-01-22 00:35:50,2022-01-22 00:35:50,2022-01-22 00:35:51,2022-01-22 00:55:58,0.147314786911011,1207.83577370644,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,32,ctree,2022-01-22 00:54:05,2022-01-22 00:54:08,2022-01-22 00:54:08,2022-01-22 00:54:14,2022-01-22 00:56:04,0.579286336898804,110.02873301506,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,2,ctree,2022-01-22 00:37:36,2022-01-22 00:37:36,2022-01-22 00:37:37,2022-01-22 00:37:38,2022-01-22 00:57:12,0.125193357467651,1173.81370997429,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,4,empirical,2022-01-22 00:57:08,2022-01-22 00:57:09,2022-01-22 00:57:10,2022-01-22 00:57:10,2022-01-22 01:01:19,0.385452747344971,248.512441396713,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,2,empirical,2022-01-22 00:56:14,2022-01-22 00:56:14,2022-01-22 00:56:14,2022-01-22 00:56:15,2022-01-22 01:01:45,0.140118598937988,330.112222671509,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,4,gaussian,2022-01-22 00:57:20,2022-01-22 00:57:21,2022-01-22 00:57:22,2022-01-22 00:57:25,2022-01-22 01:02:15,0.251033544540405,290.476743936539,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,8,empirical,2022-01-22 00:58:58,2022-01-22 00:59:00,2022-01-22 00:59:00,2022-01-22 00:59:01,2022-01-22 01:02:25,0.459428548812866,204.051424503326,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,4,gaussian,2022-01-22 00:57:34,2022-01-22 00:57:35,2022-01-22 00:57:35,2022-01-22 00:57:36,2022-01-22 01:02:42,0.20646858215332,305.704801559448,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,2,gaussian,2022-01-22 00:56:21,2022-01-22 00:56:22,2022-01-22 00:56:22,2022-01-22 00:56:23,2022-01-22 01:02:55,0.126375675201416,391.518209457397,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,8,gaussian,2022-01-22 00:59:31,2022-01-22 00:59:34,2022-01-22 00:59:35,2022-01-22 00:59:42,2022-01-22 01:02:56,0.781108140945435,194.267905473709,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,8,gaussian,2022-01-22 01:00:11,2022-01-22 01:00:14,2022-01-22 01:00:14,2022-01-22 01:00:15,2022-01-22 01:03:25,0.160382270812988,189.745049238205,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,2,gaussian,2022-01-22 00:56:30,2022-01-22 00:56:30,2022-01-22 00:56:30,2022-01-22 00:56:31,2022-01-22 01:04:12,0.125285863876343,461.467194318771,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,8,empirical,2022-01-22 00:58:32,2022-01-22 00:58:33,2022-01-22 00:58:34,2022-01-22 00:58:38,2022-01-22 01:04:38,0.398452281951904,359.780193328857,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,16,empirical,2022-01-22 01:03:22,2022-01-22 01:03:25,2022-01-22 01:03:26,2022-01-22 01:03:27,2022-01-22 01:05:35,0.360058546066284,127.964381217957,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,16,gaussian,2022-01-22 01:04:05,2022-01-22 01:04:07,2022-01-22 01:04:07,2022-01-22 01:04:15,2022-01-22 01:06:41,0.443737745285034,146.113445043564,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,4,empirical,2022-01-22 00:56:57,2022-01-22 00:56:58,2022-01-22 00:56:59,2022-01-22 00:57:01,2022-01-22 01:06:52,0.218158960342407,590.905384302139,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,16,gaussian,2022-01-22 01:04:56,2022-01-22 01:05:00,2022-01-22 01:05:01,2022-01-22 01:05:01,2022-01-22 01:07:03,0.713358402252197,121.663578271866,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,16,empirical,2022-01-22 01:02:51,2022-01-22 01:02:54,2022-01-22 01:02:54,2022-01-22 01:03:00,2022-01-22 01:07:20,0.226186275482178,260.132481575012,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,8,ctree,2022-01-22 01:01:58,2022-01-22 01:02:01,2022-01-22 01:02:02,2022-01-22 01:02:03,2022-01-22 01:08:30,0.720283031463623,386.861576557159,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,1,gaussian,2022-01-22 00:55:13,2022-01-22 00:55:14,2022-01-22 00:55:14,2022-01-22 00:55:15,2022-01-22 01:08:52,0.132827997207642,817.01242351532,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,24,empirical,2022-01-22 01:08:11,2022-01-22 01:08:16,2022-01-22 01:08:17,2022-01-22 01:08:19,2022-01-22 01:09:35,0.915817737579346,76.3794054985046,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,8,ctree,2022-01-22 01:01:01,2022-01-22 01:01:06,2022-01-22 01:01:07,2022-01-22 01:01:15,2022-01-22 01:09:39,0.852621555328369,504.664010763168,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,1,gaussian,2022-01-22 00:55:32,2022-01-22 00:55:33,2022-01-22 00:55:34,2022-01-22 00:55:34,2022-01-22 01:09:41,0.339427709579468,846.283426046372,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,24,empirical,2022-01-22 01:07:30,2022-01-22 01:07:33,2022-01-22 01:07:33,2022-01-22 01:07:40,2022-01-22 01:10:38,0.375697374343872,178.268216371536,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,4,ctree,2022-01-22 00:58:09,2022-01-22 00:58:11,2022-01-22 00:58:12,2022-01-22 00:58:13,2022-01-22 01:10:39,0.506494522094727,746.505525588989,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,24,gaussian,2022-01-22 01:09:15,2022-01-22 01:09:18,2022-01-22 01:09:19,2022-01-22 01:09:27,2022-01-22 01:11:15,0.608818769454956,107.476801633835,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,24,gaussian,2022-01-22 01:10:05,2022-01-22 01:10:08,2022-01-22 01:10:09,2022-01-22 01:10:09,2022-01-22 01:11:18,0.640880584716797,68.3192081451416,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,16,ctree,2022-01-22 01:06:52,2022-01-22 01:06:54,2022-01-22 01:06:55,2022-01-22 01:06:55,2022-01-22 01:11:24,0.543595552444458,268.161667823792,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,16,ctree,2022-01-22 01:06:01,2022-01-22 01:06:04,2022-01-22 01:06:05,2022-01-22 01:06:11,2022-01-22 01:11:46,0.677626848220825,335.324812412262,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,4,ctree,2022-01-22 00:57:52,2022-01-22 00:57:55,2022-01-22 00:57:55,2022-01-22 00:57:59,2022-01-22 01:12:10,0.375102758407593,850.867648124695,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,2,empirical,2022-01-22 00:56:06,2022-01-22 00:56:07,2022-01-22 00:56:07,2022-01-22 00:56:08,2022-01-22 01:13:04,0.0894236564636231,1016.30822968483,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,32,empirical,2022-01-22 01:12:22,2022-01-22 01:12:26,2022-01-22 01:12:26,2022-01-22 01:12:28,2022-01-22 01:13:42,0.62375283241272,74.4546775817871,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,24,ctree,2022-01-22 01:11:28,2022-01-22 01:11:29,2022-01-22 01:11:30,2022-01-22 01:11:30,2022-01-22 01:13:43,0.480569124221802,133.051090240479,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,24,ctree,2022-01-22 01:11:10,2022-01-22 01:11:11,2022-01-22 01:11:12,2022-01-22 01:11:16,2022-01-22 01:14:05,0.300862550735474,169.09902882576,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,32,empirical,2022-01-22 01:11:51,2022-01-22 01:11:53,2022-01-22 01:11:54,2022-01-22 01:11:58,2022-01-22 01:14:35,0.436030387878418,157.347808122635,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,32,gaussian,2022-01-22 01:13:57,2022-01-22 01:13:59,2022-01-22 01:14:00,2022-01-22 01:14:01,2022-01-22 01:14:59,0.61557149887085,58.2910091876984,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,32,gaussian,2022-01-22 01:13:17,2022-01-22 01:13:20,2022-01-22 01:13:20,2022-01-22 01:13:29,2022-01-22 01:14:59,0.608458995819092,90.1108300685883,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,2,ctree,2022-01-22 00:56:47,2022-01-22 00:56:48,2022-01-22 00:56:48,2022-01-22 00:56:48,2022-01-22 01:15:27,0.154180765151978,1118.53525209427,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,1,ctree,2022-01-22 00:36:27,2022-01-22 00:36:27,2022-01-22 00:36:27,2022-01-22 00:36:28,2022-01-22 01:16:09,0.15717601776123,2381.60752701759,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,32,ctree,2022-01-22 01:15:03,2022-01-22 01:15:04,2022-01-22 01:15:04,2022-01-22 01:15:04,2022-01-22 01:16:26,0.120380163192749,82.1608276367188,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,16,1,ctree,2022-01-22 00:36:40,2022-01-22 00:36:41,2022-01-22 00:36:41,2022-01-22 00:36:41,2022-01-22 01:16:27,0.185147523880005,2386.15934276581,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,32,ctree,2022-01-22 01:14:44,2022-01-22 01:14:47,2022-01-22 01:14:48,2022-01-22 01:14:54,2022-01-22 01:16:42,0.87923264503479,107.627303123474,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,2,ctree,2022-01-22 00:56:38,2022-01-22 00:56:39,2022-01-22 00:56:39,2022-01-22 00:56:41,2022-01-22 01:18:04,0.118601560592651,1283.59071850777,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,4,empirical,2022-01-22 01:17:57,2022-01-22 01:17:58,2022-01-22 01:17:59,2022-01-22 01:17:59,2022-01-22 01:22:29,0.272570610046387,270.00651550293,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,1,empirical,2022-01-22 00:54:41,2022-01-22 00:54:42,2022-01-22 00:54:42,2022-01-22 00:54:42,2022-01-22 01:22:58,0.172960996627808,1695.70917034149,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,4,gaussian,2022-01-22 01:18:09,2022-01-22 01:18:11,2022-01-22 01:18:11,2022-01-22 01:18:14,2022-01-22 01:23:28,0.243377923965454,314.42053771019,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,8,empirical,2022-01-22 01:19:39,2022-01-22 01:19:41,2022-01-22 01:19:41,2022-01-22 01:19:42,2022-01-22 01:23:30,0.67338228225708,228.16231918335,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,1,empirical,2022-01-22 00:54:57,2022-01-22 00:54:58,2022-01-22 00:54:59,2022-01-22 00:54:59,2022-01-22 01:23:39,0.145205020904541,1719.32288908958,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,8,gaussian,2022-01-22 01:20:08,2022-01-22 01:20:11,2022-01-22 01:20:12,2022-01-22 01:20:18,2022-01-22 01:23:47,0.779103994369507,208.754786729813,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,4,gaussian,2022-01-22 01:18:23,2022-01-22 01:18:25,2022-01-22 01:18:25,2022-01-22 01:18:25,2022-01-22 01:24:04,0.166044473648071,338.406321763992,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,8,gaussian,2022-01-22 01:20:42,2022-01-22 01:20:45,2022-01-22 01:20:45,2022-01-22 01:20:46,2022-01-22 01:24:16,0.684644222259522,210.197974205017,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,2,empirical,2022-01-22 01:17:00,2022-01-22 01:17:01,2022-01-22 01:17:01,2022-01-22 01:17:01,2022-01-22 01:24:19,0.156692266464233,437.709321022034,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,2,gaussian,2022-01-22 01:17:17,2022-01-22 01:17:17,2022-01-22 01:17:17,2022-01-22 01:17:18,2022-01-22 01:25:41,0.126760005950928,503.505681991577,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,2,gaussian,2022-01-22 01:17:08,2022-01-22 01:17:09,2022-01-22 01:17:09,2022-01-22 01:17:11,2022-01-22 01:26:22,0.260280132293701,551.535883188248,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,16,empirical,2022-01-22 01:24:16,2022-01-22 01:24:19,2022-01-22 01:24:20,2022-01-22 01:24:21,2022-01-22 01:26:26,0.820237874984741,124.791858434677,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,8,empirical,2022-01-22 01:19:16,2022-01-22 01:19:17,2022-01-22 01:19:18,2022-01-22 01:19:22,2022-01-22 01:26:58,0.213090896606445,455.892606496811,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,16,gaussian,2022-01-22 01:25:01,2022-01-22 01:25:04,2022-01-22 01:25:05,2022-01-22 01:25:14,2022-01-22 01:27:48,0.600769519805908,154.320029258728,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,16,gaussian,2022-01-22 01:25:58,2022-01-22 01:26:02,2022-01-22 01:26:03,2022-01-22 01:26:05,2022-01-22 01:28:02,0.930123090744019,117.771133184433,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,16,empirical,2022-01-22 01:23:29,2022-01-22 01:23:32,2022-01-22 01:23:32,2022-01-22 01:23:40,2022-01-22 01:28:14,0.515447616577148,274.445198297501,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,8,ctree,2022-01-22 01:22:27,2022-01-22 01:22:31,2022-01-22 01:22:32,2022-01-22 01:22:34,2022-01-22 01:30:22,0.95165228843689,468.72024679184,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,8,ctree,2022-01-22 01:21:30,2022-01-22 01:21:34,2022-01-22 01:21:35,2022-01-22 01:21:44,2022-01-22 01:31:04,0.981574535369873,560.419023513794,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,24,empirical,2022-01-22 01:29:22,2022-01-22 01:29:25,2022-01-22 01:29:25,2022-01-22 01:29:26,2022-01-22 01:31:23,0.737452745437622,116.889065504074,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,4,empirical,2022-01-22 01:17:45,2022-01-22 01:17:47,2022-01-22 01:17:47,2022-01-22 01:17:50,2022-01-22 01:31:49,0.201099872589111,839.631712436676,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,1,gaussian,2022-01-22 01:16:04,2022-01-22 01:16:06,2022-01-22 01:16:07,2022-01-22 01:16:07,2022-01-22 01:31:54,0.317160129547119,946.763425827026,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,16,ctree,2022-01-22 01:28:06,2022-01-22 01:28:08,2022-01-22 01:28:09,2022-01-22 01:28:09,2022-01-22 01:32:22,0.370973587036133,252.829816818237,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,1,gaussian,2022-01-22 01:16:23,2022-01-22 01:16:24,2022-01-22 01:16:24,2022-01-22 01:16:25,2022-01-22 01:32:32,0.259876728057861,967.826942682266,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,16,ctree,2022-01-22 01:27:09,2022-01-22 01:27:12,2022-01-22 01:27:13,2022-01-22 01:27:21,2022-01-22 01:32:34,0.809694051742554,312.536510705948,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,24,gaussian,2022-01-22 01:30:27,2022-01-22 01:30:30,2022-01-22 01:30:31,2022-01-22 01:30:40,2022-01-22 01:32:53,0.975281715393066,133.432362556458,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,24,gaussian,2022-01-22 01:31:33,2022-01-22 01:31:37,2022-01-22 01:31:38,2022-01-22 01:31:39,2022-01-22 01:32:57,0.975476026535034,78.014899969101,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,4,ctree,2022-01-22 01:18:57,2022-01-22 01:19:00,2022-01-22 01:19:00,2022-01-22 01:19:02,2022-01-22 01:33:13,0.730637788772583,851.774129629135,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,24,empirical,2022-01-22 01:28:36,2022-01-22 01:28:37,2022-01-22 01:28:38,2022-01-22 01:28:44,2022-01-22 01:33:16,0.608855962753296,271.502300739288,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,32,empirical,2022-01-22 01:33:56,2022-01-22 01:34:00,2022-01-22 01:34:01,2022-01-22 01:34:02,2022-01-22 01:35:11,0.851229667663574,68.9212827682495,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,4,ctree,2022-01-22 01:18:39,2022-01-22 01:18:40,2022-01-22 01:18:41,2022-01-22 01:18:44,2022-01-22 01:35:15,0.326074600219727,990.224272966385,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,32,empirical,2022-01-22 01:33:22,2022-01-22 01:33:24,2022-01-22 01:33:24,2022-01-22 01:33:29,2022-01-22 01:36:30,0.282434701919556,181.30904173851,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,24,ctree,2022-01-22 01:33:01,2022-01-22 01:33:02,2022-01-22 01:33:03,2022-01-22 01:33:03,2022-01-22 01:36:46,0.29549241065979,223.263365983963,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,32,gaussian,2022-01-22 01:35:39,2022-01-22 01:35:42,2022-01-22 01:35:43,2022-01-22 01:35:44,2022-01-22 01:36:47,0.593777418136597,62.2703466415405,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,32,gaussian,2022-01-22 01:34:48,2022-01-22 01:34:51,2022-01-22 01:34:52,2022-01-22 01:35:00,2022-01-22 01:36:49,1.072110414505,109.304872989655,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,24,ctree,2022-01-22 01:32:39,2022-01-22 01:32:40,2022-01-22 01:32:40,2022-01-22 01:32:44,2022-01-22 01:36:52,0.229806184768677,247.217267990112,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,32,ctree,2022-01-22 01:36:58,2022-01-22 01:36:59,2022-01-22 01:36:59,2022-01-22 01:37:00,2022-01-22 01:38:20,0.140708446502686,80.3763806819916,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,2,ctree,2022-01-22 01:17:35,2022-01-22 01:17:36,2022-01-22 01:17:36,2022-01-22 01:17:37,2022-01-22 01:38:37,0.154358386993408,1260.15559983254,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,32,ctree,2022-01-22 01:36:45,2022-01-22 01:36:46,2022-01-22 01:36:46,2022-01-22 01:36:49,2022-01-22 01:38:37,0.238625526428223,108.586423873901,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,1,ctree,2022-01-22 00:55:46,2022-01-22 00:55:47,2022-01-22 00:55:47,2022-01-22 00:55:47,2022-01-22 01:38:46,0.137654066085815,2579.23980212212,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,24,1,ctree,2022-01-22 00:55:57,2022-01-22 00:55:58,2022-01-22 00:55:58,2022-01-22 00:55:58,2022-01-22 01:38:47,0.102860450744629,2569.46539926529,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,2,empirical,2022-01-22 01:16:52,2022-01-22 01:16:53,2022-01-22 01:16:53,2022-01-22 01:16:54,2022-01-22 01:38:55,0.100463628768921,1320.99148344994,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,1,empirical,2022-01-22 01:37:20,2022-01-22 01:37:22,2022-01-22 01:37:22,2022-01-22 01:37:22,2022-01-22 01:39:05,0.34293794631958,102.677614450455,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,1,empirical,2022-01-22 01:37:56,2022-01-22 01:37:59,2022-01-22 01:37:59,2022-01-22 01:38:00,2022-01-22 01:39:15,0.538186073303223,75.0914919376373,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,2,empirical,2022-01-22 01:39:07,2022-01-22 01:39:07,2022-01-22 01:39:07,2022-01-22 01:39:08,2022-01-22 01:39:58,0.151895761489868,50.6365342140198,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,2,empirical,2022-01-22 01:38:59,2022-01-22 01:39:00,2022-01-22 01:39:00,2022-01-22 01:39:01,2022-01-22 01:40:07,0.12798285484314,65.1254358291626,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,2,ctree,2022-01-22 01:17:25,2022-01-22 01:17:26,2022-01-22 01:17:26,2022-01-22 01:17:28,2022-01-22 01:40:09,0.188083648681641,1360.05182433128,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,4,empirical,2022-01-22 01:39:57,2022-01-22 01:39:58,2022-01-22 01:39:58,2022-01-22 01:39:58,2022-01-22 01:40:59,0.134471893310547,60.5440368652344,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,4,empirical,2022-01-22 01:39:48,2022-01-22 01:39:49,2022-01-22 01:39:49,2022-01-22 01:39:51,2022-01-22 01:41:07,0.168824911117554,76.013284444809,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,8,empirical,2022-01-22 01:40:55,2022-01-22 01:40:56,2022-01-22 01:40:56,2022-01-22 01:40:56,2022-01-22 01:42:12,0.159416913986206,75.9276638031006,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,8,empirical,2022-01-22 01:40:44,2022-01-22 01:40:45,2022-01-22 01:40:45,2022-01-22 01:40:47,2022-01-22 01:42:19,0.288350582122803,91.5134017467499,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,16,empirical,2022-01-22 01:41:57,2022-01-22 01:41:58,2022-01-22 01:41:58,2022-01-22 01:42:01,2022-01-22 01:43:42,0.214263916015625,101.665854930878,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,16,empirical,2022-01-22 01:42:12,2022-01-22 01:42:14,2022-01-22 01:42:14,2022-01-22 01:42:14,2022-01-22 01:43:51,0.115813732147217,97.0400414466858,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,24,empirical,2022-01-22 01:43:33,2022-01-22 01:43:34,2022-01-22 01:43:35,2022-01-22 01:43:39,2022-01-22 01:45:29,0.321691751480103,109.873937129974,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,24,empirical,2022-01-22 01:43:51,2022-01-22 01:43:52,2022-01-22 01:43:52,2022-01-22 01:43:52,2022-01-22 01:45:39,0.241383790969849,106.319730520248,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,1,empirical,2022-01-22 01:15:18,2022-01-22 01:15:20,2022-01-22 01:15:20,2022-01-22 01:15:21,2022-01-22 01:46:11,0.387478828430176,1850.03498315811,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,1,empirical,2022-01-22 01:15:38,2022-01-22 01:15:41,2022-01-22 01:15:41,2022-01-22 01:15:42,2022-01-22 01:46:36,0.496640205383301,1853.96723556519,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,32,empirical,2022-01-22 01:45:50,2022-01-22 01:45:52,2022-01-22 01:45:52,2022-01-22 01:45:56,2022-01-22 01:47:57,0.39066481590271,121.211019992828,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,1,32,empirical,2022-01-22 01:46:18,2022-01-22 01:46:19,2022-01-22 01:46:19,2022-01-22 01:46:20,2022-01-22 01:48:31,0.385215997695923,131.002678155899,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,1,ctree,2022-01-22 01:16:36,2022-01-22 01:16:36,2022-01-22 01:16:36,2022-01-22 01:16:37,2022-01-22 01:51:13,0.144690990447998,2075.92581558228,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,1,empirical,2022-01-22 01:48:49,2022-01-22 01:48:51,2022-01-22 01:48:51,2022-01-22 01:48:52,2022-01-22 01:51:29,0.344641208648682,157.168018341064,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,1,empirical,2022-01-22 01:49:19,2022-01-22 01:49:21,2022-01-22 01:49:21,2022-01-22 01:49:22,2022-01-22 01:51:58,0.386120557785034,156.260537624359,0,1e+05,13,0.3,1,0,1,1
+9,10000,100,32,1,ctree,2022-01-22 01:16:45,2022-01-22 01:16:45,2022-01-22 01:16:45,2022-01-22 01:16:45,2022-01-22 01:52:19,0.109169960021973,2133.36749792099,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,2,empirical,2022-01-22 01:52:06,2022-01-22 01:52:08,2022-01-22 01:52:08,2022-01-22 01:52:10,2022-01-22 01:53:38,0.232431173324585,87.2419457435608,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,2,empirical,2022-01-22 01:52:39,2022-01-22 01:52:40,2022-01-22 01:52:40,2022-01-22 01:52:41,2022-01-22 01:53:41,0.205278396606445,60.3414344787598,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,4,empirical,2022-01-22 01:55:33,2022-01-22 01:55:34,2022-01-22 01:55:35,2022-01-22 01:55:40,2022-01-22 01:57:15,0.23747444152832,95.2346889972687,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,4,empirical,2022-01-22 01:56:13,2022-01-22 01:56:15,2022-01-22 01:56:15,2022-01-22 01:56:16,2022-01-22 01:57:22,0.3500075340271,66.3186814785004,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,8,empirical,2022-01-22 01:59:13,2022-01-22 01:59:14,2022-01-22 01:59:15,2022-01-22 01:59:18,2022-01-22 02:00:43,0.362035751342773,85.0005538463593,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,8,empirical,2022-01-22 01:59:47,2022-01-22 01:59:48,2022-01-22 01:59:49,2022-01-22 01:59:49,2022-01-22 02:00:57,0.305766344070435,67.8213777542114,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,16,empirical,2022-01-22 02:02:51,2022-01-22 02:02:52,2022-01-22 02:02:53,2022-01-22 02:02:56,2022-01-22 02:04:21,0.224912881851196,85.0768251419068,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,16,empirical,2022-01-22 02:03:20,2022-01-22 02:03:22,2022-01-22 02:03:22,2022-01-22 02:03:22,2022-01-22 02:04:30,0.235606670379639,67.4479074478149,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,24,empirical,2022-01-22 02:06:00,2022-01-22 02:06:02,2022-01-22 02:06:02,2022-01-22 02:06:05,2022-01-22 02:07:47,0.38435173034668,101.877918243408,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,24,empirical,2022-01-22 02:06:37,2022-01-22 02:06:38,2022-01-22 02:06:38,2022-01-22 02:06:39,2022-01-22 02:07:49,0.330096244812012,70.4685909748077,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,32,empirical,2022-01-22 02:09:43,2022-01-22 02:09:45,2022-01-22 02:09:45,2022-01-22 02:09:50,2022-01-22 02:11:19,0.3041090965271,88.6841707229614,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,2,32,empirical,2022-01-22 02:10:18,2022-01-22 02:10:20,2022-01-22 02:10:20,2022-01-22 02:10:21,2022-01-22 02:12:07,0.270083665847778,106.64613199234,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,1,empirical,2022-01-22 02:13:10,2022-01-22 02:13:11,2022-01-22 02:13:12,2022-01-22 02:13:12,2022-01-22 02:16:42,0.249302387237549,210.346002101898,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,1,empirical,2022-01-22 02:13:48,2022-01-22 02:13:53,2022-01-22 02:13:53,2022-01-22 02:13:54,2022-01-22 02:17:22,0.260806798934937,208.156105279922,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,2,empirical,2022-01-22 02:16:54,2022-01-22 02:16:55,2022-01-22 02:16:56,2022-01-22 02:16:56,2022-01-22 02:17:46,0.376712083816528,50.1760177612305,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,2,empirical,2022-01-22 02:16:26,2022-01-22 02:16:28,2022-01-22 02:16:28,2022-01-22 02:16:31,2022-01-22 02:18:17,0.314223527908325,105.823621749878,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,4,empirical,2022-01-22 02:19:16,2022-01-22 02:19:17,2022-01-22 02:19:17,2022-01-22 02:19:19,2022-01-22 02:20:18,0.204575061798096,58.8597540855408,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,4,empirical,2022-01-22 02:20:08,2022-01-22 02:20:09,2022-01-22 02:20:09,2022-01-22 02:20:10,2022-01-22 02:20:32,0.178043127059937,22.7060980796814,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,8,empirical,2022-01-22 02:22:28,2022-01-22 02:22:29,2022-01-22 02:22:30,2022-01-22 02:22:33,2022-01-22 02:23:42,0.180992364883423,69.2829351425171,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,8,empirical,2022-01-22 02:22:58,2022-01-22 02:23:01,2022-01-22 02:23:01,2022-01-22 02:23:02,2022-01-22 02:23:49,0.512573003768921,46.6333136558533,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,16,empirical,2022-01-22 02:26:42,2022-01-22 02:26:43,2022-01-22 02:26:43,2022-01-22 02:26:43,2022-01-22 02:27:57,0.306085348129272,73.472410440445,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,16,empirical,2022-01-22 02:26:14,2022-01-22 02:26:16,2022-01-22 02:26:16,2022-01-22 02:26:19,2022-01-22 02:28:41,0.154666185379028,142.405807495117,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,24,empirical,2022-01-22 02:30:39,2022-01-22 02:30:41,2022-01-22 02:30:42,2022-01-22 02:30:46,2022-01-22 02:31:54,0.37065052986145,68.0808618068695,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,24,empirical,2022-01-22 02:31:21,2022-01-22 02:31:23,2022-01-22 02:31:23,2022-01-22 02:31:24,2022-01-22 02:32:24,0.326589107513428,60.2514832019806,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,32,empirical,2022-01-22 02:36:09,2022-01-22 02:36:11,2022-01-22 02:36:12,2022-01-22 02:36:12,2022-01-22 02:36:55,0.437098979949951,43.1515862941742,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,4,ctree,2022-01-22 02:21:59,2022-01-22 02:22:00,2022-01-22 02:22:01,2022-01-22 02:22:01,2022-01-22 02:37:54,0.479377508163452,952.167794942856,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,32,empirical,2022-01-22 02:35:37,2022-01-22 02:35:40,2022-01-22 02:35:41,2022-01-22 02:36:06,2022-01-22 02:38:01,0.623153924942017,114.225393533707,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,2,empirical,2022-01-22 02:44:37,2022-01-22 02:44:38,2022-01-22 02:44:39,2022-01-22 02:44:39,2022-01-22 02:45:15,0.204447269439697,35.7962510585785,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,24,ctree,2022-01-22 02:34:23,2022-01-22 02:34:25,2022-01-22 02:34:25,2022-01-22 02:34:26,2022-01-22 02:45:17,0.404924869537354,650.690148353577,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,1,empirical,2022-01-22 02:40:44,2022-01-22 02:40:46,2022-01-22 02:40:46,2022-01-22 02:40:47,2022-01-22 02:46:43,0.344234466552734,356.187374591827,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,2,empirical,2022-01-22 02:44:10,2022-01-22 02:44:11,2022-01-22 02:44:11,2022-01-22 02:44:16,2022-01-22 02:47:17,0.33298659324646,180.438060998917,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,1,empirical,2022-01-22 02:41:27,2022-01-22 02:41:28,2022-01-22 02:41:28,2022-01-22 02:41:28,2022-01-22 02:47:33,0.211798667907715,364.525406360626,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,4,empirical,2022-01-22 02:47:19,2022-01-22 02:47:22,2022-01-22 02:47:22,2022-01-22 02:47:23,2022-01-22 02:47:55,0.26728343963623,31.9319834709168,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,4,empirical,2022-01-22 02:46:44,2022-01-22 02:46:45,2022-01-22 02:46:45,2022-01-22 02:46:48,2022-01-22 02:48:38,0.163733720779419,109.999467134476,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,4,32,ctree,2022-01-22 02:39:23,2022-01-22 02:39:25,2022-01-22 02:39:25,2022-01-22 02:39:25,2022-01-22 02:50:23,0.28056001663208,657.837820529938,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,8,empirical,2022-01-22 02:49:44,2022-01-22 02:49:46,2022-01-22 02:49:46,2022-01-22 02:49:49,2022-01-22 02:51:03,0.378391742706299,74.2485461235046,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,8,empirical,2022-01-22 02:50:27,2022-01-22 02:50:29,2022-01-22 02:50:29,2022-01-22 02:50:29,2022-01-22 02:51:11,0.288201093673706,41.4705760478973,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,16,empirical,2022-01-22 02:55:09,2022-01-22 02:55:16,2022-01-22 02:55:17,2022-01-22 02:55:19,2022-01-22 02:56:18,1.01343655586243,59.1026678085327,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,16,empirical,2022-01-22 02:53:58,2022-01-22 02:54:02,2022-01-22 02:54:02,2022-01-22 02:54:09,2022-01-22 02:56:40,0.692918300628662,150.14314699173,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,4,gaussian,2022-01-22 02:47:53,2022-01-22 02:47:54,2022-01-22 02:47:54,2022-01-22 02:47:57,2022-01-22 02:57:14,0.211225271224976,556.901450157166,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,8,gaussian,2022-01-22 02:51:45,2022-01-22 02:51:47,2022-01-22 02:51:48,2022-01-22 02:51:49,2022-01-22 02:57:59,0.486351490020752,370.704549789429,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,4,gaussian,2022-01-22 02:48:16,2022-01-22 02:48:19,2022-01-22 02:48:19,2022-01-22 02:48:20,2022-01-22 02:58:59,0.472658157348633,639.603382587433,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,24,empirical,2022-01-22 02:59:08,2022-01-22 02:59:10,2022-01-22 02:59:11,2022-01-22 02:59:17,2022-01-22 03:01:00,0.499860525131226,103.697935581207,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,24,empirical,2022-01-22 03:00:04,2022-01-22 03:00:07,2022-01-22 03:00:08,2022-01-22 03:00:09,2022-01-22 03:01:01,0.549014329910278,52.0763595104218,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,32,empirical,2022-01-22 03:04:15,2022-01-22 03:04:19,2022-01-22 03:04:20,2022-01-22 03:04:28,2022-01-22 03:06:12,0.664488554000855,104.000945568085,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,32,empirical,2022-01-22 03:05:42,2022-01-22 03:05:45,2022-01-22 03:05:46,2022-01-22 03:05:47,2022-01-22 03:06:14,0.560811758041382,27.7492747306824,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,8,ctree,2022-01-22 02:53:08,2022-01-22 02:53:11,2022-01-22 02:53:12,2022-01-22 02:53:13,2022-01-22 03:06:44,0.607256412506104,811.02317070961,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,16,ctree,2022-01-22 02:58:23,2022-01-22 02:58:25,2022-01-22 02:58:26,2022-01-22 02:58:26,2022-01-22 03:07:00,0.417230606079102,513.509533166885,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,4,ctree,2022-01-22 02:49:08,2022-01-22 02:49:09,2022-01-22 02:49:10,2022-01-22 02:49:10,2022-01-22 03:11:49,0.193442821502686,1359.09394526482,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,24,ctree,2022-01-22 03:03:08,2022-01-22 03:03:11,2022-01-22 03:03:12,2022-01-22 03:03:13,2022-01-22 03:12:57,0.896903514862061,583.915278196335,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,32,ctree,2022-01-22 03:08:40,2022-01-22 03:08:43,2022-01-22 03:08:43,2022-01-22 03:08:44,2022-01-22 03:13:43,0.509770631790161,298.823926687241,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,4,ctree,2022-01-22 02:48:40,2022-01-22 02:48:42,2022-01-22 02:48:42,2022-01-22 02:48:46,2022-01-22 03:14:14,0.184979677200317,1528.42556667328,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,2,empirical,2022-01-22 03:13:34,2022-01-22 03:13:36,2022-01-22 03:13:36,2022-01-22 03:13:37,2022-01-22 03:14:40,0.389299392700195,63.1538534164429,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,24,ctree,2022-01-22 03:02:02,2022-01-22 03:02:06,2022-01-22 03:02:06,2022-01-22 03:02:14,2022-01-22 03:15:31,0.577649831771851,796.840286016464,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,32,ctree,2022-01-22 03:07:46,2022-01-22 03:07:49,2022-01-22 03:07:50,2022-01-22 03:07:57,2022-01-22 03:16:19,0.64387583732605,502.070887327194,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,4,empirical,2022-01-22 03:15:51,2022-01-22 03:15:52,2022-01-22 03:15:53,2022-01-22 03:15:53,2022-01-22 03:16:34,0.39448881149292,40.8158376216888,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,1,gaussian,2022-01-22 02:42:52,2022-01-22 02:42:54,2022-01-22 02:42:54,2022-01-22 02:42:54,2022-01-22 03:17:06,0.308839797973633,2051.89924573898,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,2,empirical,2022-01-22 03:13:06,2022-01-22 03:13:07,2022-01-22 03:13:08,2022-01-22 03:13:11,2022-01-22 03:17:13,0.289663314819336,242.524348497391,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,4,empirical,2022-01-22 03:15:32,2022-01-22 03:15:34,2022-01-22 03:15:34,2022-01-22 03:15:37,2022-01-22 03:17:50,0.209911584854126,132.961334228516,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,1,empirical,2022-01-22 03:09:35,2022-01-22 03:09:37,2022-01-22 03:09:38,2022-01-22 03:09:39,2022-01-22 03:17:56,0.532514572143555,496.4817237854,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,1,empirical,2022-01-22 03:10:32,2022-01-22 03:10:42,2022-01-22 03:10:42,2022-01-22 03:10:43,2022-01-22 03:18:39,0.61293625831604,475.975988864899,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,8,empirical,2022-01-22 03:18:07,2022-01-22 03:18:08,2022-01-22 03:18:09,2022-01-22 03:18:09,2022-01-22 03:18:44,0.236171960830689,35.3581767082214,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,8,2,ctree,2022-01-22 02:46:13,2022-01-22 02:46:15,2022-01-22 02:46:16,2022-01-22 02:46:16,2022-01-22 03:18:54,0.38081431388855,1957.60978984833,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,8,empirical,2022-01-22 03:17:41,2022-01-22 03:17:43,2022-01-22 03:17:43,2022-01-22 03:17:47,2022-01-22 03:19:04,0.362355470657349,76.3169219493866,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,16,empirical,2022-01-22 03:21:02,2022-01-22 03:21:06,2022-01-22 03:21:07,2022-01-22 03:21:13,2022-01-22 03:22:44,0.596693277359009,91.0323338508606,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,16,empirical,2022-01-22 03:22:11,2022-01-22 03:22:15,2022-01-22 03:22:16,2022-01-22 03:22:17,2022-01-22 03:22:53,0.781660795211792,36.5028355121613,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,8,gaussian,2022-01-22 03:18:36,2022-01-22 03:18:39,2022-01-22 03:18:39,2022-01-22 03:18:43,2022-01-22 03:23:57,0.515699148178101,314.193381071091,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,8,gaussian,2022-01-22 03:19:02,2022-01-22 03:19:04,2022-01-22 03:19:04,2022-01-22 03:19:05,2022-01-22 03:24:36,0.454651355743408,330.895944356918,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,4,gaussian,2022-01-22 03:16:09,2022-01-22 03:16:10,2022-01-22 03:16:10,2022-01-22 03:16:13,2022-01-22 03:24:56,0.529733896255493,523.202776432037,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,4,gaussian,2022-01-22 03:16:31,2022-01-22 03:16:33,2022-01-22 03:16:33,2022-01-22 03:16:34,2022-01-22 03:25:52,0.366849422454834,558.215231180191,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,16,gaussian,2022-01-22 03:24:16,2022-01-22 03:24:19,2022-01-22 03:24:20,2022-01-22 03:24:22,2022-01-22 03:27:59,0.906281471252441,217.435868263245,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,24,empirical,2022-01-22 03:28:37,2022-01-22 03:28:40,2022-01-22 03:28:41,2022-01-22 03:28:42,2022-01-22 03:29:09,0.51256799697876,27.5531740188599,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,24,empirical,2022-01-22 03:27:57,2022-01-22 03:27:59,2022-01-22 03:27:59,2022-01-22 03:28:05,2022-01-22 03:29:21,0.314983606338501,75.8100733757019,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,8,ctree,2022-01-22 03:20:12,2022-01-22 03:20:14,2022-01-22 03:20:15,2022-01-22 03:20:16,2022-01-22 03:34:56,0.736507892608643,880.105220556259,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,16,ctree,2022-01-22 03:26:53,2022-01-22 03:27:05,2022-01-22 03:27:07,2022-01-22 03:27:08,2022-01-22 03:34:59,1.68570113182068,471.237874746323,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,16,ctree,2022-01-22 03:25:20,2022-01-22 03:25:24,2022-01-22 03:25:26,2022-01-22 03:25:35,2022-01-22 03:35:00,1.0910701751709,565.137838602066,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,24,gaussian,2022-01-22 03:30:27,2022-01-22 03:30:31,2022-01-22 03:30:33,2022-01-22 03:30:34,2022-01-22 03:35:11,1.46600914001465,276.781050443649,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,32,empirical,2022-01-22 03:35:42,2022-01-22 03:35:44,2022-01-22 03:35:45,2022-01-22 03:35:46,2022-01-22 03:36:09,0.583730697631836,23.1291429996491,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,32,empirical,2022-01-22 03:35:10,2022-01-22 03:35:12,2022-01-22 03:35:13,2022-01-22 03:35:18,2022-01-22 03:36:20,0.338057518005371,61.9942181110382,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,8,ctree,2022-01-22 03:19:34,2022-01-22 03:19:37,2022-01-22 03:19:37,2022-01-22 03:19:43,2022-01-22 03:37:48,0.73034930229187,1084.6105401516,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,24,ctree,2022-01-22 03:32:39,2022-01-22 03:32:43,2022-01-22 03:32:44,2022-01-22 03:33:09,2022-01-22 03:39:51,1.05011582374573,402.112931966782,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,24,ctree,2022-01-22 03:34:38,2022-01-22 03:34:40,2022-01-22 03:34:40,2022-01-22 03:34:41,2022-01-22 03:40:17,0.312652111053467,336.034219503403,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,32,gaussian,2022-01-22 03:36:21,2022-01-22 03:36:23,2022-01-22 03:36:23,2022-01-22 03:36:28,2022-01-22 03:40:17,0.323652505874634,228.625579595566,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,32,gaussian,2022-01-22 03:37:14,2022-01-22 03:37:18,2022-01-22 03:37:19,2022-01-22 03:37:21,2022-01-22 03:40:39,0.98668909072876,197.94747376442,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,4,ctree,2022-01-22 03:17:16,2022-01-22 03:17:18,2022-01-22 03:17:18,2022-01-22 03:17:19,2022-01-22 03:41:33,0.258048534393311,1453.51244306564,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,32,ctree,2022-01-22 03:40:10,2022-01-22 03:40:12,2022-01-22 03:40:12,2022-01-22 03:40:13,2022-01-22 03:43:11,0.475870132446289,178.015317678452,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,4,ctree,2022-01-22 03:16:52,2022-01-22 03:16:55,2022-01-22 03:16:55,2022-01-22 03:17:00,2022-01-22 03:43:30,0.500282287597656,1590.80685448647,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,32,ctree,2022-01-22 03:39:01,2022-01-22 03:39:06,2022-01-22 03:39:06,2022-01-22 03:39:18,2022-01-22 03:43:55,0.87313985824585,276.822570800781,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,2,empirical,2022-01-22 03:43:34,2022-01-22 03:43:35,2022-01-22 03:43:35,2022-01-22 03:43:35,2022-01-22 03:44:26,0.200089454650879,51.1402425765991,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,1,gaussian,2022-01-22 03:11:29,2022-01-22 03:11:30,2022-01-22 03:11:30,2022-01-22 03:11:31,2022-01-22 03:44:40,0.187605142593384,1989.52359509468,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,4,empirical,2022-01-22 03:44:48,2022-01-22 03:44:49,2022-01-22 03:44:50,2022-01-22 03:44:50,2022-01-22 03:45:42,0.373626232147217,51.8829953670502,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,4,empirical,2022-01-22 03:44:35,2022-01-22 03:44:36,2022-01-22 03:44:36,2022-01-22 03:44:38,2022-01-22 03:47:51,0.204853296279907,192.799675703049,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,8,empirical,2022-01-22 03:47:04,2022-01-22 03:47:07,2022-01-22 03:47:07,2022-01-22 03:47:08,2022-01-22 03:48:06,0.583279609680176,57.5668113231659,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,8,empirical,2022-01-22 03:46:35,2022-01-22 03:46:36,2022-01-22 03:46:37,2022-01-22 03:46:41,2022-01-22 03:48:48,0.367329120635986,127.040172576904,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,2,empirical,2022-01-22 03:43:11,2022-01-22 03:43:13,2022-01-22 03:43:13,2022-01-22 03:43:18,2022-01-22 03:49:13,0.55579400062561,355.404944419861,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,2,ctree,2022-01-22 03:15:08,2022-01-22 03:15:09,2022-01-22 03:15:10,2022-01-22 03:15:10,2022-01-22 03:49:34,0.585629463195801,2063.59565925598,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,16,empirical,2022-01-22 03:51:37,2022-01-22 03:51:42,2022-01-22 03:51:43,2022-01-22 03:51:44,2022-01-22 03:52:44,0.479313135147095,60.1241667270661,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,1,empirical,2022-01-22 03:40:43,2022-01-22 03:40:44,2022-01-22 03:40:45,2022-01-22 03:40:45,2022-01-22 03:53:05,0.249307870864868,739.79953455925,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,16,empirical,2022-01-22 03:50:37,2022-01-22 03:50:40,2022-01-22 03:50:41,2022-01-22 03:50:48,2022-01-22 03:53:13,0.737832069396973,144.867150068283,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,8,gaussian,2022-01-22 03:47:34,2022-01-22 03:47:37,2022-01-22 03:47:38,2022-01-22 03:47:43,2022-01-22 03:53:43,0.588129758834839,359.696888685226,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,1,empirical,2022-01-22 03:41:03,2022-01-22 03:41:04,2022-01-22 03:41:05,2022-01-22 03:41:05,2022-01-22 03:53:45,0.339154243469238,759.80712223053,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,8,gaussian,2022-01-22 03:48:18,2022-01-22 03:48:21,2022-01-22 03:48:22,2022-01-22 03:48:23,2022-01-22 03:54:39,0.639863252639771,376.704631090164,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,4,gaussian,2022-01-22 03:45:01,2022-01-22 03:45:03,2022-01-22 03:45:03,2022-01-22 03:45:07,2022-01-22 03:55:16,0.397824764251709,609.590039253235,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,4,gaussian,2022-01-22 03:45:19,2022-01-22 03:45:21,2022-01-22 03:45:21,2022-01-22 03:45:21,2022-01-22 03:56:16,0.309081792831421,654.494213104248,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,16,gaussian,2022-01-22 03:52:57,2022-01-22 03:53:01,2022-01-22 03:53:01,2022-01-22 03:53:10,2022-01-22 03:57:48,0.800508499145508,277.265662431717,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,16,gaussian,2022-01-22 03:54:06,2022-01-22 03:54:10,2022-01-22 03:54:10,2022-01-22 03:54:12,2022-01-22 03:58:30,0.724850416183472,258.238918542862,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,24,empirical,2022-01-22 03:58:35,2022-01-22 03:58:38,2022-01-22 03:58:38,2022-01-22 03:58:39,2022-01-22 03:59:11,0.346559762954712,32.0990943908691,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,24,empirical,2022-01-22 03:57:21,2022-01-22 03:57:25,2022-01-22 03:57:25,2022-01-22 03:57:33,2022-01-22 03:59:40,0.641945362091065,126.86918592453,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,2,ctree,2022-01-22 03:14:42,2022-01-22 03:14:43,2022-01-22 03:14:43,2022-01-22 03:14:46,2022-01-22 04:00:33,0.229181289672852,2746.98105549812,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,2,gaussian,2022-01-22 03:43:48,2022-01-22 03:43:49,2022-01-22 03:43:50,2022-01-22 03:43:52,2022-01-22 04:03:26,0.215842485427856,1174.06771945953,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,24,gaussian,2022-01-22 04:01:03,2022-01-22 04:01:08,2022-01-22 04:01:09,2022-01-22 04:01:10,2022-01-22 04:04:20,0.841955423355103,189.700965881348,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,8,ctree,2022-01-22 03:49:46,2022-01-22 03:49:49,2022-01-22 03:49:50,2022-01-22 03:49:51,2022-01-22 04:05:36,0.558454275131226,944.906455278397,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,16,ctree,2022-01-22 03:56:18,2022-01-22 03:56:23,2022-01-22 03:56:24,2022-01-22 03:56:25,2022-01-22 04:06:11,0.63016676902771,586.453827142716,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,2,gaussian,2022-01-22 03:44:01,2022-01-22 03:44:01,2022-01-22 03:44:02,2022-01-22 03:44:02,2022-01-22 04:06:18,0.165026903152466,1336.52430844307,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,32,empirical,2022-01-22 04:05:56,2022-01-22 04:05:58,2022-01-22 04:05:59,2022-01-22 04:06:01,2022-01-22 04:06:28,0.87062668800354,27.5880634784699,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,32,empirical,2022-01-22 04:04:51,2022-01-22 04:04:54,2022-01-22 04:04:55,2022-01-22 04:05:01,2022-01-22 04:06:35,0.24402117729187,94.7127361297608,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,16,ctree,2022-01-22 03:55:17,2022-01-22 03:55:22,2022-01-22 03:55:23,2022-01-22 03:55:31,2022-01-22 04:06:37,0.853739500045776,665.81511425972,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,8,ctree,2022-01-22 03:49:06,2022-01-22 03:49:09,2022-01-22 03:49:10,2022-01-22 03:49:16,2022-01-22 04:07:37,0.691263914108276,1101.05474829674,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,24,ctree,2022-01-22 04:04:11,2022-01-22 04:04:13,2022-01-22 04:04:13,2022-01-22 04:04:13,2022-01-22 04:09:16,0.275013446807861,302.969065666199,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,24,ctree,2022-01-22 04:02:54,2022-01-22 04:03:07,2022-01-22 04:03:09,2022-01-22 04:03:56,2022-01-22 04:10:02,1.94342827796936,366.072500944138,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,32,gaussian,2022-01-22 04:06:52,2022-01-22 04:06:54,2022-01-22 04:06:55,2022-01-22 04:07:01,2022-01-22 04:10:22,0.54408597946167,200.706781864166,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,32,gaussian,2022-01-22 04:07:56,2022-01-22 04:08:02,2022-01-22 04:08:03,2022-01-22 04:08:06,2022-01-22 04:10:41,1.27220463752747,155.589918613434,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,4,ctree,2022-01-22 03:46:07,2022-01-22 03:46:10,2022-01-22 03:46:10,2022-01-22 03:46:10,2022-01-22 04:12:17,0.354359865188599,1567.05265402794,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,32,ctree,2022-01-22 04:10:35,2022-01-22 04:10:36,2022-01-22 04:10:36,2022-01-22 04:10:37,2022-01-22 04:13:34,0.238357305526733,177.855332612991,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,32,ctree,2022-01-22 04:09:36,2022-01-22 04:09:42,2022-01-22 04:09:43,2022-01-22 04:09:53,2022-01-22 04:13:59,0.945101976394653,245.957392692566,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,4,ctree,2022-01-22 03:45:41,2022-01-22 03:45:43,2022-01-22 03:45:44,2022-01-22 03:45:48,2022-01-22 04:14:26,0.652153253555298,1718.03585600853,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,2,empirical,2022-01-22 04:14:05,2022-01-22 04:14:06,2022-01-22 04:14:06,2022-01-22 04:14:06,2022-01-22 04:15:05,0.165839672088623,59.1394057273865,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,4,empirical,2022-01-22 04:15:11,2022-01-22 04:15:13,2022-01-22 04:15:13,2022-01-22 04:15:14,2022-01-22 04:16:21,0.32716965675354,67.030036687851,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,1,gaussian,2022-01-22 03:41:25,2022-01-22 03:41:27,2022-01-22 03:41:27,2022-01-22 03:41:27,2022-01-22 04:17:06,0.424708366394043,2138.78034353256,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,1,gaussian,2022-01-22 03:41:50,2022-01-22 03:41:52,2022-01-22 03:41:52,2022-01-22 03:41:53,2022-01-22 04:18:24,0.405516624450684,2191.29393172264,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,8,empirical,2022-01-22 04:17:32,2022-01-22 04:17:34,2022-01-22 04:17:34,2022-01-22 04:17:36,2022-01-22 04:18:41,0.810015201568604,65.1195733547211,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,4,empirical,2022-01-22 04:14:59,2022-01-22 04:15:01,2022-01-22 04:15:01,2022-01-22 04:15:04,2022-01-22 04:19:22,0.374434947967529,258.052938699722,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,8,empirical,2022-01-22 04:17:05,2022-01-22 04:17:08,2022-01-22 04:17:08,2022-01-22 04:17:13,2022-01-22 04:19:54,0.547721147537231,160.733810424805,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,2,empirical,2022-01-22 04:13:53,2022-01-22 04:13:54,2022-01-22 04:13:54,2022-01-22 04:13:56,2022-01-22 04:21:21,0.254103422164917,445.001267910004,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,16,empirical,2022-01-22 04:22:09,2022-01-22 04:22:14,2022-01-22 04:22:15,2022-01-22 04:22:17,2022-01-22 04:23:12,0.977073431015015,54.7836308479309,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,16,empirical,2022-01-22 04:21:07,2022-01-22 04:21:10,2022-01-22 04:21:11,2022-01-22 04:21:18,2022-01-22 04:23:37,0.667179346084595,138.789150476456,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,2,ctree,2022-01-22 03:44:23,2022-01-22 03:44:24,2022-01-22 03:44:24,2022-01-22 03:44:24,2022-01-22 04:24:24,0.283277750015259,2400.35080480576,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,8,gaussian,2022-01-22 04:18:08,2022-01-22 04:18:12,2022-01-22 04:18:13,2022-01-22 04:18:19,2022-01-22 04:24:58,0.546968460083008,398.43504691124,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,8,gaussian,2022-01-22 04:18:52,2022-01-22 04:18:55,2022-01-22 04:18:55,2022-01-22 04:18:56,2022-01-22 04:25:42,0.552104234695435,405.455137014389,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,4,gaussian,2022-01-22 04:15:27,2022-01-22 04:15:29,2022-01-22 04:15:29,2022-01-22 04:15:33,2022-01-22 04:27:26,0.503604888916016,713.526695728302,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,4,gaussian,2022-01-22 04:15:49,2022-01-22 04:15:50,2022-01-22 04:15:51,2022-01-22 04:15:51,2022-01-22 04:27:38,0.298052310943604,707.226191520691,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,1,empirical,2022-01-22 04:11:01,2022-01-22 04:11:03,2022-01-22 04:11:03,2022-01-22 04:11:04,2022-01-22 04:27:45,0.344135522842407,1000.90395665169,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,16,gaussian,2022-01-22 04:23:33,2022-01-22 04:23:39,2022-01-22 04:23:40,2022-01-22 04:23:49,2022-01-22 04:28:12,1.18532633781433,263.216118335724,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,16,gaussian,2022-01-22 04:24:37,2022-01-22 04:24:42,2022-01-22 04:24:43,2022-01-22 04:24:45,2022-01-22 04:28:31,0.984174489974976,225.848697423935,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,1,empirical,2022-01-22 04:11:29,2022-01-22 04:11:32,2022-01-22 04:11:32,2022-01-22 04:11:33,2022-01-22 04:28:32,0.441158771514893,1018.56839704514,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,24,empirical,2022-01-22 04:29:17,2022-01-22 04:29:22,2022-01-22 04:29:23,2022-01-22 04:29:24,2022-01-22 04:30:18,0.819403409957886,53.6927182674408,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,24,empirical,2022-01-22 04:28:26,2022-01-22 04:28:28,2022-01-22 04:28:29,2022-01-22 04:28:35,2022-01-22 04:31:09,0.50626277923584,154.623038053513,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,16,ctree,2022-01-22 04:27:14,2022-01-22 04:27:19,2022-01-22 04:27:20,2022-01-22 04:27:22,2022-01-22 04:35:24,0.96224308013916,481.980944395065,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,24,gaussian,2022-01-22 04:30:33,2022-01-22 04:30:37,2022-01-22 04:30:38,2022-01-22 04:30:47,2022-01-22 04:35:41,1.10155034065247,294.364867448807,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,8,ctree,2022-01-22 04:20:18,2022-01-22 04:20:21,2022-01-22 04:20:22,2022-01-22 04:20:23,2022-01-22 04:35:50,0.672575235366821,927.401400566101,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,16,ctree,2022-01-22 04:25:53,2022-01-22 04:25:57,2022-01-22 04:25:59,2022-01-22 04:26:08,2022-01-22 04:36:21,1.11445498466492,612.33871793747,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,24,gaussian,2022-01-22 04:31:41,2022-01-22 04:31:46,2022-01-22 04:31:47,2022-01-22 04:31:49,2022-01-22 04:36:51,1.0779721736908,301.52494430542,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,32,empirical,2022-01-22 04:37:11,2022-01-22 04:37:14,2022-01-22 04:37:15,2022-01-22 04:37:17,2022-01-22 04:37:53,0.782464265823364,35.699024438858,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,2,gaussian,2022-01-22 04:14:15,2022-01-22 04:14:17,2022-01-22 04:14:17,2022-01-22 04:14:19,2022-01-22 04:37:53,0.196419477462769,1413.82299041748,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,8,ctree,2022-01-22 04:19:37,2022-01-22 04:19:40,2022-01-22 04:19:41,2022-01-22 04:19:47,2022-01-22 04:38:11,0.93701171875,1104.41647624969,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,32,empirical,2022-01-22 04:36:11,2022-01-22 04:36:13,2022-01-22 04:36:14,2022-01-22 04:36:20,2022-01-22 04:38:26,0.86063814163208,125.708092451096,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,2,ctree,2022-01-22 03:44:11,2022-01-22 03:44:13,2022-01-22 03:44:13,2022-01-22 03:44:15,2022-01-22 04:38:42,0.121263265609741,3267.3486225605,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,2,gaussian,2022-01-22 04:14:27,2022-01-22 04:14:28,2022-01-22 04:14:28,2022-01-22 04:14:28,2022-01-22 04:38:56,0.145580530166626,1467.49732446671,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,32,gaussian,2022-01-22 04:38:37,2022-01-22 04:38:39,2022-01-22 04:38:39,2022-01-22 04:38:45,2022-01-22 04:42:25,0.142096996307373,219.530455827713,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,24,ctree,2022-01-22 04:35:02,2022-01-22 04:35:06,2022-01-22 04:35:07,2022-01-22 04:35:08,2022-01-22 04:43:04,0.678585052490234,475.959749221802,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,24,ctree,2022-01-22 04:33:26,2022-01-22 04:33:29,2022-01-22 04:33:29,2022-01-22 04:33:47,2022-01-22 04:44:01,0.610734462738037,614.076422452927,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,32,ctree,2022-01-22 04:42:26,2022-01-22 04:42:27,2022-01-22 04:42:28,2022-01-22 04:42:28,2022-01-22 04:45:14,0.215010643005371,165.800561189652,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,4,ctree,2022-01-22 04:16:39,2022-01-22 04:16:41,2022-01-22 04:16:41,2022-01-22 04:16:42,2022-01-22 04:45:46,0.502440214157105,1744.52444386482,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,32,ctree,2022-01-22 04:40:36,2022-01-22 04:40:42,2022-01-22 04:40:43,2022-01-22 04:40:56,2022-01-22 04:45:55,1.08466792106628,299.564634084702,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,4,ctree,2022-01-22 04:16:15,2022-01-22 04:16:17,2022-01-22 04:16:17,2022-01-22 04:16:21,2022-01-22 04:46:58,0.19093656539917,1836.83525872231,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,16,1,ctree,2022-01-22 03:12:14,2022-01-22 03:12:15,2022-01-22 03:12:15,2022-01-22 03:12:16,2022-01-22 04:47:21,0.14710259437561,5704.73913574219,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,1,gaussian,2022-01-22 04:12:36,2022-01-22 04:12:39,2022-01-22 04:12:39,2022-01-22 04:12:40,2022-01-22 04:49:25,0.554125308990479,2204.86403536797,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,1,gaussian,2022-01-22 04:11:57,2022-01-22 04:12:00,2022-01-22 04:12:01,2022-01-22 04:12:02,2022-01-22 04:50:23,0.468873977661133,2301.6923494339,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,2,ctree,2022-01-22 04:14:48,2022-01-22 04:14:49,2022-01-22 04:14:49,2022-01-22 04:14:49,2022-01-22 04:51:20,0.188418626785278,2191.39847159386,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,2,ctree,2022-01-22 04:14:36,2022-01-22 04:14:38,2022-01-22 04:14:38,2022-01-22 04:14:41,2022-01-22 04:59:38,0.2060866355896,2697.50974178314,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,1,ctree,2022-01-22 03:42:22,2022-01-22 03:42:23,2022-01-22 03:42:23,2022-01-22 03:42:24,2022-01-22 05:08:25,0.160650491714478,5161.34821200371,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,24,1,ctree,2022-01-22 03:42:49,2022-01-22 03:42:51,2022-01-22 03:42:52,2022-01-22 03:42:52,2022-01-22 05:10:50,0.462807416915894,5277.98386788368,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,1,ctree,2022-01-22 04:13:38,2022-01-22 04:13:40,2022-01-22 04:13:40,2022-01-22 04:13:40,2022-01-22 05:33:20,0.265472888946533,4779.43022942543,0,1e+05,13,0.3,1,0,1,1
+10,1000,100,32,1,ctree,2022-01-22 04:13:14,2022-01-22 04:13:16,2022-01-22 04:13:16,2022-01-22 04:13:17,2022-01-22 05:33:55,0.322280406951904,4837.77612161636,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,8,32,empirical,2022-01-22 06:12:43,2022-01-22 06:12:44,2022-01-22 06:12:45,2022-01-22 06:12:45,2022-01-22 06:18:44,0.549720287322998,358.897489786148,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,16,16,empirical,2022-01-22 06:31:17,2022-01-22 06:31:19,2022-01-22 06:31:19,2022-01-22 06:31:24,2022-01-22 06:37:45,0.382375955581665,381.614962339401,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,16,16,empirical,2022-01-22 06:32:00,2022-01-22 06:32:04,2022-01-22 06:32:04,2022-01-22 06:32:05,2022-01-22 06:38:00,0.454639911651611,355.269972085953,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,16,24,empirical,2022-01-22 06:38:22,2022-01-22 06:38:24,2022-01-22 06:38:24,2022-01-22 06:38:29,2022-01-22 06:42:58,0.280443906784058,269.579582214356,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,16,24,empirical,2022-01-22 06:39:01,2022-01-22 06:39:08,2022-01-22 06:39:08,2022-01-22 06:39:09,2022-01-22 06:43:09,0.167315721511841,240.405614614487,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,16,8,empirical,2022-01-22 06:25:44,2022-01-22 06:25:46,2022-01-22 06:25:46,2022-01-22 06:25:47,2022-01-22 06:43:24,0.417171239852905,1057.1796169281,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,16,32,empirical,2022-01-22 06:45:28,2022-01-22 06:45:30,2022-01-22 06:45:30,2022-01-22 06:45:31,2022-01-22 06:48:32,0.452541828155518,180.846414089203,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,16,32,empirical,2022-01-22 06:44:41,2022-01-22 06:44:42,2022-01-22 06:44:42,2022-01-22 06:45:03,2022-01-22 06:49:37,0.1501145362854,274.034828186035,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,16,24,ctree,2022-01-22 06:43:55,2022-01-22 06:44:00,2022-01-22 06:44:01,2022-01-22 06:44:02,2022-01-22 06:51:36,1.01762580871582,454.107393741608,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,16,32,ctree,2022-01-22 06:50:12,2022-01-22 06:50:14,2022-01-22 06:50:15,2022-01-22 06:50:16,2022-01-22 06:53:17,0.931843996047974,181.305830955505,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,16,32,ctree,2022-01-22 06:48:51,2022-01-22 06:48:59,2022-01-22 06:49:00,2022-01-22 06:49:17,2022-01-22 06:54:07,0.874159574508667,290.188654899597,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,24,8,gaussian,2022-01-22 06:57:18,2022-01-22 06:57:21,2022-01-22 06:57:21,2022-01-22 06:57:27,2022-01-22 07:05:28,0.39708685874939,481.765605211258,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,24,24,empirical,2022-01-22 07:10:57,2022-01-22 07:10:59,2022-01-22 07:10:59,2022-01-22 07:11:00,2022-01-22 07:16:01,0.440148115158081,300.573085784912,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,24,24,empirical,2022-01-22 07:09:47,2022-01-22 07:09:52,2022-01-22 07:09:53,2022-01-22 07:10:10,2022-01-22 07:16:17,0.583382368087769,367.776007175446,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,24,24,gaussian,2022-01-22 07:13:30,2022-01-22 07:13:35,2022-01-22 07:13:36,2022-01-22 07:13:38,2022-01-22 07:16:49,1.32819700241089,191.068200826645,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,24,32,empirical,2022-01-22 07:17:16,2022-01-22 07:17:18,2022-01-22 07:17:18,2022-01-22 07:17:23,2022-01-22 07:23:56,0.328133821487427,393.07698392868,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,24,32,empirical,2022-01-22 07:17:56,2022-01-22 07:18:06,2022-01-22 07:18:07,2022-01-22 07:18:07,2022-01-22 07:23:58,0.558789491653442,350.839649915695,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,24,2,gaussian,2022-01-22 06:53:52,2022-01-22 06:53:53,2022-01-22 06:53:53,2022-01-22 06:53:55,2022-01-22 07:24:36,0.326735734939575,1840.53780341148,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,24,32,ctree,2022-01-22 07:24:02,2022-01-22 07:24:03,2022-01-22 07:24:04,2022-01-22 07:24:04,2022-01-22 07:27:09,0.378990411758423,185.192625999451,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,24,32,ctree,2022-01-22 07:22:59,2022-01-22 07:23:21,2022-01-22 07:23:21,2022-01-22 07:23:33,2022-01-22 07:27:26,0.262618064880371,232.805879831314,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,8,gaussian,2022-01-22 07:31:00,2022-01-22 07:31:04,2022-01-22 07:31:04,2022-01-22 07:31:09,2022-01-22 07:40:05,0.517565488815308,535.357954978943,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,4,gaussian,2022-01-22 07:28:44,2022-01-22 07:28:45,2022-01-22 07:28:45,2022-01-22 07:28:47,2022-01-22 07:43:54,0.274258136749268,906.078526973724,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,16,gaussian,2022-01-22 07:39:39,2022-01-22 07:39:42,2022-01-22 07:39:42,2022-01-22 07:39:43,2022-01-22 07:44:01,0.843225002288818,257.609613180161,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,16,gaussian,2022-01-22 07:38:08,2022-01-22 07:38:15,2022-01-22 07:38:15,2022-01-22 07:38:29,2022-01-22 07:44:15,0.740493059158325,345.924526691437,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,4,empirical,2022-01-22 07:28:32,2022-01-22 07:28:33,2022-01-22 07:28:33,2022-01-22 07:28:33,2022-01-22 07:46:53,0.142195701599121,1099.26915645599,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,24,empirical,2022-01-22 07:45:10,2022-01-22 07:45:16,2022-01-22 07:45:17,2022-01-22 07:45:18,2022-01-22 07:52:06,0.981189966201782,408.092513561249,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,4,empirical,2022-01-22 07:28:20,2022-01-22 07:28:21,2022-01-22 07:28:22,2022-01-22 07:28:24,2022-01-22 07:55:50,0.192413091659546,1646.58459353447,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,32,empirical,2022-01-22 07:52:40,2022-01-22 07:52:43,2022-01-22 07:52:43,2022-01-22 07:52:50,2022-01-22 07:58:43,0.342799663543701,352.674590826035,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,32,empirical,2022-01-22 07:53:51,2022-01-22 07:54:16,2022-01-22 07:54:27,2022-01-22 07:54:28,2022-01-22 07:58:51,11.702737569809,263.852354288101,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,32,gaussian,2022-01-22 07:55:23,2022-01-22 07:55:26,2022-01-22 07:55:26,2022-01-22 07:55:33,2022-01-22 07:59:37,0.640182971954346,243.275604248047,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,2,gaussian,2022-01-22 07:27:53,2022-01-22 07:27:53,2022-01-22 07:27:53,2022-01-22 07:27:54,2022-01-22 07:59:37,0.12651801109314,1903.59405994415,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,32,gaussian,2022-01-22 07:57:27,2022-01-22 07:57:37,2022-01-22 07:57:37,2022-01-22 07:57:39,2022-01-22 07:59:51,0.725312948226929,132.025541305542,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,32,ctree,2022-01-22 07:59:56,2022-01-22 07:59:57,2022-01-22 07:59:57,2022-01-22 07:59:57,2022-01-22 08:03:06,0.159965038299561,189.171859502792,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,32,ctree,2022-01-22 07:59:40,2022-01-22 07:59:42,2022-01-22 07:59:42,2022-01-22 07:59:47,2022-01-22 08:03:30,0.26979660987854,223.707008123398,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,1,1,empirical,2022-01-22 08:00:21,2022-01-22 08:00:23,2022-01-22 08:00:24,2022-01-22 08:00:24,2022-01-22 08:04:09,0.343303680419922,224.362646341324,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,1,1,empirical,2022-01-22 08:01:03,2022-01-22 08:01:05,2022-01-22 08:01:06,2022-01-22 08:01:07,2022-01-22 08:04:42,0.75458025932312,214.968354463577,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,2,empirical,2022-01-22 07:27:29,2022-01-22 07:27:29,2022-01-22 07:27:29,2022-01-22 07:27:30,2022-01-22 08:05:27,0.140658617019653,2276.14828109741,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,1,2,empirical,2022-01-22 08:03:45,2022-01-22 08:03:45,2022-01-22 08:03:45,2022-01-22 08:03:46,2022-01-22 08:05:45,0.122052192687988,119.600993394852,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,1,2,empirical,2022-01-22 08:03:36,2022-01-22 08:03:37,2022-01-22 08:03:37,2022-01-22 08:03:38,2022-01-22 08:05:58,0.120152235031128,139.18771147728,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,1,4,empirical,2022-01-22 08:04:44,2022-01-22 08:04:45,2022-01-22 08:04:45,2022-01-22 08:04:45,2022-01-22 08:07:13,0.162909269332886,147.285476207733,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,1,4,empirical,2022-01-22 08:04:34,2022-01-22 08:04:34,2022-01-22 08:04:35,2022-01-22 08:04:36,2022-01-22 08:07:19,0.154385089874268,162.961228132248,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,1,8,empirical,2022-01-22 08:05:46,2022-01-22 08:05:46,2022-01-22 08:05:46,2022-01-22 08:05:49,2022-01-22 08:08:50,0.141325235366821,180.752852916718,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,1,8,empirical,2022-01-22 08:05:59,2022-01-22 08:06:00,2022-01-22 08:06:00,2022-01-22 08:06:01,2022-01-22 08:08:59,0.140075445175171,178.269796609879,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,1,16,empirical,2022-01-22 08:07:18,2022-01-22 08:07:19,2022-01-22 08:07:19,2022-01-22 08:07:22,2022-01-22 08:10:39,0.2239990234375,196.892966985703,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,1,16,empirical,2022-01-22 08:07:36,2022-01-22 08:07:37,2022-01-22 08:07:37,2022-01-22 08:07:38,2022-01-22 08:11:32,0.199705362319946,234.011049509048,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,1,24,empirical,2022-01-22 08:09:24,2022-01-22 08:09:25,2022-01-22 08:09:25,2022-01-22 08:09:28,2022-01-22 08:13:24,0.303143978118897,235.908289194107,0,1e+05,13,0.3,1,0,1,1
+10,10000,100,32,1,empirical,2022-01-22 07:25:08,2022-01-22 07:25:10,2022-01-22 07:25:10,2022-01-22 07:25:11,2022-01-22 08:17:43,0.346535682678223,3152.29618883133,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,1,empirical,2022-01-22 08:16:04,2022-01-22 08:16:07,2022-01-22 08:16:07,2022-01-22 08:16:08,2022-01-22 08:21:00,0.668867826461792,292.229100704193,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,1,empirical,2022-01-22 08:16:36,2022-01-22 08:16:38,2022-01-22 08:16:38,2022-01-22 08:16:39,2022-01-22 08:21:46,0.303682565689087,307.089729070664,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,2,empirical,2022-01-22 08:19:29,2022-01-22 08:19:30,2022-01-22 08:19:30,2022-01-22 08:19:33,2022-01-22 08:21:59,0.219695091247559,145.378130197525,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,2,empirical,2022-01-22 08:19:57,2022-01-22 08:19:59,2022-01-22 08:19:59,2022-01-22 08:20:00,2022-01-22 08:22:17,0.360942840576172,136.975060462952,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,4,empirical,2022-01-22 08:22:50,2022-01-22 08:22:52,2022-01-22 08:22:52,2022-01-22 08:22:54,2022-01-22 08:25:17,0.30582594871521,142.196585416794,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,4,empirical,2022-01-22 08:23:31,2022-01-22 08:23:33,2022-01-22 08:23:33,2022-01-22 08:23:33,2022-01-22 08:26:10,0.156835794448853,157.198087453842,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,8,empirical,2022-01-22 08:26:36,2022-01-22 08:26:37,2022-01-22 08:26:38,2022-01-22 08:26:41,2022-01-22 08:29:17,0.351461172103882,156.074484109879,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,8,empirical,2022-01-22 08:27:10,2022-01-22 08:27:12,2022-01-22 08:27:12,2022-01-22 08:27:12,2022-01-22 08:29:50,0.226331472396851,157.663980484009,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,16,empirical,2022-01-22 08:30:11,2022-01-22 08:30:13,2022-01-22 08:30:13,2022-01-22 08:30:18,2022-01-22 08:33:49,0.404173612594605,211.679840803146,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,16,empirical,2022-01-22 08:30:56,2022-01-22 08:30:58,2022-01-22 08:30:58,2022-01-22 08:30:59,2022-01-22 08:34:08,0.366115570068359,188.986455440521,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,24,empirical,2022-01-22 08:34:24,2022-01-22 08:34:26,2022-01-22 08:34:26,2022-01-22 08:34:31,2022-01-22 08:37:52,0.419590473175049,201.074247121811,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,24,empirical,2022-01-22 08:35:01,2022-01-22 08:35:04,2022-01-22 08:35:04,2022-01-22 08:35:05,2022-01-22 08:38:16,0.367833137512207,191.385853528976,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,32,empirical,2022-01-22 08:38:23,2022-01-22 08:38:25,2022-01-22 08:38:25,2022-01-22 08:38:30,2022-01-22 08:41:31,0.40959358215332,180.730140686035,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,2,32,empirical,2022-01-22 08:39:05,2022-01-22 08:39:10,2022-01-22 08:39:10,2022-01-22 08:39:11,2022-01-22 08:42:04,0.218723297119141,173.828474998474,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,1,empirical,2022-01-22 08:42:56,2022-01-22 08:42:58,2022-01-22 08:42:59,2022-01-22 08:42:59,2022-01-22 08:48:43,0.54443883895874,343.096045970917,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,1,empirical,2022-01-22 08:43:47,2022-01-22 08:43:49,2022-01-22 08:43:50,2022-01-22 08:43:50,2022-01-22 08:49:22,0.326147556304932,331.385711669922,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,2,empirical,2022-01-22 08:47:42,2022-01-22 08:47:44,2022-01-22 08:47:45,2022-01-22 08:47:45,2022-01-22 08:49:59,0.317653179168701,133.886053800583,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,2,empirical,2022-01-22 08:47:13,2022-01-22 08:47:15,2022-01-22 08:47:16,2022-01-22 08:47:19,2022-01-22 08:50:04,0.161678552627563,165.61696434021,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,4,empirical,2022-01-22 08:50:50,2022-01-22 08:50:51,2022-01-22 08:50:51,2022-01-22 08:50:54,2022-01-22 08:52:39,0.4151771068573,104.645393610001,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,4,empirical,2022-01-22 08:51:27,2022-01-22 08:51:28,2022-01-22 08:51:29,2022-01-22 08:51:29,2022-01-22 08:53:00,0.160355091094971,90.6087260246277,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,8,empirical,2022-01-22 08:55:02,2022-01-22 08:55:04,2022-01-22 08:55:05,2022-01-22 08:55:08,2022-01-22 08:57:02,0.460837841033936,113.219378709793,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,8,empirical,2022-01-22 08:55:37,2022-01-22 08:55:40,2022-01-22 08:55:40,2022-01-22 08:55:41,2022-01-22 08:57:28,0.379063606262207,106.964731454849,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,16,empirical,2022-01-22 08:59:58,2022-01-22 09:00:01,2022-01-22 09:00:01,2022-01-22 09:00:23,2022-01-22 09:02:41,0.472664594650269,138.272471189499,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,16,empirical,2022-01-22 09:00:56,2022-01-22 09:00:58,2022-01-22 09:00:58,2022-01-22 09:00:59,2022-01-22 09:03:13,0.327378749847412,133.840874671936,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,24,empirical,2022-01-22 09:05:26,2022-01-22 09:05:29,2022-01-22 09:05:29,2022-01-22 09:05:34,2022-01-22 09:08:14,0.391673803329468,159.168850898743,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,24,empirical,2022-01-22 09:06:19,2022-01-22 09:06:21,2022-01-22 09:06:21,2022-01-22 09:06:22,2022-01-22 09:08:49,0.45950174331665,147.115752220154,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,32,empirical,2022-01-22 09:11:33,2022-01-22 09:11:36,2022-01-22 09:11:36,2022-01-22 09:11:42,2022-01-22 09:13:56,0.506219148635864,133.893241882324,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,4,32,empirical,2022-01-22 09:12:30,2022-01-22 09:12:32,2022-01-22 09:12:33,2022-01-22 09:12:34,2022-01-22 09:14:49,0.79218339920044,134.524483203888,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,1,empirical,2022-01-22 09:17:42,2022-01-22 09:17:44,2022-01-22 09:17:44,2022-01-22 09:17:45,2022-01-22 09:27:00,0.457140684127808,555.385914087296,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,2,empirical,2022-01-22 09:24:17,2022-01-22 09:24:23,2022-01-22 09:24:23,2022-01-22 09:24:24,2022-01-22 09:27:36,0.304661273956299,192.208995580673,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,1,empirical,2022-01-22 09:19:08,2022-01-22 09:19:20,2022-01-22 09:19:20,2022-01-22 09:19:21,2022-01-22 09:27:57,0.458425283432007,516.102925777435,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,2,empirical,2022-01-22 09:23:42,2022-01-22 09:23:44,2022-01-22 09:23:44,2022-01-22 09:23:47,2022-01-22 09:28:35,0.384088754653931,287.245557069778,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,4,empirical,2022-01-22 09:28:02,2022-01-22 09:28:03,2022-01-22 09:28:03,2022-01-22 09:28:04,2022-01-22 09:29:09,0.211258172988892,65.4639945030213,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,4,empirical,2022-01-22 09:27:36,2022-01-22 09:27:38,2022-01-22 09:27:38,2022-01-22 09:27:41,2022-01-22 09:29:49,0.370321750640869,128.275465965271,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,8,empirical,2022-01-22 09:30:47,2022-01-22 09:30:48,2022-01-22 09:30:49,2022-01-22 09:30:56,2022-01-22 09:32:19,0.258855819702148,82.3746254444122,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,8,empirical,2022-01-22 09:31:30,2022-01-22 09:31:32,2022-01-22 09:31:33,2022-01-22 09:31:33,2022-01-22 09:32:40,0.435195207595825,66.9115686416626,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,16,empirical,2022-01-22 09:36:02,2022-01-22 09:36:05,2022-01-22 09:36:06,2022-01-22 09:36:11,2022-01-22 09:38:06,0.566511631011963,115.21001958847,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,16,empirical,2022-01-22 09:37:01,2022-01-22 09:37:03,2022-01-22 09:37:03,2022-01-22 09:37:04,2022-01-22 09:38:27,0.299057245254517,82.5114333629608,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,24,empirical,2022-01-22 09:42:43,2022-01-22 09:42:47,2022-01-22 09:42:48,2022-01-22 09:42:58,2022-01-22 09:45:10,0.455637216567993,131.892152070999,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,24,empirical,2022-01-22 09:43:56,2022-01-22 09:43:59,2022-01-22 09:43:59,2022-01-22 09:44:01,2022-01-22 09:45:37,0.317171573638916,96.0130724906922,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,32,empirical,2022-01-22 09:49:56,2022-01-22 09:50:02,2022-01-22 09:50:02,2022-01-22 09:50:09,2022-01-22 09:51:58,0.358751535415649,108.590593099594,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,8,32,empirical,2022-01-22 09:51:11,2022-01-22 09:51:14,2022-01-22 09:51:15,2022-01-22 09:51:16,2022-01-22 09:52:59,0.662763118743897,103.211233139038,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,2,empirical,2022-01-22 10:03:44,2022-01-22 10:03:46,2022-01-22 10:03:46,2022-01-22 10:03:47,2022-01-22 10:06:19,0.213312864303589,152.167365074158,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,4,empirical,2022-01-22 10:07:08,2022-01-22 10:07:09,2022-01-22 10:07:09,2022-01-22 10:07:10,2022-01-22 10:08:11,0.571666479110718,60.6217052936554,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,2,empirical,2022-01-22 10:03:24,2022-01-22 10:03:25,2022-01-22 10:03:25,2022-01-22 10:03:27,2022-01-22 10:11:33,0.169464349746704,485.991571187973,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,4,empirical,2022-01-22 10:06:39,2022-01-22 10:06:40,2022-01-22 10:06:40,2022-01-22 10:06:43,2022-01-22 10:11:40,0.23082709312439,297.450491189957,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,8,empirical,2022-01-22 10:10:48,2022-01-22 10:10:50,2022-01-22 10:10:51,2022-01-22 10:10:51,2022-01-22 10:12:39,0.434882640838623,107.411097288132,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,8,empirical,2022-01-22 10:09:53,2022-01-22 10:09:57,2022-01-22 10:09:57,2022-01-22 10:10:03,2022-01-22 10:13:38,0.648483514785767,215.688893079758,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,1,empirical,2022-01-22 09:58:56,2022-01-22 09:58:59,2022-01-22 09:58:59,2022-01-22 09:59:00,2022-01-22 10:13:59,0.407754421234131,899.119991540909,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,1,empirical,2022-01-22 09:57:50,2022-01-22 09:57:53,2022-01-22 09:57:54,2022-01-22 09:57:55,2022-01-22 10:14:22,0.580220699310303,987.149334192276,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,16,empirical,2022-01-22 10:17:50,2022-01-22 10:17:56,2022-01-22 10:17:57,2022-01-22 10:17:57,2022-01-22 10:18:54,0.251925945281982,56.9248580932617,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,16,empirical,2022-01-22 10:16:01,2022-01-22 10:16:04,2022-01-22 10:16:05,2022-01-22 10:16:36,2022-01-22 10:19:39,0.807049036026001,183.412191152573,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,24,empirical,2022-01-22 10:23:25,2022-01-22 10:23:35,2022-01-22 10:23:35,2022-01-22 10:23:52,2022-01-22 10:26:56,0.313836812973022,184.364561080933,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,24,empirical,2022-01-22 10:25:31,2022-01-22 10:25:38,2022-01-22 10:25:39,2022-01-22 10:25:45,2022-01-22 10:27:21,0.730576515197754,95.9319317340851,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,32,empirical,2022-01-22 10:35:42,2022-01-22 10:35:50,2022-01-22 10:35:51,2022-01-22 10:35:52,2022-01-22 10:37:13,0.57447075843811,80.3200747966766,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,16,32,empirical,2022-01-22 10:33:57,2022-01-22 10:34:04,2022-01-22 10:34:05,2022-01-22 10:34:23,2022-01-22 10:37:51,0.892342567443848,208.491036176682,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,2,empirical,2022-01-22 10:48:57,2022-01-22 10:48:58,2022-01-22 10:48:58,2022-01-22 10:48:58,2022-01-22 10:51:14,0.139031171798706,135.397399425507,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,4,empirical,2022-01-22 10:53:03,2022-01-22 10:53:05,2022-01-22 10:53:05,2022-01-22 10:53:05,2022-01-22 10:54:18,0.278486728668213,73.3427712917328,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,4,empirical,2022-01-22 10:52:10,2022-01-22 10:52:11,2022-01-22 10:52:11,2022-01-22 10:52:18,2022-01-22 10:58:41,0.130438804626465,382.672886133194,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,8,empirical,2022-01-22 10:57:32,2022-01-22 10:57:34,2022-01-22 10:57:35,2022-01-22 10:57:36,2022-01-22 10:59:06,0.52803373336792,90.3082437515259,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,2,empirical,2022-01-22 10:48:34,2022-01-22 10:48:37,2022-01-22 10:48:37,2022-01-22 10:48:53,2022-01-22 10:59:39,0.414208889007568,645.782402992249,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,8,empirical,2022-01-22 10:56:32,2022-01-22 10:56:35,2022-01-22 10:56:36,2022-01-22 10:56:42,2022-01-22 10:59:51,0.761104345321655,189.024942874908,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,16,empirical,2022-01-22 11:01:40,2022-01-22 11:01:44,2022-01-22 11:01:45,2022-01-22 11:01:46,2022-01-22 11:03:15,0.884268999099731,89.2238826751709,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,16,empirical,2022-01-22 11:00:52,2022-01-22 11:00:56,2022-01-22 11:00:56,2022-01-22 11:01:03,2022-01-22 11:03:38,0.683446884155273,155.434013128281,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,1,empirical,2022-01-22 10:45:51,2022-01-22 10:45:53,2022-01-22 10:45:53,2022-01-22 10:45:54,2022-01-22 11:03:45,0.428142547607422,1071.30545711517,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,1,empirical,2022-01-22 10:43:56,2022-01-22 10:44:01,2022-01-22 10:44:01,2022-01-22 10:44:03,2022-01-22 11:05:44,0.606060981750488,1301.2333483696,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,24,empirical,2022-01-22 11:10:19,2022-01-22 11:10:22,2022-01-22 11:10:23,2022-01-22 11:10:24,2022-01-22 11:11:22,0.765867710113525,57.6616673469544,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,24,empirical,2022-01-22 11:09:13,2022-01-22 11:09:19,2022-01-22 11:09:20,2022-01-22 11:09:34,2022-01-22 11:11:40,0.645092725753784,126.192297697067,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,8,gaussian,2022-01-22 10:58:19,2022-01-22 10:58:21,2022-01-22 10:58:21,2022-01-22 10:58:26,2022-01-22 11:14:30,0.355068206787109,963.877534866333,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,32,empirical,2022-01-22 11:22:04,2022-01-22 11:22:08,2022-01-22 11:22:09,2022-01-22 11:22:10,2022-01-22 11:22:57,0.620054483413696,46.5232944488525,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,32,empirical,2022-01-22 11:20:49,2022-01-22 11:20:52,2022-01-22 11:20:53,2022-01-22 11:20:59,2022-01-22 11:22:58,0.614947080612183,118.759776830673,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,24,24,ctree,2022-01-22 11:15:34,2022-01-22 11:15:41,2022-01-22 11:15:43,2022-01-22 11:16:05,2022-01-22 11:36:12,1.47764706611633,1206.56102824211,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,2,empirical,2022-01-22 11:36:53,2022-01-22 11:36:54,2022-01-22 11:36:55,2022-01-22 11:36:55,2022-01-22 11:38:44,0.279355049133301,108.533129453659,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,4,empirical,2022-01-22 11:38:22,2022-01-22 11:38:22,2022-01-22 11:38:23,2022-01-22 11:38:23,2022-01-22 11:39:54,0.222272157669067,91.0347166061401,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,8,empirical,2022-01-22 11:40:18,2022-01-22 11:40:20,2022-01-22 11:40:21,2022-01-22 11:40:21,2022-01-22 11:42:05,0.549343824386597,103.083040714264,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,8,empirical,2022-01-22 11:39:50,2022-01-22 11:39:51,2022-01-22 11:39:52,2022-01-22 11:39:56,2022-01-22 11:43:21,0.221651554107666,205.402804136276,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,4,empirical,2022-01-22 11:38:09,2022-01-22 11:38:10,2022-01-22 11:38:10,2022-01-22 11:38:12,2022-01-22 11:43:31,0.168190956115723,318.949892759323,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,16,empirical,2022-01-22 11:45:31,2022-01-22 11:45:36,2022-01-22 11:45:37,2022-01-22 11:45:38,2022-01-22 11:47:05,1.00594711303711,86.7194800376892,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,16,empirical,2022-01-22 11:44:20,2022-01-22 11:44:22,2022-01-22 11:44:23,2022-01-22 11:44:30,2022-01-22 11:47:06,0.523659706115723,156.78627872467,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,2,empirical,2022-01-22 11:36:32,2022-01-22 11:36:34,2022-01-22 11:36:34,2022-01-22 11:36:37,2022-01-22 11:47:31,0.165961503982544,654.281175374985,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,24,empirical,2022-01-22 11:54:52,2022-01-22 11:54:57,2022-01-22 11:54:58,2022-01-22 11:55:00,2022-01-22 11:56:24,1.14682364463806,83.9669575691223,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,24,empirical,2022-01-22 11:53:45,2022-01-22 11:53:49,2022-01-22 11:53:52,2022-01-22 11:54:02,2022-01-22 11:56:55,2.42309260368347,173.221267461777,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,1,empirical,2022-01-22 11:32:41,2022-01-22 11:32:44,2022-01-22 11:32:44,2022-01-22 11:32:45,2022-01-22 11:57:30,0.692607164382935,1484.48212981224,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,1,empirical,2022-01-22 11:33:23,2022-01-22 11:33:25,2022-01-22 11:33:25,2022-01-22 11:33:26,2022-01-22 12:02:20,0.282714128494263,1734.03425574303,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,32,empirical,2022-01-22 12:06:47,2022-01-22 12:06:52,2022-01-22 12:06:53,2022-01-22 12:06:55,2022-01-22 12:07:42,0.352906465530396,47.5443353652954,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,32,empirical,2022-01-22 12:05:04,2022-01-22 12:05:07,2022-01-22 12:05:08,2022-01-22 12:05:17,2022-01-22 12:07:43,0.731136083602905,145.705512523651,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,32,ctree,2022-01-22 12:16:21,2022-01-22 12:16:24,2022-01-22 12:16:24,2022-01-22 12:16:25,2022-01-22 12:25:11,0.612917900085449,525.298412322998,0,1e+05,13,0.3,1,0,1,1
+11,1000,100,32,24,ctree,2022-01-22 12:03:24,2022-01-22 12:03:42,2022-01-22 12:03:44,2022-01-22 12:03:47,2022-01-22 12:25:46,1.86805367469788,1319.6498568058,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,4,2,empirical,2022-01-22 17:15:03,2022-01-22 17:15:04,2022-01-22 17:15:04,2022-01-22 17:15:05,2022-01-22 17:20:47,0.349697113037109,342.335664749146,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,4,4,empirical,2022-01-22 17:18:13,2022-01-22 17:18:15,2022-01-22 17:18:15,2022-01-22 17:18:16,2022-01-22 17:22:24,0.327213048934937,248.467654705048,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,8,2,empirical,2022-01-22 17:51:26,2022-01-22 17:51:28,2022-01-22 17:51:28,2022-01-22 17:51:29,2022-01-22 17:57:17,0.341325283050537,347.88488650322,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,8,2,empirical,2022-01-22 17:50:45,2022-01-22 17:50:47,2022-01-22 17:50:47,2022-01-22 17:50:50,2022-01-22 17:58:58,0.566452026367188,487.494567871094,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,8,1,empirical,2022-01-22 17:45:30,2022-01-22 17:45:35,2022-01-22 17:45:36,2022-01-22 17:45:36,2022-01-22 17:59:05,0.363771200180054,808.551822900772,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,8,4,empirical,2022-01-22 17:54:54,2022-01-22 17:54:55,2022-01-22 17:54:56,2022-01-22 17:55:00,2022-01-22 17:59:07,0.538132190704346,246.953627109528,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,8,4,empirical,2022-01-22 17:55:29,2022-01-22 17:55:31,2022-01-22 17:55:31,2022-01-22 17:55:32,2022-01-22 17:59:40,0.322488069534302,248.050733804703,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,8,1,empirical,2022-01-22 17:46:27,2022-01-22 17:46:30,2022-01-22 17:46:30,2022-01-22 17:46:31,2022-01-22 18:00:03,0.636071443557739,811.378388404846,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,8,8,empirical,2022-01-22 17:58:58,2022-01-22 17:59:01,2022-01-22 17:59:01,2022-01-22 17:59:05,2022-01-22 18:01:51,0.477749347686768,166.109085559845,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,8,8,empirical,2022-01-22 17:59:37,2022-01-22 17:59:40,2022-01-22 17:59:41,2022-01-22 17:59:41,2022-01-22 18:02:13,0.694354295730591,151.790697574615,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,8,16,empirical,2022-01-22 18:04:30,2022-01-22 18:04:34,2022-01-22 18:04:35,2022-01-22 18:04:41,2022-01-22 18:08:19,0.872366189956665,217.755168676376,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,8,16,empirical,2022-01-22 18:05:50,2022-01-22 18:05:53,2022-01-22 18:05:54,2022-01-22 18:05:55,2022-01-22 18:09:42,0.94979190826416,226.951153039932,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,8,24,empirical,2022-01-22 18:14:15,2022-01-22 18:14:19,2022-01-22 18:14:19,2022-01-22 18:14:20,2022-01-22 18:17:42,0.739112854003906,201.530950307846,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,8,32,empirical,2022-01-22 18:22:49,2022-01-22 18:22:52,2022-01-22 18:22:53,2022-01-22 18:22:54,2022-01-22 18:26:05,1.13713765144348,190.900821208954,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,16,2,empirical,2022-01-22 18:36:57,2022-01-22 18:36:59,2022-01-22 18:37:00,2022-01-22 18:37:00,2022-01-22 18:42:14,0.579819202423096,313.423630237579,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,16,4,empirical,2022-01-22 18:41:08,2022-01-22 18:41:10,2022-01-22 18:41:11,2022-01-22 18:41:11,2022-01-22 18:44:36,0.601732969284058,204.581836462021,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,16,4,empirical,2022-01-22 18:40:26,2022-01-22 18:40:31,2022-01-22 18:40:31,2022-01-22 18:40:36,2022-01-22 18:46:19,0.438101053237915,343.334706306458,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,16,2,empirical,2022-01-22 18:36:26,2022-01-22 18:36:28,2022-01-22 18:36:29,2022-01-22 18:36:32,2022-01-22 18:47:34,0.373157739639282,662.379744052887,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,16,8,empirical,2022-01-22 18:44:40,2022-01-22 18:44:43,2022-01-22 18:44:43,2022-01-22 18:44:48,2022-01-22 18:48:23,0.592904329299927,214.69881272316,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,16,8,empirical,2022-01-22 18:45:36,2022-01-22 18:45:39,2022-01-22 18:45:39,2022-01-22 18:45:40,2022-01-22 18:49:58,0.501163959503174,257.76019525528,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,16,1,empirical,2022-01-22 18:30:00,2022-01-22 18:30:03,2022-01-22 18:30:04,2022-01-22 18:30:06,2022-01-22 18:53:43,0.874485969543457,1417.68450570107,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,16,16,empirical,2022-01-22 18:50:26,2022-01-22 18:50:36,2022-01-22 18:50:38,2022-01-22 18:50:53,2022-01-22 18:53:52,1.89371299743652,178.651078939438,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,16,16,empirical,2022-01-22 18:51:27,2022-01-22 18:51:34,2022-01-22 18:51:35,2022-01-22 18:51:37,2022-01-22 18:53:54,0.81693696975708,137.530794858933,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,16,1,empirical,2022-01-22 18:31:23,2022-01-22 18:31:26,2022-01-22 18:31:27,2022-01-22 18:31:27,2022-01-22 18:55:31,0.658213615417481,1443.05756092072,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,16,24,empirical,2022-01-22 19:01:47,2022-01-22 19:01:54,2022-01-22 19:01:56,2022-01-22 19:01:59,2022-01-22 19:05:18,2.0645956993103,199.504716157913,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,16,32,empirical,2022-01-22 19:14:53,2022-01-22 19:14:58,2022-01-22 19:15:00,2022-01-22 19:15:01,2022-01-22 19:18:06,1.19364953041077,185.220926761627,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,2,empirical,2022-01-22 19:33:57,2022-01-22 19:33:58,2022-01-22 19:33:59,2022-01-22 19:33:59,2022-01-22 19:39:19,0.302567005157471,320.244542598724,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,4,empirical,2022-01-22 19:37:55,2022-01-22 19:37:57,2022-01-22 19:37:57,2022-01-22 19:37:58,2022-01-22 19:42:18,0.411279439926147,260.641203165054,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,8,empirical,2022-01-22 19:42:00,2022-01-22 19:42:06,2022-01-22 19:42:06,2022-01-22 19:42:06,2022-01-22 19:45:33,0.25588870048523,206.726095199585,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,4,empirical,2022-01-22 19:37:12,2022-01-22 19:37:16,2022-01-22 19:37:18,2022-01-22 19:37:22,2022-01-22 19:45:47,2.54053568840027,505.435400724411,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,8,empirical,2022-01-22 19:41:42,2022-01-22 19:41:53,2022-01-22 19:41:54,2022-01-22 19:42:22,2022-01-22 19:50:08,1.03908658027649,465.98491859436,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,16,empirical,2022-01-22 19:47:32,2022-01-22 19:47:35,2022-01-22 19:47:36,2022-01-22 19:47:42,2022-01-22 19:51:34,0.818039178848267,232.413943529129,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,16,empirical,2022-01-22 19:49:46,2022-01-22 19:49:49,2022-01-22 19:49:50,2022-01-22 19:49:50,2022-01-22 19:52:20,0.785335063934326,149.103640794754,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,2,empirical,2022-01-22 19:33:33,2022-01-22 19:33:34,2022-01-22 19:33:35,2022-01-22 19:33:40,2022-01-22 19:53:07,0.177771806716919,1167.03664064407,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,24,empirical,2022-01-22 19:56:10,2022-01-22 19:56:20,2022-01-22 19:56:22,2022-01-22 19:56:33,2022-01-22 20:01:29,1.43938851356506,296.15135717392,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,24,empirical,2022-01-22 19:58:25,2022-01-22 19:58:31,2022-01-22 19:58:33,2022-01-22 19:58:35,2022-01-22 20:01:30,1.93052744865417,174.487854003906,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,1,empirical,2022-01-22 19:27:44,2022-01-22 19:27:49,2022-01-22 19:27:50,2022-01-22 19:27:51,2022-01-22 20:05:03,1.09261703491211,2231.47869825363,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,32,empirical,2022-01-22 20:10:44,2022-01-22 20:10:56,2022-01-22 20:10:58,2022-01-22 20:11:57,2022-01-22 20:16:59,2.12010335922241,301.716490030289,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,24,32,empirical,2022-01-22 20:13:31,2022-01-22 20:13:39,2022-01-22 20:13:41,2022-01-22 20:13:44,2022-01-22 20:17:08,2.00761938095093,204.593585729599,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,2,empirical,2022-01-22 20:33:33,2022-01-22 20:33:35,2022-01-22 20:33:36,2022-01-22 20:33:36,2022-01-22 20:38:37,0.481948614120483,300.715023756027,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,4,empirical,2022-01-22 20:37:41,2022-01-22 20:37:44,2022-01-22 20:37:58,2022-01-22 20:37:58,2022-01-22 20:40:02,13.9503815174103,123.559878826141,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,4,empirical,2022-01-22 20:37:17,2022-01-22 20:37:18,2022-01-22 20:37:18,2022-01-22 20:37:21,2022-01-22 20:45:11,0.256648778915405,470.425592660904,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,8,empirical,2022-01-22 20:42:08,2022-01-22 20:42:14,2022-01-22 20:42:14,2022-01-22 20:42:15,2022-01-22 20:45:14,0.838595390319824,179.268458604813,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,8,empirical,2022-01-22 20:41:11,2022-01-22 20:41:12,2022-01-22 20:41:13,2022-01-22 20:41:18,2022-01-22 20:47:44,0.301345109939575,385.813750505447,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,16,empirical,2022-01-22 20:49:31,2022-01-22 20:49:35,2022-01-22 20:49:36,2022-01-22 20:49:37,2022-01-22 20:51:36,0.850199699401856,119.07880282402,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,16,empirical,2022-01-22 20:48:08,2022-01-22 20:48:12,2022-01-22 20:48:13,2022-01-22 20:48:20,2022-01-22 20:51:37,1.39012312889099,197.221575498581,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,2,empirical,2022-01-22 20:33:10,2022-01-22 20:33:17,2022-01-22 20:33:18,2022-01-22 20:33:22,2022-01-22 20:54:38,0.360357284545898,1276.76272368431,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,24,empirical,2022-01-22 20:58:40,2022-01-22 20:58:56,2022-01-22 20:58:56,2022-01-22 20:58:58,2022-01-22 21:01:11,0.342028379440308,133.387796640396,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,24,empirical,2022-01-22 20:56:27,2022-01-22 20:56:32,2022-01-22 20:56:34,2022-01-22 20:56:44,2022-01-22 21:03:28,1.55437779426575,403.614232540131,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,1,empirical,2022-01-22 20:28:23,2022-01-22 20:28:30,2022-01-22 20:28:32,2022-01-22 20:28:33,2022-01-22 21:15:47,1.68647599220276,2833.6894595623,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,32,empirical,2022-01-22 21:13:30,2022-01-22 21:13:42,2022-01-22 21:13:43,2022-01-22 21:13:44,2022-01-22 21:15:49,0.637606859207153,124.904546737671,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,32,empirical,2022-01-22 21:11:23,2022-01-22 21:11:40,2022-01-22 21:11:41,2022-01-22 21:12:14,2022-01-22 21:20:10,1.17925953865051,476.281431674957,0,1e+05,13,0.3,1,0,1,1
+12,1000,100,32,1,empirical,2022-01-22 20:25:06,2022-01-22 20:25:12,2022-01-22 20:25:14,2022-01-22 20:25:17,2022-01-22 21:29:23,1.76262354850769,3846.27600169182,0,1e+05,13,0.3,1,0,1,1
+13,1000,100,1,2,empirical,2022-01-23 05:20:17,2022-01-23 05:20:17,2022-01-23 05:20:17,2022-01-23 05:20:18,2022-01-23 05:24:06,0.130674123764038,228.618875026703,0,1e+05,13,0.3,1,0,1,1
+13,1000,100,16,16,empirical,2022-01-23 07:46:35,2022-01-23 07:46:42,2022-01-23 07:46:43,2022-01-23 07:46:43,2022-01-23 07:53:27,0.78925633430481,403.846161127091,0,1e+05,13,0.3,1,0,1,1
+13,1000,100,16,32,empirical,2022-01-23 08:11:19,2022-01-23 08:11:30,2022-01-23 08:11:33,2022-01-23 08:11:34,2022-01-23 08:17:42,2.57792806625366,367.90896821022,0,1e+05,13,0.3,1,0,1,1
+13,1000,100,24,4,empirical,2022-01-23 08:33:22,2022-01-23 08:33:26,2022-01-23 08:33:27,2022-01-23 08:33:31,2022-01-23 08:51:04,0.321960210800171,1053.26301193237,0,1e+05,13,0.3,1,0,1,1
+13,1000,100,32,8,empirical,2022-01-23 09:46:17,2022-01-23 09:46:20,2022-01-23 09:46:21,2022-01-23 09:46:21,2022-01-23 09:58:47,1.05202484130859,745.312472581863,0,1e+05,13,0.3,1,0,1,1
+13,1000,100,32,16,empirical,2022-01-23 09:54:20,2022-01-23 09:54:23,2022-01-23 09:54:24,2022-01-23 09:54:24,2022-01-23 10:00:31,0.986858129501343,366.976919174194,0,1e+05,13,0.3,1,0,1,1
+13,1000,100,32,4,empirical,2022-01-23 09:40:45,2022-01-23 09:40:46,2022-01-23 09:40:46,2022-01-23 09:40:49,2022-01-23 10:01:17,0.369621515274048,1228.32821273804,0,1e+05,13,0.3,1,0,1,1
diff --git a/inst/scripts/devel/verifying_arima_model_output.R b/inst/scripts/devel/verifying_arima_model_output.R
new file mode 100644
index 000000000..7a63bcbf5
--- /dev/null
+++ b/inst/scripts/devel/verifying_arima_model_output.R
@@ -0,0 +1,76 @@
+library(shapr)
+
+options(digits = 5) # To avoid round off errors when printing output on different systems
+set.seed(123)
+
+n <- 10^3
+
+xreg <- cbind(rnorm(n,mean=1,sd=1),
+ rnorm(n,mean=2,sd=1))
+
+noise <- rnorm(n,mean=0,sd=0.5)
+
+# Create AR(1)-structure
+beta <- c(1.5,0)
+alpha <- 0.5 # AR-coefficient
+mu <- 1
+
+y <- rep(0,n)
+y[1] <- mu +beta[1]*xreg[1,1]+beta[2]*xreg[1,2]+noise[1]
+
+
+for(i in 2:n){
+ y[i] <- mu +alpha*y[i-1]+beta[1]*xreg[i,1]+beta[2]*xreg[i,2]+noise[i]
+}
+plot(y,type="l")
+
+# In practice this model is y = 1 + y[i] + 1.5*xreg1 with independent features
+
+#model_arima_temp <- arima(y, c(3,1,2), xreg=xreg)
+model_arima_temp <- arima(y, c(1,0,0), xreg=xreg)
+
+colnames(xreg) <- c("var1","var2")
+
+train_idx <- 1:(n-10)
+explain_idx <- n-5:4
+
+
+set.seed(123)
+exp <- explain_forecast(model = model_arima_temp,
+ y = y,
+ xreg = xreg,
+ train_idx = train_idx,
+ explain_idx = explain_idx,
+ explain_y_lags = 1,
+ explain_xreg_lags = c(0,1),
+ horizon = 1,
+ approach = "empirical",
+ prediction_zero = rep(mean(y),1),
+ group_lags = FALSE,
+ n_batches = 1)
+
+# These two should be approximately equal
+# For y
+exp$shapley_values$Y1.1
+model_arima_temp$coef[1]*(y[explain_idx]-mean(y))
+#[1] -0.13500 0.20643
+#[1] -0.079164 0.208118
+
+
+# for xreg1
+exp$shapley_values$var1.F1
+model_arima_temp$coef[3]*(xreg[explain_idx+1,1]-mean(xreg[,1]))
+#[1] -0.030901 1.179386
+#[1] -0.12034 1.19589
+
+# for xreg2
+exp$shapley_values$var2.F1
+0
+#[1] 0.011555 0.031911
+#[1] 0
+
+
+# Close enough (maybe increase sample size n to make sure they converge as they should?)
+
+
+
diff --git a/inst/scripts/empirical_memory_testing2.R b/inst/scripts/empirical_memory_testing2.R
new file mode 100644
index 000000000..ca57a8d5f
--- /dev/null
+++ b/inst/scripts/empirical_memory_testing2.R
@@ -0,0 +1,145 @@
+#.libPaths("/disk/home/jullum/R/x86_64-pc-linux-gnu-library/4.1","/opt/R/4.1.1/lib/R/library")
+sys_time_initial <- Sys.time()
+
+# libraries
+library(shapr)
+library(future)
+library(MASS)
+library(microbenchmark)
+library(data.table)
+library(profmem)
+
+# Initial setup
+max_n <- 10^5
+max_p <- 16
+rho <- 0.3
+sigma <- 1
+mu_const <- 0
+beta0 <- 1
+sigma_eps <- 1
+
+mu <- rep(mu_const,max_p)
+beta <- c(beta0,seq_len(max_p)/max_p)
+Sigma <- matrix(rho,max_p,max_p)
+diag(Sigma) <- sigma
+
+set.seed(123)
+x_all <- MASS::mvrnorm(max_n,mu = mu,Sigma = Sigma)
+y_all <- as.vector(cbind(1,x_all)%*%beta)+rnorm(max_n,mean = 0,sd = sigma_eps)
+
+# Arguments from bash
+#args <- commandArgs(trailingOnly = TRUE)
+#if(length(args)==0) args = c(1,10,1000,100,10,1,"empirical","sequential","timing_test_2023.csv")
+
+
+this_rep <- 1
+p <- 6
+n_train <- 100
+n_explain <- 100
+n_batches <- 100
+n_cores <- 1
+approach <- "empirical"
+multicore_method <- "sequential"
+logfilename <- "bla"
+
+set.seed(123)
+
+
+these_p <- sample.int(max_p,size=p)
+these_train <- sample.int(max_n,size=n_train)
+these_explain <- sample.int(max_n,size=n_explain)
+
+x_train <- as.data.frame(x_all[these_train,these_p,drop=F])
+x_explain <- as.data.frame(x_all[these_explain,these_p,drop=F])
+
+colnames(x_explain) <- colnames(x_train) <- paste0("X",seq_len(p))
+
+y_train <- y_all[these_train]
+
+xy_train <- cbind(x_train,y=y_train)
+
+model <- lm(formula = y~.,data=xy_train)
+
+prediction_zero <- mean(y_train)
+
+n_batches_use <- min(2^p-2,n_batches)
+
+
+explanation_many <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = approach,
+ n_batches = n_batches_use,
+ prediction_zero = prediction_zero
+ )
+
+
+#explanation_single <- explain(
+# model = model,
+# x_explain = x_explain,
+# x_train = x_train,
+# approach = approach,
+# n_batches = 1,
+# prediction_zero = prediction_zero
+#)
+
+
+
+#S_batch_many <- copy(explanation_many$internal$objects$S_batch)
+#internal_many <- copy(explanation_many$internal)
+
+#S_batch_single <- list(`1`=sort(unlist(copy(explanation_many$internal$objects$S_batch),use.names=FALSE)))
+#internal_single <- copy(explanation_many$internal)
+
+feature_specs <- shapr:::get_feature_specs(NULL, model)
+
+
+internal <- setup(
+ x_train = x_train,
+ x_explain = x_explain,
+ approach = approach,
+ prediction_zero = prediction_zero,
+ n_combinations = 2^p,
+ group = NULL,
+ n_samples = 1e3,
+ n_batches = n_batches_use,
+ seed = 123,
+ keep_samp_for_vS = FALSE,
+ feature_specs = feature_specs)
+
+internal <- setup_computation(internal, model, NULL)
+
+S_batch_many <- internal$objects$S_batch
+S_batch_single <- list(`1`=sort(unlist(copy(S_batch_many),use.names=FALSE)))
+
+testfunc <- function(S, internal) {
+ dt <- shapr:::batch_prepare_vS(S = S, internal = internal) # Make it optional to store and return the dt_list
+ return(S)
+}
+
+internal$parameters$empirical.fixed_sigma <- rep(0.1,2)
+
+#pp_many <- profmem({
+s <- proc.time()
+ret <- future.apply::future_lapply(
+ X = S_batch_many,
+ FUN = testfunc,
+ internal = internal)
+proc.time()-s
+#},threshold=10^4)
+
+#pp_single <- profmem({
+s <- proc.time()
+ ret <- future.apply::future_lapply(
+ X = S_batch_single,
+ FUN = testfunc,
+ internal = internal)
+proc.time()-s
+#},threshold=10^4)
+
+plot(pp_many$bytes)
+points(pp_single$bytes,col=2)
+
+sum(pp_many$bytes)
+sum(pp_single$bytes)
diff --git a/inst/scripts/example_annabelle.R b/inst/scripts/example_annabelle.R
new file mode 100644
index 000000000..feede50bb
--- /dev/null
+++ b/inst/scripts/example_annabelle.R
@@ -0,0 +1,77 @@
+library(shapr)
+library(data.table)
+library(MASS)
+
+# ------------------------------
+
+Boston$rad <- as.factor(Boston$rad)
+Boston$chas <- as.factor(Boston$chas)
+x_var <- c("rad", "chas")
+y_var <- "medv"
+
+ind_x_test <- 1:4
+train <- Boston[-ind_x_test, c(x_var, y_var)]
+x_test <- Boston[ind_x_test, x_var]
+x_train = train[, x_var]
+
+model <- lm(medv ~ rad + chas, data = train)
+
+# ------------------------------
+# To test the categorical method when we know the results
+
+data = fread("../shapr/data.csv")
+data$feat_1_ = factor(data$feat_1_)
+data$feat_2_ = factor(data$feat_2_)
+data$feat_3_ = factor(data$feat_3_)
+
+x_train = data[1:1000, c("feat_1_", "feat_2_", "feat_3_")]
+x_test = data[1001:1005, c("feat_1_", "feat_2_", "feat_3_")]
+
+joint_prob_dt = fread("../shapr/joint_prob_dt.csv")
+
+p <- mean(data[1:1000,][['response']])
+
+joint_prob_dt[, feat_1_ := as.factor(feat_1_)]
+joint_prob_dt[, feat_2_ := as.factor(feat_2_)]
+joint_prob_dt[, feat_3_ := as.factor(feat_3_)]
+
+train = data[1:1000,]
+
+model <- lm(response ~ feat_1_ + feat_2_ + feat_3_, data = train)
+
+# ------------------------------
+
+temp = explain(
+ x_train = x_train,
+ x_explain = x_test,
+ model = model,
+ approach = "categorical",
+ prediction_zero = p,
+ joint_probability_dt = joint_prob_dt
+)
+print(temp)
+# none rad chas
+# 1: -0.030511 13.231 10.887
+# 2: -0.030511 15.709 11.035
+# 3: -0.030511 15.709 11.035
+# 4: -0.030511 16.624 10.883
+
+# Without joint prob dt
+# none feat_1_ feat_2_ feat_3_
+# 1: -0.030516 0.20455 0.29895 0.1381985
+# 2: -0.030516 0.23079 0.35300 -0.0480793
+# 3: -0.030516 0.13084 0.32979 -0.8297798
+# 4: -0.030516 0.23133 -0.88754 0.1923399
+# 5: -0.030516 0.27954 -0.84447 -0.0049256
+
+# With joint prob dt
+# none feat_1_ feat_2_ feat_3_
+# 1: -0.03051645 0.2211416 0.3030599 0.1174976222
+# 2: -0.03051648 0.2312988 0.3611456 -0.0567361622
+# 3: -0.03051644 0.1437691 0.3371903 -0.8501081617
+# 4: -0.03051647 0.2446707 -0.8627886 0.1542449764
+# 5: -0.03051649 0.2140973 -0.7843376 0.0003764934
+
+# none Month_factor Ozone_sub30_factor Solar.R_factor Wind_factor
+# 1: 40.752 6.1998 7.8422 2.852 70.2288
+# 2: 40.752 -3.7270 9.8283 5.626 4.1224
diff --git a/inst/scripts/example_ctree_method.R b/inst/scripts/example_ctree_method.R
index 712abe1c5..6f0d26f12 100644
--- a/inst/scripts/example_ctree_method.R
+++ b/inst/scripts/example_ctree_method.R
@@ -78,7 +78,7 @@ model_cat <- xgboost::xgboost(
nround = 20,
verbose = FALSE
)
-model_cat$feature_list <- dummylist$feature_list
+model_cat$feature_specs <- dummylist$feature_specs
explainer_cat <- shapr(dummylist$traindata_new, model_cat)
diff --git a/inst/scripts/example_custom_model.R b/inst/scripts/example_custom_model.R
index da6633fe8..34a6377a4 100644
--- a/inst/scripts/example_custom_model.R
+++ b/inst/scripts/example_custom_model.R
@@ -50,15 +50,15 @@ predict_model.gbm <- function(x, newdata) {
}
get_model_specs.gbm <- function(x){
- feature_list = list()
- feature_list$labels <- labels(x$Terms)
- m <- length(feature_list$labels)
+ feature_specs = list()
+ feature_specs$labels <- labels(x$Terms)
+ m <- length(feature_specs$labels)
- feature_list$classes <- attr(x$Terms,"dataClasses")[-1]
- feature_list$factor_levels <- setNames(vector("list", m), feature_list$labels)
- feature_list$factor_levels[feature_list$classes=="factor"] <- NA # the model object doesn't contain factor levels info
+ feature_specs$classes <- attr(x$Terms,"dataClasses")[-1]
+ feature_specs$factor_levels <- setNames(vector("list", m), feature_specs$labels)
+ feature_specs$factor_levels[feature_specs$classes=="factor"] <- NA # the model object doesn't contain factor levels info
- return(feature_list)
+ return(feature_specs)
}
# Prepare the data for explanation
diff --git a/inst/scripts/explain_memory_testing.R b/inst/scripts/explain_memory_testing.R
new file mode 100644
index 000000000..7c3030ffc
--- /dev/null
+++ b/inst/scripts/explain_memory_testing.R
@@ -0,0 +1,113 @@
+#.libPaths("/disk/home/jullum/R/x86_64-pc-linux-gnu-library/4.1","/opt/R/4.1.1/lib/R/library")
+sys_time_initial <- Sys.time()
+
+# libraries
+library(shapr)
+library(future)
+library(MASS)
+library(microbenchmark)
+library(data.table)
+library(profmem)
+
+# Initial setup
+max_n <- 10^5
+max_p <- 16
+rho <- 0.3
+sigma <- 1
+mu_const <- 0
+beta0 <- 1
+sigma_eps <- 1
+
+mu <- rep(mu_const,max_p)
+beta <- c(beta0,seq_len(max_p)/max_p)
+Sigma <- matrix(rho,max_p,max_p)
+diag(Sigma) <- sigma
+
+set.seed(123)
+x_all <- MASS::mvrnorm(max_n,mu = mu,Sigma = Sigma)
+y_all <- as.vector(cbind(1,x_all)%*%beta)+rnorm(max_n,mean = 0,sd = sigma_eps)
+
+# Arguments from bash
+#args <- commandArgs(trailingOnly = TRUE)
+#if(length(args)==0) args = c(1,10,1000,100,10,1,"empirical","sequential","timing_test_2023.csv")
+
+
+this_rep <- 1
+p <- 4
+n_train <- 1000
+n_explain <- 50
+n_batches <- 10
+n_cores <- 1
+approach <- "empirical"
+multicore_method <- "sequential"
+logfilename <- "bla"
+
+set.seed(123)
+
+
+these_p <- sample.int(max_p,size=p)
+these_train <- sample.int(max_n,size=n_train)
+these_explain <- sample.int(max_n,size=n_explain)
+
+x_train <- as.data.frame(x_all[these_train,these_p,drop=F])
+x_explain <- as.data.frame(x_all[these_explain,these_p,drop=F])
+
+colnames(x_explain) <- colnames(x_train) <- paste0("X",seq_len(p))
+
+y_train <- y_all[these_train]
+
+xy_train <- cbind(x_train,y=y_train)
+
+model <- lm(formula = y~.,data=xy_train)
+
+prediction_zero <- mean(y_train)
+
+n_batches_use <- min(2^p-2,n_batches)
+
+
+sys_time_start_explain <- Sys.time()
+
+pp.old <- profmem({
+explanation <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = approach,
+ n_batches = n_batches_use,
+ prediction_zero = prediction_zero
+)
+},threshold=10^4)
+
+sys_time_end_explain <- Sys.time()
+
+pp[!is.na(pp$bytes) &pp$bytes >6*10^5,]
+
+plot(pp$bytes)
+points(pp.old$bytes,col=2)
+#"bytes"]
+pp.old[!is.na(pp.old$bytes) &pp.old$bytes >6*10^5,"bytes"]
+
+secs_explain <- as.double(difftime(sys_time_end_explain,sys_time_start_explain),units="secs")
+print(secs_explain)
+
+timing <- list(p = p,
+ n_train = n_train,
+ n_explain = n_explain,
+ n_batches = n_batches,
+ n_cores = n_cores,
+ approach = approach,
+ sys_time_initial = as.character(sys_time_initial),
+ sys_time_start_explain = as.character(sys_time_start_explain),
+ sys_time_end_explain = as.character(sys_time_end_explain),
+ secs_explain = secs_explain,
+ this_rep = this_rep,
+ max_n = max_n,
+ max_p = max_p,
+ rho = rho,
+ sigma = sigma,
+ mu_const = mu_const,
+ beta0 = beta0,
+ sigma_eps = sigma_eps)
+
+#print(unlist(timing))
+data.table::fwrite(timing,logfilename,append = T)
diff --git a/inst/scripts/memory_test_2023.csv b/inst/scripts/memory_test_2023.csv
new file mode 100644
index 000000000..4daa220ed
--- /dev/null
+++ b/inst/scripts/memory_test_2023.csv
@@ -0,0 +1,3013 @@
+2023-01-17, 15:06:10, 6610 , 0, 2, 100, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:06:10, 106097 , 0, 2, 100, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:06:16, 6610 , 0, 2, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:06:16, 106358 , 0, 2, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:06:22, 6614 , 0, 2, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:06:23, 106451 , 0, 2, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:06:24, 255488 , 0, 2, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:06:29, 6603 , 0, 2, 100, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:06:30, 106143 , 0, 2, 100, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:06:35, 6610 , 0, 2, 100, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:06:36, 106392 , 0, 2, 100, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:06:42, 6603 , 0, 2, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:06:42, 106387 , 0, 2, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:06:48, 6605 , 0, 2, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:06:48, 105688 , 0, 2, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:06:49, 254789 , 0, 2, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:06:55, 6612 , 0, 2, 100, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:06:56, 106091 , 0, 2, 100, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:07:01, 6613 , 0, 2, 100, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:07:02, 106108 , 0, 2, 100, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:07:07, 6603 , 0, 2, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:07:08, 106107 , 0, 2, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:07:14, 6614 , 0, 2, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:07:14, 106373 , 0, 2, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:07:15, 255184 , 0, 2, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:07:21, 6612 , 0, 2, 100, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:07:21, 117114 , 0, 2, 100, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:07:27, 6614 , 0, 2, 100, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:07:28, 106029 , 0, 2, 100, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:07:33, 6612 , 0, 2, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:07:34, 106186 , 0, 2, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:07:39, 6605 , 0, 2, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:07:40, 115238 , 0, 2, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:07:41, 253417 , 0, 2, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:07:47, 6630 , 0, 2, 100, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:07:47, 105965 , 0, 2, 100, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:07:53, 6603 , 0, 2, 100, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:07:53, 105966 , 0, 2, 100, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:07:59, 6611 , 0, 2, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:08:00, 106188 , 0, 2, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:08:05, 6618 , 0, 2, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:08:06, 117098 , 0, 2, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:08:07, 253520 , 0, 2, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:08:12, 6607 , 0, 2, 100, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:08:13, 106104 , 0, 2, 100, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:08:19, 6618 , 0, 2, 100, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:08:19, 106092 , 0, 2, 100, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:08:25, 6608 , 0, 2, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:08:25, 106364 , 0, 2, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:08:31, 6609 , 0, 2, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:08:32, 106428 , 0, 2, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:08:33, 255147 , 0, 2, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:08:38, 6607 , 0, 2, 100, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:08:39, 106368 , 0, 2, 100, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:08:44, 6605 , 0, 2, 100, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:08:45, 105892 , 0, 2, 100, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:08:46, 6603 , 0, 2, 100, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:08:52, 6618 , 0, 2, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:08:52, 106031 , 0, 2, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:08:53, 6608 , 0, 2, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:08:59, 6616 , 0, 2, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:08:59, 106059 , 0, 2, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:09:01, 254895 , 0, 2, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:09:02, 6612 , 0, 2, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:09:07, 6606 , 0, 2, 100, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:09:08, 106099 , 0, 2, 100, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:09:13, 6614 , 0, 2, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:09:14, 106411 , 0, 2, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:09:15, 6616 , 0, 2, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:09:21, 6606 , 0, 2, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:09:21, 106354 , 0, 2, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:09:22, 6611 , 0, 2, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:09:28, 6616 , 0, 2, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:09:28, 115413 , 0, 2, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:09:30, 253532 , 0, 2, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:09:31, 6612 , 0, 2, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:09:36, 6616 , 0, 2, 100, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:09:37, 106006 , 0, 2, 100, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:09:42, 6607 , 0, 2, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:09:43, 106384 , 0, 2, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:09:44, 6613 , 0, 2, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:09:50, 6615 , 0, 2, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:09:50, 106408 , 0, 2, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:09:51, 6613 , 0, 2, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:09:57, 6615 , 0, 2, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:09:57, 106344 , 0, 2, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:09:59, 254462 , 0, 2, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:10:00, 6607 , 0, 2, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:10:05, 6607 , 0, 2, 100, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:10:06, 105897 , 0, 2, 100, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:10:11, 6611 , 0, 2, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:10:12, 105887 , 0, 2, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:10:13, 6603 , 0, 2, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:10:19, 6611 , 0, 2, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:10:19, 105959 , 0, 2, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:10:20, 6614 , 0, 2, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:10:26, 6603 , 0, 2, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:10:26, 106393 , 0, 2, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:10:28, 254539 , 0, 2, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:10:29, 6605 , 0, 2, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:10:34, 6611 , 0, 2, 100, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:10:35, 106397 , 0, 2, 100, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:10:40, 6611 , 0, 2, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:10:41, 106351 , 0, 2, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:10:42, 6611 , 0, 2, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:10:48, 6612 , 0, 2, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:10:48, 106099 , 0, 2, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:10:49, 6609 , 0, 2, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:10:55, 6606 , 0, 2, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:10:55, 106395 , 0, 2, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:10:57, 254823 , 0, 2, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:10:58, 6606 , 0, 2, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:11:03, 6608 , 0, 2, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:11:04, 106392 , 0, 2, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:11:09, 6616 , 0, 2, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:11:10, 106362 , 0, 2, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:11:11, 6612 , 0, 2, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:11:17, 6614 , 0, 2, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:11:17, 106069 , 0, 2, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:11:18, 6616 , 0, 2, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:11:24, 6605 , 0, 2, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:11:25, 106383 , 0, 2, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:11:26, 254547 , 0, 2, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:11:27, 6613 , 0, 2, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:11:32, 6611 , 0, 2, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:11:33, 105960 , 0, 2, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:11:38, 6612 , 0, 2, 1000, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:11:39, 106276 , 0, 2, 1000, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:11:45, 6630 , 0, 2, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:11:45, 117067 , 0, 2, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:11:51, 6613 , 0, 2, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:11:51, 106626 , 0, 2, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:11:52, 253240 , 0, 2, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:11:58, 6612 , 0, 2, 1000, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:11:59, 106338 , 0, 2, 1000, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:12:04, 6614 , 0, 2, 1000, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:12:05, 106386 , 0, 2, 1000, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:12:10, 6607 , 0, 2, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:12:11, 106406 , 0, 2, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:12:17, 6613 , 0, 2, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:12:17, 106183 , 0, 2, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:12:18, 252784 , 0, 2, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:12:24, 6630 , 0, 2, 1000, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:12:24, 106244 , 0, 2, 1000, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:12:30, 6605 , 0, 2, 1000, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:12:31, 106177 , 0, 2, 1000, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:12:36, 6609 , 0, 2, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:12:37, 106593 , 0, 2, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:12:42, 6609 , 0, 2, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:12:43, 106228 , 0, 2, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:12:44, 254026 , 0, 2, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:12:50, 6615 , 0, 2, 1000, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:12:50, 106232 , 0, 2, 1000, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:12:56, 6605 , 0, 2, 1000, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:12:56, 106389 , 0, 2, 1000, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:13:02, 6613 , 0, 2, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:13:03, 106592 , 0, 2, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:13:08, 6616 , 0, 2, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:13:09, 106557 , 0, 2, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:13:10, 252737 , 0, 2, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:13:16, 6607 , 0, 2, 1000, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:13:16, 106131 , 0, 2, 1000, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:13:22, 6607 , 0, 2, 1000, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:13:22, 117070 , 0, 2, 1000, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:13:28, 6619 , 0, 2, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:13:28, 106133 , 0, 2, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:13:34, 6613 , 0, 2, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:13:35, 106556 , 0, 2, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:13:36, 254570 , 0, 2, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:13:41, 6612 , 0, 2, 1000, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:13:42, 106415 , 0, 2, 1000, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:13:47, 6605 , 0, 2, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:13:48, 106175 , 0, 2, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:13:54, 6605 , 0, 2, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:13:54, 106145 , 0, 2, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:14:00, 6605 , 0, 2, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:14:00, 106353 , 0, 2, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:14:02, 254286 , 0, 2, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:14:07, 6603 , 0, 2, 1000, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:14:08, 106191 , 0, 2, 1000, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:14:13, 6616 , 0, 2, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:14:14, 106188 , 0, 2, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:14:15, 6611 , 0, 2, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:14:21, 6610 , 0, 2, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:14:21, 106328 , 0, 2, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:14:27, 6612 , 0, 2, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:14:27, 106182 , 0, 2, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:14:28, 253883 , 0, 2, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:14:29, 6608 , 0, 2, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:14:35, 6612 , 0, 2, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:14:36, 106630 , 0, 2, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:14:41, 6607 , 0, 2, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:14:42, 106409 , 0, 2, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:14:43, 192856 , 0, 2, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:14:48, 6616 , 0, 2, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:14:49, 106122 , 0, 2, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:14:50, 6609 , 0, 2, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:14:56, 6605 , 0, 2, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:14:56, 106603 , 0, 2, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:14:57, 254288 , 0, 2, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:14:59, 6603 , 0, 2, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:15:04, 6603 , 0, 2, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:15:05, 106688 , 0, 2, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:15:06, 6612 , 0, 2, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:15:11, 6610 , 0, 2, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:15:12, 105949 , 0, 2, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:15:13, 190293 , 0, 2, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:15:19, 6634 , 0, 2, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:15:19, 106185 , 0, 2, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:15:20, 6613 , 0, 2, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:15:26, 6616 , 0, 2, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:15:26, 106605 , 0, 2, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:15:28, 249546 , 0, 2, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:15:29, 6618 , 0, 2, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:15:34, 6607 , 0, 2, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:15:35, 106069 , 0, 2, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:15:36, 6599 , 0, 2, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:15:41, 6603 , 0, 2, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:15:42, 106577 , 0, 2, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:15:43, 193807 , 0, 2, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:15:49, 6612 , 0, 2, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:15:49, 106646 , 0, 2, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:15:50, 6610 , 0, 2, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:15:56, 6605 , 0, 2, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:15:57, 105984 , 0, 2, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:15:58, 253248 , 0, 2, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:15:59, 6612 , 0, 2, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:16:04, 6611 , 0, 2, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:16:05, 106192 , 0, 2, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:16:06, 6613 , 0, 2, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:16:12, 6609 , 0, 2, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:16:12, 106443 , 0, 2, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:16:13, 195170 , 0, 2, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:16:19, 6611 , 0, 2, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:16:19, 105918 , 0, 2, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:16:20, 6607 , 0, 2, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:16:26, 6607 , 0, 2, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:16:27, 106323 , 0, 2, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:16:28, 253925 , 0, 2, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:16:29, 6608 , 0, 2, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:16:34, 6608 , 0, 2, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:16:35, 106436 , 0, 2, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:16:41, 6618 , 0, 2, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:16:41, 106184 , 0, 2, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:16:42, 191912 , 0, 2, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:16:48, 6614 , 0, 2, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:16:48, 106539 , 0, 2, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:16:50, 6609 , 0, 2, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:16:55, 6607 , 0, 2, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:16:56, 106630 , 0, 2, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:16:57, 253843 , 0, 2, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:16:58, 6603 , 0, 2, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:17:03, 6616 , 0, 2, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:17:04, 106288 , 0, 2, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:17:05, 6616 , 0, 2, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:17:11, 6611 , 0, 4, 100, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:17:11, 117290 , 0, 4, 100, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:17:17, 6608 , 0, 4, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:17:17, 106381 , 0, 4, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:17:23, 6611 , 0, 4, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:17:24, 105964 , 0, 4, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:17:25, 254151 , 0, 4, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:17:26, 6607 , 0, 4, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:17:31, 6601 , 0, 4, 100, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:17:32, 105942 , 0, 4, 100, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:17:38, 6613 , 0, 4, 100, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:17:38, 105972 , 0, 4, 100, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:17:44, 6607 , 0, 4, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:17:44, 106001 , 0, 4, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:17:50, 6629 , 0, 4, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:17:51, 106162 , 0, 4, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:17:52, 253775 , 0, 4, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:17:53, 6613 , 0, 4, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:17:58, 6614 , 0, 4, 100, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:17:59, 106159 , 0, 4, 100, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:18:04, 6603 , 0, 4, 100, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:18:05, 106334 , 0, 4, 100, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:18:11, 6612 , 0, 4, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:18:11, 106368 , 0, 4, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:18:17, 6612 , 0, 4, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:18:17, 106017 , 0, 4, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:18:19, 253730 , 0, 4, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:18:20, 6613 , 0, 4, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:18:25, 6616 , 0, 4, 100, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:18:26, 117116 , 0, 4, 100, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:18:31, 6603 , 0, 4, 100, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:18:32, 105932 , 0, 4, 100, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:18:33, 6605 , 0, 4, 100, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:18:39, 6603 , 0, 4, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:18:39, 116228 , 0, 4, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:18:40, 6605 , 0, 4, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:18:46, 6614 , 0, 4, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:18:46, 105897 , 0, 4, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:18:48, 253583 , 0, 4, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:18:49, 6607 , 0, 4, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:18:54, 6607 , 0, 4, 100, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:18:55, 106467 , 0, 4, 100, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:19:00, 6605 , 0, 4, 100, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:19:01, 106070 , 0, 4, 100, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:19:02, 6603 , 0, 4, 100, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:19:08, 6633 , 0, 4, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:19:08, 106296 , 0, 4, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:19:09, 6630 , 0, 4, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:19:15, 6630 , 0, 4, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:19:15, 106014 , 0, 4, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:19:17, 254019 , 0, 4, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:19:18, 6612 , 0, 4, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:19:23, 6616 , 0, 4, 100, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:19:24, 105965 , 0, 4, 100, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:19:29, 6633 , 0, 4, 100, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:19:30, 106055 , 0, 4, 100, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:19:31, 6613 , 0, 4, 100, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:19:37, 6608 , 0, 4, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:19:37, 106361 , 0, 4, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:19:38, 6605 , 0, 4, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:19:44, 6605 , 0, 4, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:19:45, 115536 , 0, 4, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:19:46, 252689 , 0, 4, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:19:47, 6607 , 0, 4, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:19:52, 6601 , 0, 4, 100, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:19:53, 106343 , 0, 4, 100, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:19:58, 6608 , 0, 4, 100, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:19:59, 106004 , 0, 4, 100, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:20:00, 6600 , 0, 4, 100, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:20:06, 6612 , 0, 4, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:20:06, 106413 , 0, 4, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:20:07, 187642 , 0, 4, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:20:09, 299077 , 0, 4, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:20:14, 6611 , 0, 4, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:15, 106140 , 0, 4, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:16, 254322 , 0, 4, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:17, 328352 , 0, 4, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:18, 363172 , 0, 4, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:19, 404142 , 0, 4, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:20, 537146 , 0, 4, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:26, 6612 , 0, 4, 100, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:20:26, 106372 , 0, 4, 100, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:20:32, 6603 , 0, 4, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:20:32, 106076 , 0, 4, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:20:34, 184431 , 0, 4, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:20:39, 6613 , 0, 4, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:20:40, 106077 , 0, 4, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:20:41, 185297 , 0, 4, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:20:42, 304682 , 0, 4, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:20:47, 6617 , 0, 4, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:48, 106088 , 0, 4, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:49, 254032 , 0, 4, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:50, 319889 , 0, 4, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:51, 375259 , 0, 4, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:52, 388741 , 0, 4, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:54, 447048 , 0, 4, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:20:59, 6607 , 0, 4, 100, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:21:00, 106124 , 0, 4, 100, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:21:01, 6607 , 0, 4, 100, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:21:06, 6626 , 0, 4, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:21:07, 106106 , 0, 4, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:21:08, 185702 , 0, 4, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:21:09, 6603 , 0, 4, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:21:15, 6614 , 0, 4, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:21:15, 105910 , 0, 4, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:21:16, 213091 , 0, 4, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:21:17, 269496 , 0, 4, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:21:23, 6634 , 0, 4, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:21:24, 106015 , 0, 4, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:21:25, 252778 , 0, 4, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:21:26, 300341 , 0, 4, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:21:27, 375714 , 0, 4, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:21:28, 385991 , 0, 4, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:21:29, 424632 , 0, 4, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:21:30, 6611 , 0, 4, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:21:36, 6611 , 0, 4, 100, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:21:36, 106153 , 0, 4, 100, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:21:38, 6603 , 0, 4, 100, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:21:43, 6608 , 0, 4, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:21:44, 106160 , 0, 4, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:21:45, 187099 , 0, 4, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:21:46, 212167 , 0, 4, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:21:47, 238249 , 0, 4, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:21:52, 6603 , 0, 4, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:21:53, 106363 , 0, 4, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:21:54, 210129 , 0, 4, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:21:55, 222471 , 0, 4, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:21:56, 6605 , 0, 4, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:22:02, 6605 , 0, 4, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:02, 106084 , 0, 4, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:04, 254020 , 0, 4, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:05, 349949 , 0, 4, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:06, 380835 , 0, 4, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:07, 385616 , 0, 4, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:08, 419524 , 0, 4, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:09, 419565 , 0, 4, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:15, 6607 , 0, 4, 100, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:22:15, 106137 , 0, 4, 100, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:22:16, 197005 , 0, 4, 100, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:22:22, 6601 , 0, 4, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:22:22, 106009 , 0, 4, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:22:24, 187988 , 0, 4, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:22:25, 212219 , 0, 4, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:22:26, 242120 , 0, 4, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:22:27, 251154 , 0, 4, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:22:28, 256904 , 0, 4, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:22:29, 6614 , 0, 4, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:22:35, 6607 , 0, 4, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:22:35, 105895 , 0, 4, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:22:36, 196741 , 0, 4, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:22:37, 197488 , 0, 4, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:22:38, 212727 , 0, 4, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:22:39, 6611 , 0, 4, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:22:45, 6629 , 0, 4, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:46, 116266 , 0, 4, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:47, 252944 , 0, 4, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:48, 356633 , 0, 4, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:49, 365204 , 0, 4, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:50, 381240 , 0, 4, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:51, 433950 , 0, 4, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:52, 437017 , 0, 4, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:53, 6605 , 0, 4, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:22:59, 6604 , 0, 4, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:22:59, 106357 , 0, 4, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:23:01, 192454 , 0, 4, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:23:02, 223643 , 0, 4, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:23:07, 6612 , 0, 4, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:23:08, 106044 , 0, 4, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:23:09, 187354 , 0, 4, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:23:10, 212352 , 0, 4, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:23:11, 242322 , 0, 4, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:23:12, 251644 , 0, 4, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:23:13, 257298 , 0, 4, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:23:14, 6599 , 0, 4, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:23:20, 6605 , 0, 4, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:23:20, 106157 , 0, 4, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:23:22, 197367 , 0, 4, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:23:23, 197747 , 0, 4, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:23:24, 219983 , 0, 4, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:23:29, 6611 , 0, 4, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:23:30, 106070 , 0, 4, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:23:31, 254017 , 0, 4, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:23:32, 357401 , 0, 4, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:23:33, 365264 , 0, 4, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:23:34, 380810 , 0, 4, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:23:35, 434387 , 0, 4, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:23:37, 437058 , 0, 4, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:23:38, 6607 , 0, 4, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:23:43, 6614 , 0, 4, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:23:44, 106166 , 0, 4, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:23:45, 198708 , 0, 4, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:23:46, 223431 , 0, 4, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:23:52, 6612 , 0, 4, 1000, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:23:52, 106746 , 0, 4, 1000, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:23:58, 6629 , 0, 4, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:23:58, 106412 , 0, 4, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:24:04, 6603 , 0, 4, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:24:05, 106448 , 0, 4, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:24:06, 247496 , 0, 4, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:24:07, 6611 , 0, 4, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:24:12, 6603 , 0, 4, 1000, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:24:13, 106692 , 0, 4, 1000, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:24:19, 6601 , 0, 4, 1000, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:24:19, 106429 , 0, 4, 1000, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:24:25, 6613 , 0, 4, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:24:25, 106516 , 0, 4, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:24:31, 6609 , 0, 4, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:24:31, 106637 , 0, 4, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:24:33, 248871 , 0, 4, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:24:34, 6603 , 0, 4, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:24:39, 6612 , 0, 4, 1000, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:24:40, 106803 , 0, 4, 1000, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:24:45, 6608 , 0, 4, 1000, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:24:46, 106185 , 0, 4, 1000, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:24:47, 6618 , 0, 4, 1000, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:24:53, 6629 , 0, 4, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:24:53, 106799 , 0, 4, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:24:54, 6607 , 0, 4, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:25:00, 6599 , 0, 4, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:25:01, 106792 , 0, 4, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:25:02, 248871 , 0, 4, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:25:03, 6609 , 0, 4, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:25:08, 6630 , 0, 4, 1000, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:25:09, 106699 , 0, 4, 1000, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:25:14, 6599 , 0, 4, 1000, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:25:15, 106682 , 0, 4, 1000, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:25:16, 6604 , 0, 4, 1000, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:25:22, 6605 , 0, 4, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:25:22, 106684 , 0, 4, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:25:23, 6599 , 0, 4, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:25:29, 6609 , 0, 4, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:25:30, 106722 , 0, 4, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:25:31, 251359 , 0, 4, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:25:32, 6603 , 0, 4, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:25:37, 6620 , 0, 4, 1000, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:25:38, 106438 , 0, 4, 1000, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:25:39, 6614 , 0, 4, 1000, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:25:45, 6607 , 0, 4, 1000, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:25:45, 106706 , 0, 4, 1000, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:25:46, 6597 , 0, 4, 1000, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:25:52, 6616 , 0, 4, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:25:52, 106810 , 0, 4, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:25:54, 6603 , 0, 4, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:25:59, 6605 , 0, 4, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:26:00, 106495 , 0, 4, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:26:01, 251676 , 0, 4, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:26:02, 274031 , 0, 4, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:26:08, 6615 , 0, 4, 1000, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:26:08, 106351 , 0, 4, 1000, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:26:09, 6606 , 0, 4, 1000, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:26:15, 6605 , 0, 4, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:26:15, 106728 , 0, 4, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:26:17, 6599 , 0, 4, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:26:22, 6609 , 0, 4, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:26:23, 106462 , 0, 4, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:26:24, 6615 , 0, 4, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:26:29, 6608 , 0, 4, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:26:30, 106471 , 0, 4, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:26:31, 252794 , 0, 4, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:26:32, 273786 , 0, 4, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:26:38, 6616 , 0, 4, 1000, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:26:38, 106353 , 0, 4, 1000, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:26:39, 6609 , 0, 4, 1000, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:26:45, 6602 , 0, 4, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:26:46, 106712 , 0, 4, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:26:47, 181453 , 0, 4, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:26:52, 6612 , 0, 4, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:26:53, 106719 , 0, 4, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:26:54, 187601 , 0, 4, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:26:55, 244683 , 0, 4, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:27:01, 6612 , 0, 4, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:01, 106332 , 0, 4, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:02, 250098 , 0, 4, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:03, 328303 , 0, 4, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:05, 358871 , 0, 4, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:06, 409259 , 0, 4, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:07, 492516 , 0, 4, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:08, 6634 , 0, 4, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:13, 6610 , 0, 4, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:27:14, 117085 , 0, 4, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:27:15, 396318 , 0, 4, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:27:21, 6602 , 0, 4, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:27:21, 106299 , 0, 4, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:27:22, 214873 , 0, 4, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:27:28, 6612 , 0, 4, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:27:28, 106498 , 0, 4, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:27:30, 185516 , 0, 4, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:27:31, 219108 , 0, 4, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:27:36, 6609 , 0, 4, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:37, 106354 , 0, 4, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:38, 253256 , 0, 4, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:39, 323834 , 0, 4, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:40, 354054 , 0, 4, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:41, 475445 , 0, 4, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:42, 475441 , 0, 4, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:43, 6612 , 0, 4, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:27:49, 6616 , 0, 4, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:27:50, 106093 , 0, 4, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:27:51, 173857 , 0, 4, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:27:56, 6605 , 0, 4, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:27:57, 106687 , 0, 4, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:27:58, 197169 , 0, 4, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:27:59, 224829 , 0, 4, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:28:05, 6618 , 0, 4, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:28:05, 106706 , 0, 4, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:28:06, 220625 , 0, 4, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:28:07, 261421 , 0, 4, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:28:13, 6606 , 0, 4, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:14, 106684 , 0, 4, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:15, 249809 , 0, 4, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:16, 308998 , 0, 4, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:17, 362266 , 0, 4, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:18, 392669 , 0, 4, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:19, 434588 , 0, 4, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:20, 437757 , 0, 4, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:26, 6608 , 0, 4, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:28:26, 106492 , 0, 4, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:28:27, 235739 , 0, 4, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:28:33, 6608 , 0, 4, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:28:34, 106759 , 0, 4, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:28:35, 192156 , 0, 4, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:28:36, 233825 , 0, 4, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:28:37, 233446 , 0, 4, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:28:38, 265621 , 0, 4, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:28:44, 6613 , 0, 4, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:28:44, 106848 , 0, 4, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:28:45, 186831 , 0, 4, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:28:46, 212554 , 0, 4, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:28:47, 6610 , 0, 4, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:28:53, 6604 , 0, 4, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:54, 106248 , 0, 4, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:55, 249921 , 0, 4, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:56, 329649 , 0, 4, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:57, 365144 , 0, 4, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:58, 429784 , 0, 4, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:28:59, 431825 , 0, 4, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:29:00, 401297 , 0, 4, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:29:06, 6605 , 0, 4, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:29:06, 117442 , 0, 4, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:29:07, 225703 , 0, 4, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:29:08, 6604 , 0, 4, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:29:14, 6611 , 0, 4, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:29:15, 106509 , 0, 4, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:29:16, 187875 , 0, 4, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:29:17, 230559 , 0, 4, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:29:18, 234054 , 0, 4, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:29:19, 263890 , 0, 4, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:29:20, 265480 , 0, 4, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:29:21, 272004 , 0, 4, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:29:27, 6612 , 0, 4, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:29:27, 106348 , 0, 4, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:29:28, 198927 , 0, 4, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:29:30, 192634 , 0, 4, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:29:31, 196494 , 0, 4, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:29:32, 6605 , 0, 4, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:29:37, 6608 , 0, 4, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:29:38, 106391 , 0, 4, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:29:39, 251569 , 0, 4, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:29:40, 343452 , 0, 4, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:29:41, 376375 , 0, 4, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:29:42, 398758 , 0, 4, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:29:43, 403884 , 0, 4, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:29:44, 403906 , 0, 4, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:29:46, 6615 , 0, 4, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:29:51, 6610 , 0, 4, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:29:52, 106748 , 0, 4, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:29:53, 198990 , 0, 4, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:29:54, 213873 , 0, 4, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:29:55, 6603 , 0, 4, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:30:01, 6612 , 0, 4, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:30:01, 106397 , 0, 4, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:30:02, 187848 , 0, 4, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:30:03, 230537 , 0, 4, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:30:04, 234289 , 0, 4, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:30:06, 264247 , 0, 4, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:30:07, 265846 , 0, 4, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:30:08, 271966 , 0, 4, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:30:13, 6607 , 0, 4, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:30:14, 106488 , 0, 4, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:30:15, 199779 , 0, 4, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:30:16, 200175 , 0, 4, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:30:17, 204420 , 0, 4, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:30:23, 6605 , 0, 4, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:30:23, 106419 , 0, 4, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:30:24, 253340 , 0, 4, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:30:26, 344934 , 0, 4, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:30:27, 376294 , 0, 4, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:30:28, 399029 , 0, 4, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:30:29, 403965 , 0, 4, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:30:30, 403992 , 0, 4, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:30:31, 6609 , 0, 4, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:30:37, 6602 , 0, 4, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:30:37, 106081 , 0, 4, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:30:38, 197650 , 0, 4, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:30:39, 213385 , 0, 4, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:30:40, 6612 , 0, 4, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:30:46, 6608 , 0, 8, 100, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:30:47, 105841 , 0, 8, 100, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:30:52, 6612 , 0, 8, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:30:53, 106332 , 0, 8, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:30:54, 259952 , 0, 8, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:30:55, 328901 , 0, 8, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:30:56, 384314 , 0, 8, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:30:57, 454512 , 0, 8, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:30:58, 528092 , 0, 8, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:30:59, 1193248 , 0, 8, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:31:05, 6606 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:05, 106002 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:07, 253827 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:08, 258145 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:09, 377146 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:10, 406044 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:11, 468117 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:12, 520051 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:13, 555220 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:14, 584144 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:15, 634119 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:16, 661934 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:17, 6605 , 0, 8, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:23, 6616 , 0, 8, 100, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:31:24, 106318 , 0, 8, 100, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:31:29, 6611 , 0, 8, 100, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:31:30, 106016 , 0, 8, 100, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:31:31, 6614 , 0, 8, 100, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:31:37, 6615 , 0, 8, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:31:37, 105595 , 0, 8, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:31:38, 209560 , 0, 8, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:31:39, 271376 , 0, 8, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:31:40, 258614 , 0, 8, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:31:41, 345609 , 0, 8, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:31:43, 424730 , 0, 8, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:31:44, 6614 , 0, 8, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:31:49, 6610 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:50, 106106 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:51, 254002 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:52, 266575 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:53, 352179 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:54, 443499 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:55, 474183 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:56, 647425 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:57, 641082 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:31:59, 650351 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:00, 650339 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:01, 650335 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:02, 6610 , 0, 8, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:07, 6609 , 0, 8, 100, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:32:08, 105762 , 0, 8, 100, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:32:09, 6609 , 0, 8, 100, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:32:15, 6608 , 0, 8, 100, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:32:15, 106255 , 0, 8, 100, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:32:16, 6613 , 0, 8, 100, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:32:22, 6607 , 0, 8, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:32:22, 106232 , 0, 8, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:32:24, 203087 , 0, 8, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:32:25, 323374 , 0, 8, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:32:26, 332079 , 0, 8, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:32:27, 384721 , 0, 8, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:32:28, 494791 , 0, 8, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:32:34, 6610 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:34, 106253 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:35, 252917 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:36, 311341 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:37, 404589 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:38, 496658 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:40, 477207 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:41, 574594 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:42, 487071 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:43, 490970 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:44, 496615 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:45, 496615 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:46, 6607 , 0, 8, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:32:52, 6611 , 0, 8, 100, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:32:52, 106286 , 0, 8, 100, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:32:53, 6599 , 0, 8, 100, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:32:59, 6607 , 0, 8, 100, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:33:00, 106056 , 0, 8, 100, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:33:01, 170088 , 0, 8, 100, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:33:06, 6605 , 0, 8, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:07, 106252 , 0, 8, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:08, 213787 , 0, 8, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:09, 286108 , 0, 8, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:10, 314865 , 0, 8, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:11, 327861 , 0, 8, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:12, 401647 , 0, 8, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:13, 6612 , 0, 8, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:19, 6605 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:19, 116745 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:21, 250845 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:22, 318312 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:23, 408680 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:24, 435518 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:25, 448184 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:26, 448191 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:27, 453165 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:28, 454224 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:29, 454720 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:30, 439222 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:31, 6629 , 0, 8, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:33:37, 6618 , 0, 8, 100, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:33:38, 106018 , 0, 8, 100, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:33:39, 6610 , 0, 8, 100, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:33:44, 6605 , 0, 8, 100, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:33:45, 106309 , 0, 8, 100, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:33:46, 174838 , 0, 8, 100, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:33:52, 6607 , 0, 8, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:52, 105864 , 0, 8, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:53, 246430 , 0, 8, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:54, 238167 , 0, 8, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:56, 287770 , 0, 8, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:57, 261864 , 0, 8, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:58, 402000 , 0, 8, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:33:59, 6612 , 0, 8, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:34:04, 6628 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:05, 105798 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:06, 253438 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:07, 313911 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:08, 374845 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:09, 390852 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:10, 434373 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:12, 434521 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:13, 438128 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:14, 440035 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:15, 429927 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:16, 430497 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:17, 431621 , 0, 8, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:23, 6607 , 0, 8, 100, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:34:23, 106228 , 0, 8, 100, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:34:24, 6605 , 0, 8, 100, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:34:30, 6615 , 0, 8, 100, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:34:31, 105757 , 0, 8, 100, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:34:32, 182855 , 0, 8, 100, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:34:33, 6616 , 0, 8, 100, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:34:38, 6604 , 0, 8, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:34:39, 116625 , 0, 8, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:34:40, 190677 , 0, 8, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:34:41, 209711 , 0, 8, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:34:42, 241601 , 0, 8, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:34:43, 206892 , 0, 8, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:34:44, 318384 , 0, 8, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:34:45, 320241 , 0, 8, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:34:51, 6603 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:52, 105543 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:53, 250811 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:54, 321048 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:55, 375276 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:56, 387083 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:57, 390223 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:58, 390975 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:34:59, 393679 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:35:00, 416884 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:35:02, 417098 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:35:03, 418166 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:35:04, 420312 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:35:05, 6605 , 0, 8, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:35:11, 6613 , 0, 8, 100, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:35:11, 106004 , 0, 8, 100, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:35:12, 185122 , 0, 8, 100, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:35:18, 6620 , 0, 8, 100, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:35:18, 105859 , 0, 8, 100, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:35:20, 198688 , 0, 8, 100, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:35:21, 208470 , 0, 8, 100, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:35:26, 6616 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:27, 105664 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:28, 258085 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:29, 328200 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:30, 383414 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:31, 453266 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:32, 524294 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:33, 572147 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:34, 632687 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:36, 719205 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:37, 758908 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:38, 818426 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:39, 877967 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:40, 958415 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:41, 1017939 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:42, 1069755 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:43, 1130282 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:44, 1198517 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:45, 1251113 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:46, 1310648 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:48, 1373259 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:49, 1426571 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:50, 1486104 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:51, 1545646 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:52, 1644362 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:53, 1703898 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:54, 1763424 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:55, 1828125 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:56, 1901903 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:57, 1961438 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:35:58, 2001123 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:00, 2060653 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:01, 2120195 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:02, 2188456 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:03, 2247980 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:04, 2307523 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:05, 2367053 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:06, 2426580 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:07, 3572960 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:08, 5888266 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:10, 6045385 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:11, 8626286 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:12, 10797149 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:13, 11392556 , 0, 8, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:36:18, 6615 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:19, 105963 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:20, 254125 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:21, 258181 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:22, 377282 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:23, 405353 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:25, 467969 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:26, 526150 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:27, 555099 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:28, 586616 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:29, 634071 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:30, 661645 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:31, 703369 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:32, 768039 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:33, 808718 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:34, 835950 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:35, 876609 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:37, 896463 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:38, 951809 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:39, 971653 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:40, 1011354 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:41, 1072657 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:42, 1092493 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:43, 1132187 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:44, 1152030 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:45, 1191708 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:46, 1211558 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:47, 1251253 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:49, 1290942 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:50, 1343706 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:51, 1384389 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:52, 1404222 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:53, 1443922 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:54, 1483600 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:55, 1523592 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:56, 1569342 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:57, 1589170 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:58, 1628858 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:36:59, 1648695 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:01, 1688382 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:02, 1731185 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:03, 1786786 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:04, 1826485 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:05, 1846338 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:06, 1886003 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:07, 1925700 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:08, 1945544 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:09, 1985237 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:10, 2054453 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:11, 2120717 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:13, 2160410 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:14, 2180253 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:15, 2200093 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:16, 2239785 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:17, 2279465 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:18, 2299308 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:19, 2323130 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:20, 2346942 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:21, 2377704 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:22, 2417383 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:24, 2437236 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:25, 2485025 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:26, 2524715 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:27, 2544552 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:28, 2584252 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:29, 2604489 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:30, 2692955 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:31, 2726691 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:32, 2752485 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:33, 4260935 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:35, 5477299 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:36, 6469489 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:37, 6702930 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:38, 6703344 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:39, 6703799 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:40, 6704022 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:41, 6704481 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:42, 6704926 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:43, 6705369 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:45, 6705832 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:46, 6706353 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:47, 6612530 , 0, 8, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:37:52, 6607 , 0, 8, 100, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:37:53, 106272 , 0, 8, 100, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:37:54, 251134 , 0, 8, 100, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:37:55, 589067 , 0, 8, 100, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:37:56, 6597 , 0, 8, 100, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:38:02, 6616 , 0, 8, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:38:02, 106277 , 0, 8, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:38:04, 186263 , 0, 8, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:38:05, 232071 , 0, 8, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:38:06, 6603 , 0, 8, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:38:11, 6603 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:12, 105977 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:13, 210018 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:14, 271722 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:15, 334980 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:16, 401591 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:17, 451950 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:18, 532361 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:20, 588424 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:21, 655001 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:22, 714537 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:23, 789634 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:24, 849172 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:25, 911604 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:26, 971137 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:27, 1053334 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:28, 1112859 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:29, 1172408 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:31, 1222015 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:32, 1726543 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:33, 2900110 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:34, 5241341 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:35, 1025057 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:36, 1025058 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:37, 1025052 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:38, 1025054 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:39, 1025057 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:40, 1025054 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:42, 1025054 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:43, 1025047 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:44, 1025047 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:45, 1130307 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:46, 1190348 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:47, 1249886 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:48, 1309418 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:49, 1413733 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:50, 1473259 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:51, 1526350 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:52, 1581924 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:54, 1687666 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:55, 4824550 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:38:56, 6602 , 0, 8, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:39:01, 6614 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:02, 105819 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:03, 252192 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:04, 264782 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:05, 352861 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:06, 432533 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:07, 473443 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:08, 514667 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:10, 552381 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:11, 582651 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:12, 620390 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:13, 656120 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:14, 713810 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:15, 738930 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:16, 767229 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:17, 795986 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:18, 859357 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:19, 889119 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:20, 914921 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:22, 943379 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:23, 972972 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:24, 1002736 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:25, 1064955 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:26, 1094715 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:27, 1123498 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:28, 1153280 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:29, 1214761 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:30, 1244513 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:31, 1264372 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:32, 1304061 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:34, 1335923 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:35, 1394183 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:36, 1423960 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:37, 1452732 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:38, 1479524 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:39, 1507805 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:40, 1537573 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:41, 2214637 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:42, 3270029 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:43, 3490245 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:45, 3490985 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:46, 3491459 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:47, 3491902 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:48, 3495314 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:49, 1384830 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:50, 1384825 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:51, 1384844 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:52, 1384829 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:53, 1384828 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:54, 1384833 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:56, 1384825 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:57, 1384826 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:58, 1384827 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:39:59, 1384841 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:00, 1384827 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:01, 1384754 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:02, 1384823 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:03, 1384821 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:04, 1384822 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:05, 1384828 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:06, 1384833 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:08, 1384826 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:09, 1384828 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:10, 1384827 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:11, 1384832 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:12, 1399579 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:13, 1429341 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:14, 1499273 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:15, 1526581 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:16, 1556325 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:17, 1586097 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:19, 1625782 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:20, 1655555 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:21, 1684820 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:22, 1714596 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:23, 1744360 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:24, 1774144 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:25, 3046645 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:26, 3753510 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:27, 3754408 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:28, 3754984 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:30, 3755099 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:31, 3755768 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:32, 6608 , 0, 8, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:40:37, 6630 , 0, 8, 100, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:40:38, 106319 , 0, 8, 100, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:40:39, 237613 , 0, 8, 100, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:40:40, 645481 , 0, 8, 100, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:40:46, 6601 , 0, 8, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:40:46, 106276 , 0, 8, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:40:47, 213512 , 0, 8, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:40:49, 213347 , 0, 8, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:40:50, 212899 , 0, 8, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:40:55, 6607 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:40:56, 105907 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:40:57, 205416 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:40:58, 261993 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:40:59, 326443 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:00, 390785 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:01, 446842 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:02, 515020 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:03, 569734 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:05, 651813 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:06, 705968 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:07, 2214635 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:08, 2458634 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:09, 2458963 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:10, 2458638 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:11, 2458963 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:12, 662362 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:13, 662347 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:14, 662340 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:16, 721667 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:17, 781922 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:18, 3076686 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:19, 801766 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:20, 801768 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:21, 801773 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:22, 801767 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:23, 801763 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:24, 801772 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:25, 801770 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:27, 869316 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:28, 927154 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:29, 2597361 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:30, 2695462 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:31, 2695445 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:32, 2695444 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:33, 997450 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:34, 997449 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:35, 997453 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:36, 997458 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:38, 997456 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:39, 1964669 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:40, 6607 , 0, 8, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:41:45, 6614 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:46, 106304 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:47, 253595 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:48, 307265 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:49, 392169 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:50, 445404 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:51, 469496 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:52, 509860 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:54, 535991 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:55, 570361 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:56, 619324 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:57, 666778 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:58, 688445 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:41:59, 715022 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:00, 741118 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:01, 769510 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:02, 830125 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:03, 851786 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:04, 908660 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:06, 935969 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:07, 1314247 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:08, 2019263 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:09, 2019315 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:10, 2019317 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:11, 976146 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:12, 976135 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:13, 976139 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:14, 976140 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:15, 976141 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:17, 976130 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:18, 976142 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:19, 976138 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:20, 976144 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:21, 993249 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:22, 1062379 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:23, 1089385 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:24, 1116382 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:25, 1149136 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:26, 1179149 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:27, 1206645 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:29, 1556937 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:30, 2243537 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:31, 2243804 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:32, 2243804 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:33, 1927206 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:34, 1927193 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:35, 1053278 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:36, 1053279 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:37, 1053270 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:38, 1053272 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:40, 1053282 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:41, 1053272 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:42, 1053296 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:43, 1053272 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:44, 1058074 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:45, 1084653 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:46, 1115665 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:47, 1142239 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:48, 1173262 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:49, 1216735 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:51, 1862932 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:52, 2238391 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:53, 2238535 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:54, 2238908 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:55, 2238710 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:56, 2238709 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:57, 1519813 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:58, 1519821 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:42:59, 1519809 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:00, 1519811 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:02, 1519817 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:03, 1519825 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:04, 1519818 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:05, 1519822 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:06, 1519811 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:07, 1519822 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:08, 1519822 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:09, 1519808 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:10, 1519821 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:11, 1519815 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:12, 1957395 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:14, 2288144 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:15, 2288147 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:16, 1870037 , 0, 8, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:43:21, 6612 , 0, 8, 100, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:43:22, 106035 , 0, 8, 100, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:43:23, 414286 , 0, 8, 100, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:43:24, 403298 , 0, 8, 100, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:43:25, 6605 , 0, 8, 100, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:43:31, 6609 , 0, 8, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:43:31, 106054 , 0, 8, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:43:33, 191759 , 0, 8, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:43:34, 217918 , 0, 8, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:43:35, 220821 , 0, 8, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:43:36, 242681 , 0, 8, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:43:37, 242576 , 0, 8, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:43:43, 6612 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:43, 106085 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:44, 199953 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:45, 259057 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:46, 315759 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:47, 392403 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:49, 916102 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:50, 1351959 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:51, 419623 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:52, 419609 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:53, 464256 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:54, 1198687 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:55, 1498297 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:56, 511972 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:57, 511977 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:43:58, 511977 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:00, 1334292 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:01, 1488971 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:02, 1488997 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:03, 513979 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:04, 513974 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:05, 1474517 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:06, 1488859 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:07, 1488858 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:08, 507942 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:09, 507931 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:10, 1452651 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:12, 750437 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:13, 750432 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:14, 750770 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:15, 750439 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:16, 875629 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:17, 1563136 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:18, 750443 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:19, 750756 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:20, 750439 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:21, 1313738 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:23, 750771 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:24, 750784 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:25, 750759 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:26, 750770 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:27, 1801275 , 0, 8, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:44:32, 6610 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:33, 106295 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:34, 254745 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:35, 321263 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:36, 390505 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:37, 432943 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:39, 464357 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:40, 499257 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:41, 535694 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:42, 568166 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:43, 596113 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:44, 644876 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:45, 1195819 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:46, 1195933 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:47, 712102 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:48, 712099 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:49, 712102 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:51, 712101 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:52, 732832 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:53, 814251 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:54, 851803 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:55, 852809 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:56, 1261871 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:57, 1377670 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:58, 851925 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:44:59, 851921 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:00, 851928 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:01, 851888 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:03, 851926 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:04, 851921 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:05, 851927 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:06, 866275 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:07, 1203900 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:08, 1420011 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:09, 1197379 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:10, 913005 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:11, 913001 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:12, 913007 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:13, 913017 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:15, 913009 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:16, 913014 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:17, 913013 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:18, 1125381 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:19, 1385317 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:20, 932406 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:21, 932410 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:22, 932400 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:23, 932416 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:24, 932406 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:26, 932403 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:27, 932397 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:28, 932405 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:29, 1237208 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:30, 1373672 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:31, 907500 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:32, 907499 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:33, 907499 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:34, 907507 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:35, 907501 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:36, 907507 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:38, 907506 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:39, 907501 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:40, 1339027 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:41, 1404912 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:42, 1232383 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:43, 907500 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:44, 907507 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:45, 907499 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:46, 907510 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:47, 907499 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:49, 907507 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:50, 907500 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:51, 1207751 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:52, 1373566 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:53, 1214362 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:54, 907482 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:55, 907476 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:56, 907489 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:57, 907479 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:58, 907483 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:45:59, 907486 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:46:01, 907500 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:46:02, 1226069 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:46:03, 1416847 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:46:04, 6609 , 0, 8, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:46:09, 6611 , 0, 8, 100, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:46:10, 106321 , 0, 8, 100, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:46:11, 273806 , 0, 8, 100, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:46:12, 311126 , 0, 8, 100, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:46:13, 333083 , 0, 8, 100, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:46:19, 6613 , 0, 8, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:46:19, 106271 , 0, 8, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:46:21, 185565 , 0, 8, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:46:22, 215003 , 0, 8, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:46:23, 222001 , 0, 8, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:46:24, 249163 , 0, 8, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:46:25, 250799 , 0, 8, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:46:26, 250852 , 0, 8, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:46:27, 253328 , 0, 8, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:46:28, 253306 , 0, 8, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:46:29, 6626 , 0, 8, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:46:35, 6603 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:35, 106246 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:37, 197309 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:38, 250930 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:39, 800308 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:40, 737837 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:41, 292605 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:42, 821897 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:43, 319824 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:44, 786446 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:45, 331720 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:46, 331725 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:47, 331737 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:49, 331736 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:50, 656896 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:51, 825192 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:52, 581840 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:53, 818954 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:54, 337793 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:55, 625621 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:56, 337801 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:57, 337796 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:58, 831427 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:46:59, 337795 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:01, 649004 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:02, 337788 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:03, 337790 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:04, 844205 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:05, 469628 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:06, 469306 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:07, 1020085 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:08, 907046 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:09, 469329 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:10, 944225 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:11, 469657 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:13, 801557 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:14, 469342 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:15, 469328 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:16, 1075493 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:17, 469672 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:18, 469687 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:19, 982053 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:20, 469353 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:21, 1044514 , 0, 8, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:47:27, 6614 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:27, 106299 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:29, 253133 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:30, 320881 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:31, 350508 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:32, 426705 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:33, 464827 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:34, 576320 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:35, 701509 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:36, 596028 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:37, 596029 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:38, 608165 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:39, 634123 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:41, 924237 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:42, 834304 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:43, 671938 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:44, 671942 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:45, 671938 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:46, 960983 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:47, 875755 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:48, 705994 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:49, 705991 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:50, 705993 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:52, 960899 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:53, 884876 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:54, 884864 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:55, 716235 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:56, 716245 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:57, 716243 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:58, 865858 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:47:59, 877166 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:00, 708798 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:01, 708802 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:02, 708806 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:04, 923658 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:05, 868229 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:06, 708767 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:07, 708761 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:08, 708764 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:09, 943882 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:10, 869832 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:11, 708767 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:12, 708779 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:13, 708770 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:14, 927831 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:16, 894121 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:17, 858174 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:18, 720675 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:19, 720676 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:20, 914806 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:21, 720524 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:22, 720515 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:23, 720523 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:24, 720513 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:25, 720540 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:27, 915970 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:28, 758095 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:29, 758106 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:30, 758100 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:31, 758511 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:32, 1049799 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:33, 795923 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:34, 795927 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:35, 795924 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:36, 795915 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:37, 1064438 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:39, 808340 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:40, 808343 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:41, 808342 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:42, 808331 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:43, 1063309 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:44, 808322 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:45, 808326 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:46, 808312 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:47, 808319 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:48, 889299 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:50, 973683 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:51, 807102 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:52, 807090 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:53, 807088 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:54, 807088 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:55, 1042223 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:56, 807108 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:57, 807094 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:58, 807107 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:48:59, 807096 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:49:01, 1039073 , 0, 8, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:49:06, 6609 , 0, 8, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:49:07, 106287 , 0, 8, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:49:08, 260652 , 0, 8, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:49:09, 279120 , 0, 8, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:49:10, 279159 , 0, 8, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:49:11, 279383 , 0, 8, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:49:12, 6610 , 0, 8, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:49:18, 6601 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:18, 105847 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:19, 183320 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:21, 213513 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:22, 230574 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:23, 253159 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:24, 253161 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:25, 257422 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:26, 257429 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:27, 261919 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:28, 261921 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:29, 265775 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:30, 265748 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:31, 265845 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:32, 265842 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:34, 265837 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:35, 266112 , 0, 8, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:49:40, 6608 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:41, 105907 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:42, 192181 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:43, 261531 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:44, 536415 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:45, 261709 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:46, 261589 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:47, 492522 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:48, 464392 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:50, 261382 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:51, 489382 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:52, 489294 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:53, 251250 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:54, 235750 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:55, 482522 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:56, 542231 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:57, 235767 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:58, 235788 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:49:59, 485651 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:00, 235768 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:02, 235769 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:03, 488804 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:04, 464107 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:05, 235776 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:06, 482543 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:07, 448949 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:08, 448335 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:09, 235781 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:10, 237061 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:11, 481224 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:13, 324489 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:14, 528025 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:15, 403145 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:16, 686982 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:17, 630718 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:18, 624460 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:19, 627592 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:20, 387098 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:21, 387094 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:22, 633859 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:24, 387098 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:25, 627614 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:26, 687006 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:27, 387114 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:28, 630742 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:29, 630738 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:30, 387108 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:31, 387110 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:32, 6605 , 0, 8, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:50:38, 6612 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:38, 106098 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:40, 253569 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:41, 318166 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:42, 347312 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:43, 491272 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:44, 515294 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:45, 515304 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:46, 639323 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:47, 612877 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:48, 589738 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:49, 602128 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:50, 606356 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:52, 657909 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:53, 609617 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:54, 609616 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:55, 624938 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:56, 624933 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:57, 624931 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:58, 630829 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:50:59, 630836 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:00, 687622 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:01, 633863 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:02, 633862 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:04, 650315 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:05, 630726 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:06, 630728 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:07, 647801 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:08, 647790 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:09, 647793 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:10, 650211 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:11, 630640 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:12, 681461 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:13, 633742 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:15, 633724 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:16, 654838 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:17, 630601 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:18, 630609 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:19, 653239 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:20, 630564 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:21, 689792 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:22, 636816 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:23, 636816 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:24, 655175 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:25, 636819 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:27, 636816 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:28, 636824 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:29, 636822 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:30, 673700 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:31, 630577 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:32, 635664 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:33, 670065 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:34, 635604 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:35, 635604 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:36, 663599 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:37, 635600 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:39, 691920 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:40, 663600 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:41, 635598 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:42, 663587 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:43, 635581 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:44, 635582 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:45, 663588 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:46, 635441 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:47, 687848 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:48, 647941 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:49, 647937 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:51, 662741 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:52, 641603 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:53, 641602 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:54, 660209 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:55, 641584 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:56, 691450 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:57, 660200 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:58, 641572 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:51:59, 660088 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:00, 641459 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:02, 641461 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:03, 660319 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:04, 632318 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:05, 632324 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:06, 660328 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:07, 632316 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:08, 688682 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:09, 660323 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:10, 632322 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:11, 644816 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:12, 644821 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:14, 648790 , 0, 8, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:19, 6608 , 0, 8, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:52:20, 105836 , 0, 8, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:52:21, 184369 , 0, 8, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:52:22, 215450 , 0, 8, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:52:23, 210935 , 0, 8, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:52:24, 230238 , 0, 8, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:52:25, 212170 , 0, 8, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:52:26, 227232 , 0, 8, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:52:32, 6607 , 0, 8, 1000, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:52:32, 106592 , 0, 8, 1000, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:52:34, 188777 , 0, 8, 1000, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:52:39, 6613 , 0, 8, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:52:40, 106892 , 0, 8, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:52:41, 207204 , 0, 8, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:52:42, 279823 , 0, 8, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:52:43, 354197 , 0, 8, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:52:44, 408485 , 0, 8, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:52:45, 6603 , 0, 8, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:52:51, 6607 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:51, 106800 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:52, 244174 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:54, 302280 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:55, 392798 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:56, 500690 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:57, 549503 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:58, 625009 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:52:59, 667844 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:00, 708524 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:01, 764862 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:02, 805805 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:03, 848533 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:04, 1298375 , 0, 8, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:10, 6615 , 0, 8, 1000, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:53:11, 106846 , 0, 8, 1000, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:53:12, 289561 , 0, 8, 1000, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:53:13, 1055763 , 0, 8, 1000, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:53:18, 6607 , 0, 8, 1000, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:53:19, 106852 , 0, 8, 1000, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:53:20, 205644 , 0, 8, 1000, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:53:26, 6609 , 0, 8, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:53:26, 106674 , 0, 8, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:53:27, 199208 , 0, 8, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:53:28, 262098 , 0, 8, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:53:30, 597571 , 0, 8, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:53:31, 533456 , 0, 8, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:53:32, 6626 , 0, 8, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:53:37, 6630 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:38, 106399 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:39, 243362 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:40, 305393 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:41, 410213 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:42, 494680 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:43, 531201 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:44, 581667 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:46, 764393 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:47, 761364 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:48, 761364 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:49, 761357 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:50, 761361 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:51, 6609 , 0, 8, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:53:57, 6615 , 0, 8, 1000, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:53:57, 106648 , 0, 8, 1000, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:53:58, 372929 , 0, 8, 1000, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:53:59, 752549 , 0, 8, 1000, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:54:05, 6612 , 0, 8, 1000, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:54:06, 106892 , 0, 8, 1000, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:54:07, 187286 , 0, 8, 1000, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:54:12, 6614 , 0, 8, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:54:13, 106885 , 0, 8, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:54:14, 201870 , 0, 8, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:54:15, 397510 , 0, 8, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:54:16, 448844 , 0, 8, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:54:17, 403775 , 0, 8, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:54:18, 6612 , 0, 8, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:54:24, 6612 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:24, 106895 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:26, 244222 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:27, 306247 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:28, 406732 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:29, 491837 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:30, 561201 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:31, 561196 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:32, 544195 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:33, 544202 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:34, 548791 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:35, 632053 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:36, 544463 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:38, 6601 , 0, 8, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:54:43, 6603 , 0, 8, 1000, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:54:44, 106676 , 0, 8, 1000, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:54:45, 367865 , 0, 8, 1000, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:54:46, 6601 , 0, 8, 1000, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:54:52, 6616 , 0, 8, 1000, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:54:52, 106660 , 0, 8, 1000, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:54:53, 184436 , 0, 8, 1000, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:54:54, 6608 , 0, 8, 1000, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:55:00, 6611 , 0, 8, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:00, 106845 , 0, 8, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:02, 257103 , 0, 8, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:03, 212660 , 0, 8, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:04, 342849 , 0, 8, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:05, 371431 , 0, 8, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:06, 6611 , 0, 8, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:12, 6616 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:12, 106618 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:13, 244209 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:14, 329150 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:15, 399143 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:17, 423471 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:18, 426198 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:19, 487629 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:20, 490880 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:21, 490887 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:22, 491586 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:23, 474183 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:24, 500111 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:25, 6606 , 0, 8, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:55:31, 6615 , 0, 8, 1000, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:55:31, 117245 , 0, 8, 1000, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:55:32, 270410 , 0, 8, 1000, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:55:34, 291126 , 0, 8, 1000, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:55:39, 6616 , 0, 8, 1000, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:55:40, 117833 , 0, 8, 1000, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:55:41, 186108 , 0, 8, 1000, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:55:42, 195587 , 0, 8, 1000, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:55:43, 6603 , 0, 8, 1000, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:55:49, 6605 , 0, 8, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:49, 106816 , 0, 8, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:50, 222711 , 0, 8, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:51, 234857 , 0, 8, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:53, 295063 , 0, 8, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:54, 258894 , 0, 8, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:55:55, 265006 , 0, 8, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:56:00, 6610 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:01, 106940 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:02, 244047 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:03, 348334 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:04, 372043 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:05, 384345 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:06, 388291 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:07, 413787 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:09, 412259 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:10, 418062 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:11, 419121 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:12, 416881 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:13, 418908 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:14, 420657 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:15, 420770 , 0, 8, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:21, 6606 , 0, 8, 1000, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:56:21, 106868 , 0, 8, 1000, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:56:22, 232242 , 0, 8, 1000, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:56:23, 253386 , 0, 8, 1000, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:56:25, 6612 , 0, 8, 1000, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:56:30, 6603 , 0, 8, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:56:31, 106420 , 0, 8, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:56:32, 179685 , 0, 8, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:56:33, 203894 , 0, 8, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:56:34, 206587 , 0, 8, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:56:35, 206611 , 0, 8, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:56:41, 6606 , 0, 8, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:56:41, 106506 , 0, 8, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:56:42, 179851 , 0, 8, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:56:44, 211865 , 0, 8, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:56:45, 237494 , 0, 8, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:56:46, 237509 , 0, 8, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:56:47, 237523 , 0, 8, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:56:52, 6611 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:53, 106404 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:54, 244058 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:55, 341056 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:56, 366002 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:57, 386905 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:56:58, 386974 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:57:00, 397899 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:57:01, 398390 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:57:02, 398430 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:57:03, 398834 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:57:04, 416384 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:57:05, 417210 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:57:06, 427933 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:57:07, 428208 , 0, 8, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:57:13, 6614 , 0, 8, 1000, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:57:14, 106170 , 0, 8, 1000, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:57:15, 192308 , 0, 8, 1000, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:57:16, 199823 , 0, 8, 1000, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:57:17, 200244 , 0, 8, 1000, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 15:57:23, 6605 , 0, 8, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:57:23, 106335 , 0, 8, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:57:24, 422315 , 0, 8, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:57:25, 745470 , 0, 8, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:57:26, 745477 , 0, 8, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:57:28, 697478 , 0, 8, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:57:29, 740077 , 0, 8, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:57:30, 6601 , 0, 8, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 15:57:35, 6619 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:36, 106321 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:37, 206666 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:38, 279341 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:39, 353847 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:40, 408281 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:41, 472983 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:42, 532522 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:43, 601582 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:45, 671029 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:46, 715366 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:47, 782695 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:48, 861401 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:49, 920913 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:50, 994463 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:51, 1053996 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:52, 1113530 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:53, 1187707 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:54, 1247222 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:56, 1320505 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:57, 1367614 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:58, 1427138 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:57:59, 1486669 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:00, 1546205 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:01, 1605744 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:02, 1676399 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:03, 1742353 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:04, 1843907 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:05, 1904597 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:07, 1964131 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:08, 2023660 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:09, 2083198 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:10, 2142730 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:11, 2202260 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:12, 2241956 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:13, 2300495 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:14, 2360025 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:15, 5058809 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:16, 4404071 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:18, 7889684 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:19, 10456785 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:20, 11052102 , 0, 8, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 15:58:25, 6599 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:26, 106437 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:27, 243437 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:28, 301507 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:29, 392122 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:30, 504398 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:31, 570182 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:33, 624724 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:34, 667678 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:35, 708367 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:36, 764978 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:37, 805653 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:38, 848173 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:39, 888850 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:40, 908387 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:41, 972458 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:42, 992311 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:43, 1041803 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:45, 1105633 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:46, 1125477 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:47, 1165163 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:48, 1185011 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:49, 1242273 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:50, 1262119 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:51, 1301807 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:52, 1321334 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:53, 1378750 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:54, 1419420 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:55, 1439271 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:57, 1478959 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:58, 1498807 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:58:59, 1538496 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:00, 1586740 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:01, 1627105 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:02, 1647261 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:03, 1686949 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:04, 1726642 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:05, 1753105 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:06, 1847537 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:07, 1878521 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:09, 1918525 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:10, 1938372 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:11, 1978059 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:12, 2017764 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:13, 2037591 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:14, 2077278 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:15, 2096807 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:16, 2136815 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:17, 2156657 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:18, 2196350 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:20, 2236034 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:21, 2255877 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:22, 2295573 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:23, 2315414 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:24, 2355107 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:25, 2394791 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:26, 2414633 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:27, 2479200 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:28, 2516337 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:29, 2556028 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:31, 2575886 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:32, 2615570 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:33, 2635409 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:34, 2674781 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:35, 2685024 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:36, 2720736 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:37, 2756463 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:38, 2775313 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:39, 2815003 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:40, 2854692 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:41, 3569068 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:43, 5381001 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:44, 6174755 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:45, 6804378 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:46, 6807041 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:47, 6808798 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:48, 6810332 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:49, 6811535 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:50, 6813049 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:52, 6814263 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:53, 6816045 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:54, 6731894 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 15:59:55, 6600 , 0, 8, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:00:01, 6620 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:01, 106489 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:02, 289586 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:03, 507885 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:04, 769825 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:05, 995056 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:07, 1279821 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:08, 1521913 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:09, 1799730 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:10, 2060687 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:11, 2284928 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:12, 4503157 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:13, 5563073 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:14, 6748489 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:15, 9604262 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:17, 10750878 , 0, 8, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:00:22, 6597 , 0, 8, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:00:23, 106496 , 0, 8, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:00:24, 281728 , 0, 8, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:00:25, 387933 , 0, 8, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:00:26, 388890 , 0, 8, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:00:27, 479287 , 0, 8, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:00:28, 448370 , 0, 8, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:00:29, 468389 , 0, 8, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:00:35, 6607 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:35, 106633 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:37, 199286 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:38, 261714 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:39, 333947 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:40, 389128 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:41, 448567 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:42, 526759 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:43, 586293 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:44, 646161 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:45, 711987 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:46, 782357 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:47, 841882 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:49, 908552 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:50, 968091 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:51, 1046197 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:52, 1097791 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:53, 1155334 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:54, 1214378 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:55, 1605105 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:56, 2685460 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:57, 5185111 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:00:58, 4490568 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:00, 4490239 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:01, 4490248 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:02, 4490572 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:03, 4501074 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:04, 2640850 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:05, 1102611 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:06, 1102918 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:07, 1102595 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:08, 1102922 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:10, 1102922 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:11, 1102604 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:12, 1107889 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:13, 1196707 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:14, 1248301 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:15, 1336208 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:16, 1395745 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:17, 3849398 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:18, 5800536 , 0, 8, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:01:24, 6612 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:25, 106847 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:26, 243771 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:27, 305796 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:28, 410591 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:29, 495121 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:30, 531590 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:31, 582612 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:32, 612541 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:33, 667631 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:34, 700233 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:35, 740627 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:37, 771392 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:38, 821521 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:39, 851296 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:40, 881081 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:41, 915731 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:42, 946058 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:43, 974279 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:44, 1004298 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:45, 1040445 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:46, 1070381 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:47, 1133325 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:49, 1196438 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:50, 1235814 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:51, 1253677 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:52, 1289895 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:53, 1317674 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:54, 1346693 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:55, 1376717 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:56, 1403514 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:57, 1432777 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:58, 1458577 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:01:59, 1485371 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:01, 1522303 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:02, 1608117 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:03, 1700603 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:04, 1891461 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:05, 3194670 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:06, 3712494 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:07, 3712801 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:08, 3715943 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:09, 3717414 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:11, 3675520 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:12, 1723635 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:13, 1723640 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:14, 1723659 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:15, 1723642 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:16, 1723640 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:17, 1723640 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:18, 1723639 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:19, 1723636 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:20, 1723636 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:22, 1723640 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:23, 1723638 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:24, 1723639 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:25, 1723640 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:26, 1723639 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:27, 1723637 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:28, 1723647 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:29, 1723636 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:30, 1723639 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:31, 1723641 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:32, 1723641 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:34, 1723641 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:35, 1723640 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:36, 1723644 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:37, 1723640 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:38, 1723639 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:39, 1723636 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:40, 1723635 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:41, 1723637 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:42, 1723643 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:43, 1724468 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:45, 1754232 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:46, 1783998 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:47, 1813764 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:48, 3324398 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:49, 3735499 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:50, 3737223 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:51, 3738787 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:52, 3740134 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:53, 3748881 , 0, 8, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:02:59, 6613 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:00, 106543 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:01, 269379 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:02, 488158 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:03, 705463 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:04, 958001 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:05, 1186702 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:06, 2215203 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:07, 3752796 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:08, 5125650 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:09, 4585659 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:11, 4898543 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:12, 5192231 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:13, 5437056 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:14, 4235259 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:15, 5889687 , 0, 8, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:03:21, 6616 , 0, 8, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:03:21, 106593 , 0, 8, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:03:22, 254586 , 0, 8, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:03:23, 263780 , 0, 8, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:03:24, 335992 , 0, 8, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:03:26, 304708 , 0, 8, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:03:27, 371930 , 0, 8, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:03:28, 321845 , 0, 8, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:03:29, 301653 , 0, 8, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:03:30, 353775 , 0, 8, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:03:31, 6620 , 0, 8, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:03:37, 6604 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:37, 106871 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:38, 201903 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:39, 263593 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:41, 319481 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:42, 386854 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:43, 451155 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:44, 511849 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:45, 565508 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:46, 653092 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:47, 696413 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:48, 2114777 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:49, 2425069 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:50, 2425062 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:52, 628782 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:53, 628772 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:54, 628787 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:55, 628785 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:56, 667242 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:57, 740888 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:58, 802160 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:03:59, 3132868 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:00, 2702203 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:01, 827316 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:03, 827320 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:04, 827312 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:05, 827324 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:06, 827320 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:07, 827314 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:08, 827318 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:09, 2281394 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:10, 2717037 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:11, 820921 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:12, 820912 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:13, 820918 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:15, 820914 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:16, 820914 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:17, 820912 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:18, 820903 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:19, 953369 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:20, 6603 , 0, 8, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:04:26, 6620 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:26, 106568 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:27, 244053 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:28, 306405 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:29, 406429 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:31, 462701 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:32, 506806 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:33, 549664 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:34, 584711 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:35, 607843 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:36, 653691 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:37, 680037 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:38, 713018 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:39, 737384 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:40, 795239 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:41, 818384 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:43, 850455 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:44, 893051 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:45, 919441 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:46, 960332 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:47, 1007817 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:48, 1933941 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:49, 2077051 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:50, 2077154 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:51, 1497220 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:52, 1497212 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:54, 1497216 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:55, 1497216 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:56, 1497209 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:57, 1497211 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:58, 1497215 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:04:59, 1497238 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:00, 1497213 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:01, 1497159 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:02, 1497212 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:03, 1497234 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:05, 1497217 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:06, 1497217 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:07, 1497215 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:08, 1497219 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:09, 1497215 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:10, 1856433 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:11, 2268939 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:12, 2293603 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:13, 2293614 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:14, 1610415 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:16, 1610417 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:17, 1610420 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:18, 1610408 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:19, 1610421 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:20, 1610434 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:21, 1610409 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:22, 1610419 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:23, 1610407 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:24, 1610414 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:25, 1610415 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:27, 1610415 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:28, 1610416 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:29, 1610412 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:30, 1610416 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:31, 1610409 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:32, 1449717 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:33, 2154274 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:34, 2234413 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:35, 2234547 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:36, 1731141 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:37, 1731167 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:39, 1731147 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:40, 1731150 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:41, 1731143 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:42, 1731143 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:43, 1731140 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:44, 1731152 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:45, 1731175 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:46, 1731140 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:47, 1731151 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:49, 1731147 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:50, 1731147 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:51, 1731152 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:52, 1731141 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:53, 1623204 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:54, 1623200 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:55, 2213640 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:56, 2234918 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:57, 2234629 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:05:58, 6605 , 0, 8, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:06:04, 6614 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:05, 106235 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:06, 271565 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:07, 460836 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:08, 751498 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:09, 1942811 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:10, 2364086 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:11, 2694662 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:12, 1473334 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:13, 3097828 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:14, 2648166 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:16, 3218959 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:17, 3053638 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:18, 2615486 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:19, 3002375 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:20, 6605 , 0, 8, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:06:26, 6609 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:26, 106100 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:27, 204873 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:28, 260904 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:29, 277456 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:31, 327386 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:32, 360255 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:33, 365128 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:34, 365897 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:35, 313162 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:36, 362560 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:37, 392209 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:38, 6611 , 0, 8, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:06:44, 6609 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:44, 106491 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:45, 198622 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:47, 253843 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:48, 310634 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:49, 385061 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:50, 694537 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:51, 1341822 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:52, 409500 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:53, 409489 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:54, 452670 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:55, 531101 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:56, 1498324 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:58, 524790 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:06:59, 524794 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:00, 524808 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:01, 687039 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:02, 1462043 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:03, 1462034 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:04, 524664 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:05, 524654 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:06, 811950 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:07, 1461955 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:08, 1461955 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:10, 524573 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:11, 524577 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:12, 1509667 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:13, 1432681 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:14, 1432681 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:15, 524591 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:16, 524595 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:17, 1662311 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:18, 1462008 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:19, 1461989 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:21, 524617 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:22, 524610 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:23, 1487010 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:24, 1487010 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:25, 524635 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:26, 524632 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:27, 524629 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:28, 6612 , 0, 8, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:07:34, 6611 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:34, 106350 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:36, 243774 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:37, 328713 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:38, 402143 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:39, 450109 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:40, 485294 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:41, 527964 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:42, 559132 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:43, 584332 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:44, 625681 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:45, 672309 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:46, 1124415 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:48, 1250870 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:49, 1165163 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:50, 785597 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:51, 785596 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:52, 785597 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:53, 785597 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:54, 815352 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:55, 891170 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:56, 891161 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:57, 1158209 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:07:58, 1402540 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:00, 1402601 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:01, 890020 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:02, 890017 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:03, 890012 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:04, 890018 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:05, 890015 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:06, 890017 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:07, 890020 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:08, 921129 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:09, 1443899 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:10, 1444340 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:12, 1199665 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:13, 1199666 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:14, 1199663 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:15, 1199658 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:16, 1199661 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:17, 1199674 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:18, 1199665 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:19, 1199668 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:20, 1422032 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:21, 1237598 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:23, 937181 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:24, 937163 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:25, 937162 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:26, 937166 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:27, 937167 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:28, 937183 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:29, 937160 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:30, 937171 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:31, 1432549 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:32, 1344929 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:34, 941486 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:35, 941488 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:36, 941492 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:37, 941481 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:38, 941491 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:39, 941486 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:40, 941491 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:41, 941486 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:42, 1407256 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:43, 1407483 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:44, 1300812 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:46, 1300803 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:47, 1300802 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:48, 1300805 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:49, 1300798 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:50, 1300803 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:51, 941439 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:52, 941436 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:53, 1279201 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:54, 1395044 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:55, 1306774 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:56, 1306772 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:58, 1306789 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:08:59, 1306771 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:09:00, 1306777 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:09:01, 1306772 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:09:02, 1306773 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:09:03, 1306768 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:09:04, 1275267 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:09:05, 1429620 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:09:06, 6607 , 0, 8, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:09:12, 6605 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:12, 106641 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:14, 267286 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:15, 569183 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:16, 1253156 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:17, 1110263 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:18, 1486489 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:19, 1486428 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:20, 974047 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:21, 1473930 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:22, 1460603 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:23, 974050 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:25, 1811433 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:26, 1586423 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:27, 1923929 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:28, 2236473 , 0, 8, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:09:34, 6630 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:34, 106894 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:35, 179608 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:36, 194719 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:37, 248338 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:39, 245732 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:40, 255904 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:41, 268491 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:42, 246692 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:43, 274242 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:44, 275406 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:45, 276030 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:46, 278431 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:47, 284869 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:48, 285306 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:50, 230344 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:51, 6611 , 0, 8, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:09:56, 6614 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:09:57, 106635 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:09:58, 193745 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:09:59, 245055 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:00, 691433 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:01, 731983 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:02, 292889 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:03, 821796 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:04, 315572 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:06, 674689 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:07, 325385 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:08, 325385 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:09, 324412 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:10, 324416 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:11, 670112 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:12, 813088 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:13, 463203 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:14, 819332 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:15, 338200 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:17, 730082 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:18, 338185 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:19, 338176 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:20, 463192 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:21, 338210 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:22, 809759 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:23, 338185 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:24, 338193 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:25, 844339 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:26, 338194 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:28, 913571 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:29, 844327 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:30, 338195 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:31, 844333 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:32, 338192 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:33, 755459 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:34, 338205 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:35, 338207 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:36, 338205 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:37, 338480 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:38, 663941 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:40, 338217 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:41, 338212 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:42, 6599 , 0, 8, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:10:47, 6615 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:10:48, 117433 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:10:49, 243573 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:10:50, 320339 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:10:51, 398286 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:10:52, 436575 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:10:53, 471989 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:10:54, 502260 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:10:55, 808760 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:10:57, 648927 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:10:58, 648943 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:10:59, 661485 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:00, 695228 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:01, 905906 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:02, 866961 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:03, 695249 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:04, 695243 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:05, 695245 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:06, 833158 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:07, 908752 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:09, 695254 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:10, 695245 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:11, 695251 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:12, 695249 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:13, 956868 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:14, 935795 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:15, 698508 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:16, 698513 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:17, 698507 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:18, 916446 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:20, 908829 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:21, 698285 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:22, 698288 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:23, 698289 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:24, 698287 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:25, 848811 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:26, 887217 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:27, 697023 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:28, 697003 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:29, 697002 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:30, 933604 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:32, 916761 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:33, 696471 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:34, 696471 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:35, 696477 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:36, 848552 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:37, 956485 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:38, 699470 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:39, 699468 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:40, 699463 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:41, 849284 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:42, 891403 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:44, 699457 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:45, 699460 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:46, 699457 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:47, 699454 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:48, 927122 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:49, 695912 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:50, 695914 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:51, 695910 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:52, 695921 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:53, 932349 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:54, 695851 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:56, 695854 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:57, 695870 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:58, 695852 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:11:59, 827237 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:00, 911905 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:01, 911905 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:02, 911910 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:03, 911899 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:04, 911903 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:05, 909048 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:07, 930579 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:08, 930579 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:09, 930574 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:10, 930585 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:11, 955992 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:12, 951084 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:13, 895892 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:14, 895888 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:15, 895889 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:16, 929553 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:17, 910457 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:19, 910462 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:20, 910460 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:21, 910464 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:22, 911001 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:23, 966018 , 0, 8, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:12:29, 6616 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:29, 106882 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:30, 242060 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:31, 692114 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:32, 802374 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:33, 627200 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:35, 844470 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:36, 1028628 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:37, 1091386 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:38, 1216686 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:39, 1133462 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:40, 1201325 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:41, 1351210 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:42, 1088835 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:43, 1251447 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:44, 1275082 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:46, 6596 , 0, 8, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:12:51, 6620 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:12:52, 106902 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:12:53, 217146 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:12:54, 217171 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:12:55, 222743 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:12:56, 234524 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:12:57, 221660 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:12:58, 256334 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:12:59, 256394 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:00, 256506 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:02, 256072 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:03, 256382 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:04, 256443 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:05, 256986 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:06, 256568 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:07, 256737 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:08, 256782 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:09, 256886 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:10, 256166 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:11, 257313 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:13, 257201 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:14, 256517 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:15, 256736 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:16, 6614 , 0, 8, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:13:21, 6606 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:22, 106664 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:23, 186655 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:24, 479334 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:25, 426366 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:26, 237796 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:27, 237294 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:29, 490575 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:30, 259303 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:31, 241011 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:32, 484324 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:33, 490039 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:34, 240157 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:35, 239446 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:36, 483088 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:37, 514327 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:38, 239125 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:39, 486217 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:41, 485872 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:42, 239431 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:43, 239443 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:44, 485875 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:45, 493134 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:46, 238483 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:47, 238472 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:48, 454708 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:49, 466342 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:50, 238351 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:51, 484771 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:53, 484758 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:54, 237992 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:55, 238310 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:56, 238385 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:57, 541366 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:58, 238347 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:13:59, 240233 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:14:00, 502508 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:14:01, 474029 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:14:02, 246367 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:14:03, 242678 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:14:05, 496018 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:14:06, 242680 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:14:07, 242684 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:14:08, 242681 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:14:09, 492558 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:14:10, 242680 , 0, 8, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:14:16, 6608 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:16, 106836 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:17, 244087 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:18, 314744 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:19, 378602 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:21, 574551 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:22, 536305 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:23, 536302 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:24, 638785 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:25, 541019 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:26, 541031 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:27, 537800 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:28, 537800 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:29, 600176 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:30, 537791 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:31, 537796 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:33, 660548 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:34, 537794 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:35, 537796 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:36, 647633 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:37, 537801 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:38, 537803 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:39, 632390 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:40, 632384 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:41, 632392 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:42, 537804 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:43, 537804 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:45, 603313 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:46, 537807 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:47, 537809 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:48, 658856 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:49, 659281 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:50, 659294 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:51, 694104 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:52, 660285 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:53, 607868 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:54, 650843 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:56, 650839 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:57, 621150 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:58, 635022 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:14:59, 607805 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:00, 667301 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:01, 649751 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:02, 649760 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:03, 678107 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:04, 648511 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:05, 648521 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:06, 684293 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:08, 640732 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:09, 669584 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:10, 669580 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:11, 652192 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:12, 716675 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:13, 674201 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:14, 702190 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:15, 707145 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:16, 674197 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:17, 712748 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:18, 701961 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:20, 671069 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:21, 704380 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:22, 670993 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:23, 671000 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:24, 670991 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:25, 670992 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:26, 694534 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:27, 671015 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:28, 670992 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:29, 692193 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:30, 652244 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:32, 652236 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:33, 652245 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:34, 652245 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:35, 693577 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:36, 694169 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:37, 671010 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:38, 680462 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:39, 658472 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:40, 658468 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:41, 685605 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:43, 658496 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:44, 658494 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:45, 664754 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:46, 664758 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:47, 692021 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:48, 689000 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:49, 664724 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:50, 688968 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:51, 652182 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:52, 652189 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:53, 6611 , 0, 8, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:15:59, 6630 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:00, 106201 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:01, 443438 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:02, 580141 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:03, 536427 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:04, 524063 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:05, 530335 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:06, 664563 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:07, 680318 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:08, 455169 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:09, 636298 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:10, 619241 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:12, 625491 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:13, 692547 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:14, 489551 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:15, 495812 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:16, 695693 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:17, 639445 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:18, 6607 , 0, 8, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:24, 6601 , 0, 16, 100, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:16:24, 6610 , 0, 16, 100, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:16:30, 6605 , 0, 16, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:16:30, 6607 , 0, 16, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:16:36, 6626 , 0, 16, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:16:37, 6608 , 0, 16, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:16:42, 6611 , 0, 16, 100, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:43, 6611 , 0, 16, 100, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:16:48, 6616 , 0, 16, 100, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:16:49, 6605 , 0, 16, 100, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:16:54, 6607 , 0, 16, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:16:55, 6607 , 0, 16, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:17:01, 6609 , 0, 16, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:17:01, 6614 , 0, 16, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:17:07, 6607 , 0, 16, 100, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:17:07, 6611 , 0, 16, 100, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:17:13, 6609 , 0, 16, 100, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:17:13, 6630 , 0, 16, 100, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:17:19, 6614 , 0, 16, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:17:20, 6607 , 0, 16, 100, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:17:25, 6630 , 0, 16, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:17:26, 6608 , 0, 16, 100, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:17:31, 6607 , 0, 16, 100, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:17:32, 6610 , 0, 16, 100, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:17:37, 6608 , 0, 16, 100, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:17:38, 6599 , 0, 16, 100, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:17:44, 6609 , 0, 16, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:17:44, 6625 , 0, 16, 100, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:17:50, 6605 , 0, 16, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:17:50, 6601 , 0, 16, 100, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:17:56, 6610 , 0, 16, 100, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:17:56, 6604 , 0, 16, 100, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:18:02, 6633 , 0, 16, 100, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:18:02, 6623 , 0, 16, 100, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:18:08, 6616 , 0, 16, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:18:09, 6614 , 0, 16, 100, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:18:14, 6609 , 0, 16, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:18:15, 6612 , 0, 16, 100, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:18:20, 6613 , 0, 16, 100, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:18:21, 6601 , 0, 16, 100, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:18:26, 6611 , 0, 16, 100, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:18:27, 6601 , 0, 16, 100, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:18:33, 6607 , 0, 16, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:18:33, 6616 , 0, 16, 100, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:18:39, 6614 , 0, 16, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:18:39, 6613 , 0, 16, 100, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:18:45, 6630 , 0, 16, 100, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:18:45, 6611 , 0, 16, 100, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:18:51, 6610 , 0, 16, 100, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:18:52, 6609 , 0, 16, 100, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:18:57, 6599 , 0, 16, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:18:58, 6616 , 0, 16, 100, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:19:03, 6629 , 0, 16, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:19:04, 6609 , 0, 16, 100, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:19:09, 6610 , 0, 16, 100, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:19:10, 6603 , 0, 16, 100, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:19:16, 6614 , 0, 16, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:19:16, 6605 , 0, 16, 100, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:19:22, 6610 , 0, 16, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:19:22, 6629 , 0, 16, 100, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:19:28, 6612 , 0, 16, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:19:28, 6612 , 0, 16, 100, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:19:34, 6611 , 0, 16, 100, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:19:35, 6603 , 0, 16, 100, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:19:40, 6610 , 0, 16, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:19:41, 6607 , 0, 16, 100, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:19:46, 6607 , 0, 16, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:19:47, 6601 , 0, 16, 100, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:19:52, 6616 , 0, 16, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:19:53, 6612 , 0, 16, 100, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:19:58, 6603 , 0, 16, 100, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:19:59, 6614 , 0, 16, 100, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:20:05, 6609 , 0, 16, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:20:05, 6609 , 0, 16, 100, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:20:11, 6612 , 0, 16, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:20:11, 6605 , 0, 16, 100, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:20:17, 6607 , 0, 16, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:20:17, 6611 , 0, 16, 100, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:20:23, 6607 , 0, 16, 100, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:20:24, 6608 , 0, 16, 100, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:20:29, 6610 , 0, 16, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:20:30, 6604 , 0, 16, 100, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:20:35, 6607 , 0, 16, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:20:36, 6614 , 0, 16, 100, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:20:41, 6612 , 0, 16, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:20:42, 6612 , 0, 16, 100, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:20:48, 6609 , 0, 16, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:20:48, 6607 , 0, 16, 100, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:20:54, 6606 , 0, 16, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:20:54, 6611 , 0, 16, 100, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:21:00, 6610 , 0, 16, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:21:00, 6602 , 0, 16, 100, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:21:06, 6609 , 0, 16, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:21:07, 6614 , 0, 16, 100, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:21:12, 6614 , 0, 16, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:21:13, 6612 , 0, 16, 100, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:21:18, 6604 , 0, 16, 1000, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:21:19, 6624 , 0, 16, 1000, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:21:24, 6597 , 0, 16, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:21:25, 6599 , 0, 16, 1000, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:21:31, 6605 , 0, 16, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:21:31, 6599 , 0, 16, 1000, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:21:37, 6603 , 0, 16, 1000, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:21:37, 6614 , 0, 16, 1000, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:21:43, 6605 , 0, 16, 1000, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:21:43, 6607 , 0, 16, 1000, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:21:49, 6609 , 0, 16, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:21:49, 6608 , 0, 16, 1000, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:21:55, 6609 , 0, 16, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:21:56, 6618 , 0, 16, 1000, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:22:01, 6630 , 0, 16, 1000, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:22:02, 6610 , 0, 16, 1000, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:22:07, 6612 , 0, 16, 1000, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:22:08, 6603 , 0, 16, 1000, 10, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:22:13, 6614 , 0, 16, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:22:14, 6611 , 0, 16, 1000, 10, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:22:20, 6607 , 0, 16, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:22:20, 6606 , 0, 16, 1000, 10, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:22:26, 6603 , 0, 16, 1000, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:22:26, 6612 , 0, 16, 1000, 10, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:22:32, 6607 , 0, 16, 1000, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:22:32, 6609 , 0, 16, 1000, 10, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:22:38, 6616 , 0, 16, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:22:39, 6613 , 0, 16, 1000, 10, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:22:44, 6611 , 0, 16, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:22:45, 6616 , 0, 16, 1000, 10, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:22:50, 6601 , 0, 16, 1000, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:22:51, 6607 , 0, 16, 1000, 10, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:22:56, 6609 , 0, 16, 1000, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:22:57, 6611 , 0, 16, 1000, 10, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:23:03, 6613 , 0, 16, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:23:03, 6611 , 0, 16, 1000, 10, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:23:09, 6612 , 0, 16, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:23:09, 6601 , 0, 16, 1000, 10, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:23:15, 6614 , 0, 16, 1000, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:23:15, 6605 , 0, 16, 1000, 10, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:23:21, 6601 , 0, 16, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:23:22, 6609 , 0, 16, 1000, 10, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:23:27, 6614 , 0, 16, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:23:28, 6608 , 0, 16, 1000, 10, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:23:33, 6599 , 0, 16, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:23:34, 6630 , 0, 16, 1000, 10, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:23:39, 6603 , 0, 16, 1000, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:23:40, 6609 , 0, 16, 1000, 10, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:23:45, 6607 , 0, 16, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:23:46, 6604 , 0, 16, 1000, 100, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:23:52, 6613 , 0, 16, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:23:52, 6607 , 0, 16, 1000, 100, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:23:58, 6612 , 0, 16, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:23:58, 6610 , 0, 16, 1000, 100, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:24:04, 6610 , 0, 16, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:24:04, 6609 , 0, 16, 1000, 100, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:24:10, 6601 , 0, 16, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:24:11, 6605 , 0, 16, 1000, 100, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:24:16, 6609 , 0, 16, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:24:17, 6605 , 0, 16, 1000, 100, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:24:22, 6614 , 0, 16, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:24:23, 6614 , 0, 16, 1000, 100, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:24:28, 6605 , 0, 16, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:24:29, 6610 , 0, 16, 1000, 100, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:24:35, 6620 , 0, 16, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:24:35, 6609 , 0, 16, 1000, 100, 4, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:24:41, 6611 , 0, 16, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:24:41, 6608 , 0, 16, 1000, 100, 4, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:24:47, 6610 , 0, 16, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:24:47, 6603 , 0, 16, 1000, 100, 4, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:24:53, 6618 , 0, 16, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:24:54, 6603 , 0, 16, 1000, 100, 4, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:24:59, 6602 , 0, 16, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:25:00, 6615 , 0, 16, 1000, 100, 8, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:25:05, 6605 , 0, 16, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:25:06, 6605 , 0, 16, 1000, 100, 8, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:25:11, 6609 , 0, 16, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:25:12, 6620 , 0, 16, 1000, 100, 8, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:25:18, 6615 , 0, 16, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:25:18, 6607 , 0, 16, 1000, 100, 8, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:25:24, 6612 , 0, 16, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:25:24, 6612 , 0, 16, 1000, 100, 16, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:25:30, 6612 , 0, 16, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:25:30, 6608 , 0, 16, 1000, 100, 16, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:25:36, 6616 , 0, 16, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:25:36, 6605 , 0, 16, 1000, 100, 16, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:25:42, 6619 , 0, 16, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:25:43, 6601 , 0, 16, 1000, 100, 16, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:25:48, 6599 , 0, 16, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:25:49, 6615 , 0, 16, 1000, 100, 32, 1, empirical, sequential, timing_test_2023.csv
+2023-01-17, 16:25:54, 6615 , 0, 16, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:25:55, 6609 , 0, 16, 1000, 100, 32, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-17, 16:26:00, 6618 , 0, 16, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:26:01, 6601 , 0, 16, 1000, 100, 32, 1, ctree, sequential, timing_test_2023.csv
+2023-01-17, 16:26:07, 6612 , 0, 16, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-17, 16:26:07, 6611 , 0, 16, 1000, 100, 32, 1, independence, sequential, timing_test_2023.csv
+2023-01-18, 15:53:39, 6612 , 0, 4, 100, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-18, 15:53:40, 135086 , 0, 4, 100, 10, 1, 1, empirical, sequential, timing_test_2023.csv
+2023-01-18, 15:53:45, 6623 , 0, 4, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-18, 15:53:46, 122348 , 0, 4, 100, 10, 1, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-18, 15:53:52, 6623 , 0, 4, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-18, 15:53:52, 133068 , 0, 4, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-18, 15:53:53, 256802 , 0, 4, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-18, 15:53:54, 6613 , 0, 4, 100, 10, 1, 1, ctree, sequential, timing_test_2023.csv
+2023-01-18, 15:54:00, 6609 , 0, 4, 100, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-18, 15:54:00, 133109 , 0, 4, 100, 10, 1, 1, independence, sequential, timing_test_2023.csv
+2023-01-18, 15:54:06, 6605 , 0, 4, 100, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-18, 15:54:07, 122717 , 0, 4, 100, 10, 2, 1, empirical, sequential, timing_test_2023.csv
+2023-01-18, 15:54:12, 6614 , 0, 4, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-18, 15:54:13, 133271 , 0, 4, 100, 10, 2, 1, gaussian, sequential, timing_test_2023.csv
+2023-01-18, 15:54:18, 6599 , 0, 4, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-18, 15:54:19, 133701 , 0, 4, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-18, 15:54:20, 256149 , 0, 4, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-18, 15:54:21, 6603 , 0, 4, 100, 10, 2, 1, ctree, sequential, timing_test_2023.csv
+2023-01-18, 15:54:27, 6609 , 0, 4, 100, 10, 2, 1, independence, sequential, timing_test_2023.csv
+2023-01-18, 15:54:27, 122741 , 0, 4, 100, 10, 2, 1, independence, sequential, timing_test_2023.csv
diff --git a/inst/scripts/problematic_plots_jens.R b/inst/scripts/problematic_plots_jens.R
new file mode 100644
index 000000000..2aa26c896
--- /dev/null
+++ b/inst/scripts/problematic_plots_jens.R
@@ -0,0 +1,117 @@
+devtools::load_all()
+library(data.table)
+data("airquality")
+data <- data.table::as.data.table(airquality)
+data <- data[complete.cases(data), ]
+x_var <- c("Solar.R", "Wind", "Temp", "Month")
+y_var <- "Ozone"
+
+ind_x_explain <- 1:100
+x_train <- data[, ..x_var]
+y_train <- data[, get(y_var)]
+x_explain <- data[ind_x_explain, ..x_var]
+
+# convert to factors
+data[,Month_factor := as.factor(month.abb[Month])]
+# data[, Temp_factor := fcase(Temp < 71, "low",
+# Temp %between% c(71, 84), "medium",
+# Temp > 84, "high")]
+# data[, Temp_factor := as.factor(Temp_factor)]
+
+
+
+data[, Temp_factor := as.factor(round(Temp, -1))]
+data_train_cat <- copy(data)
+data_explain_cat <- data[ind_x_explain,]
+
+x_var_cat <- c("Solar.R", "Wind", "Temp_factor", "Month_factor")
+x_train_cat <- data_train_cat[, ..x_var_cat]
+
+
+# Example 1 - No errors -------------------------------------------------------------------------------------------
+x_explain_cat <- data_explain_cat[, ..x_var_cat]
+# x_explain_cat[, Wind := 10]
+#x_explain_cat[, Month_factor := Month_factor[1]]
+lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var_cat, collapse = " + ")))
+model_lm_cat <- lm(lm_formula,data_train_cat)
+
+p0 <- mean(y_train)
+explanation_cat <- explain(
+ model = model_lm_cat,
+ x_explain = x_explain_cat,
+ x_train = x_train_cat,
+ approach = "ctree",
+ prediction_zero = p0
+)
+
+
+plot(explanation_cat, bar_plot_phi0 = FALSE, plot_type = "scatter")
+plot(explanation_cat, plot_phi0 = FALSE, plot_type = "scatter", scatter_hist = FALSE)
+
+
+
+# Example 2 - One factor value -----------------------------------------------------------------------------------
+x_explain_cat <- data_explain_cat[, ..x_var_cat]
+x_explain_cat[, Month_factor := Month_factor[1]]
+lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var_cat, collapse = " + ")))
+model_lm_cat <- lm(lm_formula,data_train_cat)
+
+p0 <- mean(y_train)
+explanation_cat <- explain(
+ model = model_lm_cat,
+ x_explain = x_explain_cat,
+ x_train = x_train_cat,
+ approach = "ctree",
+ prediction_zero = p0
+)
+
+# Works fine
+plot(explanation_cat, bar_plot_phi0 = FALSE, plot_type = "scatter")
+# Wrong x-labels due to breaks being different from when scatter_hist = TRUE
+plot(explanation_cat, bar_plot_phi0 = FALSE, plot_type = "scatter", scatter_hist = FALSE)
+
+
+
+# Example 3 - few test observations ------------------------------------------------------------------------------
+
+x_explain_cat <- data_explain_cat[, ..x_var_cat]
+x_explain_cat <- x_explain_cat[1:3, ]
+lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var_cat, collapse = " + ")))
+model_lm_cat <- lm(lm_formula,data_train_cat)
+
+p0 <- mean(y_train)
+explanation_cat <- explain(
+ model = model_lm_cat,
+ x_explain = x_explain_cat,
+ x_train = x_train_cat,
+ approach = "ctree",
+ prediction_zero = p0
+)
+
+# Only 4 ticks in the x-axis for the factor
+plot(explanation_cat, bar_plot_phi0 = FALSE, plot_type = "scatter")
+# Wrong x-labels due to breaks being different from when scatter_hist = TRUE
+plot(explanation_cat, bar_plot_phi0 = FALSE, plot_type = "scatter", scatter_hist = FALSE)
+
+
+# Example 4 - few observations - to many x-ticks with same label -----------------------------------------
+
+x_explain_cat <- data_explain_cat[, ..x_var_cat]
+x_explain_cat <- x_explain_cat[1:4, ]
+lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var_cat, collapse = " + ")))
+model_lm_cat <- lm(lm_formula,data_train_cat)
+
+p0 <- mean(y_train)
+explanation_cat <- explain(
+ model = model_lm_cat,
+ x_explain = x_explain_cat,
+ x_train = x_train_cat,
+ approach = "ctree",
+ prediction_zero = p0
+)
+
+# Duplicated labels on the x-axis
+plot(explanation_cat, bar_plot_phi0 = FALSE, plot_type = "scatter")
+# Wrong x-labels due to breaks being different from when scatter_hist = TRUE
+plot(explanation_cat, bar_plot_phi0 = FALSE, plot_type = "scatter", scatter_hist = FALSE)
+
diff --git a/inst/scripts/readme_example.R b/inst/scripts/readme_example.R
index 91d3565bf..480f599d7 100644
--- a/inst/scripts/readme_example.R
+++ b/inst/scripts/readme_example.R
@@ -1,44 +1,45 @@
library(xgboost)
library(shapr)
-data("Boston", package = "MASS")
+data("airquality")
+data <- data.table::as.data.table(airquality)
+data <- data[complete.cases(data), ]
-x_var <- c("lstat", "rm", "dis", "indus")
-y_var <- "medv"
+x_var <- c("Solar.R", "Wind", "Temp", "Month")
+y_var <- "Ozone"
-x_train <- as.matrix(Boston[-1:-6, x_var])
-y_train <- Boston[-1:-6, y_var]
-x_test <- as.matrix(Boston[1:6, x_var])
+ind_x_explain <- 1:6
+x_train <- data[-ind_x_explain, ..x_var]
+y_train <- data[-ind_x_explain, get(y_var)]
+x_explain <- data[ind_x_explain, ..x_var]
# Looking at the dependence between the features
cor(x_train)
# Fitting a basic xgboost model to the training data
model <- xgboost(
- data = x_train,
+ data = as.matrix(x_train),
label = y_train,
nround = 20,
verbose = FALSE
)
-# Prepare the data for explanation
-explainer <- shapr(x_train, model)
-
# Specifying the phi_0, i.e. the expected prediction without any features
-p <- mean(y_train)
+p0 <- mean(y_train)
# Computing the actual Shapley values with kernelSHAP accounting for feature dependence using
# the empirical (conditional) distribution approach with bandwidth parameter sigma = 0.1 (default)
explanation <- explain(
- x_test,
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
approach = "empirical",
- explainer = explainer,
- prediction_zero = p
+ prediction_zero = p0
)
# Printing the Shapley values for the test data.
# For more information about the interpretation of the values in the table, see ?shapr::explain.
-print(explanation$dt)
+print(explanation$shapley_values)
# Finally we plot the resulting explanations
plot(explanation)
diff --git a/inst/scripts/testing_samling_ncombinations.R b/inst/scripts/testing_samling_ncombinations.R
new file mode 100644
index 000000000..65e066d98
--- /dev/null
+++ b/inst/scripts/testing_samling_ncombinations.R
@@ -0,0 +1,126 @@
+library(xgboost)
+#library(shapr)
+# remotes::install_github("NorskRegnesentral/shapr@devel")
+library(shapr)
+library(data.table)
+n = c(100, 1000, 2000)
+p = c(5, 10, 10)
+n_combinations = c(20, 800, 800)
+
+res = list()
+for (i in seq_along(n)) {
+ set.seed(123)
+ cat("n =", n[i], "p =", p[i], "n_combinations =", n_combinations[i], "\n")
+ x_train = data.table(matrix(rnorm(n[i]*p[i]), nrow = n[i], ncol = p[i]))
+ x_test = data.table(matrix(rnorm(10*p[i]), nrow = 10, ncol = p[i]))
+ beta = rnorm(p[i])
+ y = rnorm(n[i], as.matrix(x_train) %*% beta)
+ dt = data.table(cbind(x_train, data.table(y=y)))
+ model = lm(y ~ ., data = dt)
+ p_mean = mean(y)
+
+ res[[i]] = bench::mark(
+ x = shapr::explain(
+ x_train,
+ x_test,
+ model = model,
+ approach = "empirical",
+ prediction_zero = p_mean,
+ n_combinations = n_combinations[i]
+ )
+ )
+}
+
+devtools::load_all()
+res2 = list()
+for (i in seq_along(n)) {
+
+
+ set.seed(123)
+ cat("n =", n[i], "p =", p[i], "n_combinations =", n_combinations[i], "\n")
+ x_train = data.table(matrix(rnorm(n[i] * p[i]), nrow = n[i], ncol = p[i]))
+ x_test = data.table(matrix(rnorm(10 * p[i]), nrow = 10, ncol = p[i]))
+ beta = rnorm(p[i])
+ y = rnorm(n[i], as.matrix(x_train) %*% beta)
+ dt = data.table(cbind(x_train, data.table(y = y)))
+ model = lm(y ~ ., data = dt)
+ p_mean = mean(y)
+
+ res2[[i]] = bench::mark(
+ explain(
+ x_train,
+ x_test,
+ model = model,
+ approach = "empirical",
+ prediction_zero = p_mean,
+ n_combinations = n_combinations[i]
+ )
+ )
+}
+
+saveRDS(res, "inst/scripts/testing_samling_ncombinations.rds")
+saveRDS(res2, "inst/scripts/testing_samling_ncombinations2.rds")
+
+
+
+i = 2
+set.seed(123)
+cat("n =", n[i], "p =", p[i], "n_combinations =", n_combinations[i], "\n")
+x_train = data.table(matrix(rnorm(n[i] * p[i]), nrow = n[i], ncol = p[i]))
+x_test = data.table(matrix(rnorm(10 * p[i]), nrow = 10, ncol = p[i]))
+beta = rnorm(p[i])
+y = rnorm(n[i], as.matrix(x_train) %*% beta)
+dt = data.table(cbind(x_train, data.table(y = y)))
+model = lm(y ~ ., data = dt)
+p_mean = mean(y)
+x1 = Sys.time()
+system.time({res = explain(
+ x_train,
+ x_test,
+ model = model,
+ approach = "empirical",
+ prediction_zero = p_mean,
+ n_combinations = 1000
+)})
+
+devtools::load_all()
+system.time({res2 = explain(
+ x_train,
+ x_test,
+ model = model,
+ approach = "empirical",
+ prediction_zero = p_mean,
+ n_combinations = 800
+)})
+
+
+
+system.time({res3 = explain(
+ x_train,
+ x_test,
+ model = model,
+ approach = "empirical",
+ prediction_zero = p_mean,
+ n_combinations = NULL
+)})
+
+x2 = Sys.time()
+x2-x1
+# devel branch user system elapsed
+# 2.43 0.25 2.56
+
+
+library(profvis)
+
+res = profvis({res = explain(
+ x_train,
+ x_test,
+ model = model,
+ approach = "empirical",
+ prediction_zero = p_mean,
+ n_combinations = n_combinations[i]
+)})
+res
+
+time2 - time1
+time4 - time3
diff --git a/inst/scripts/time_series_annabelle.R b/inst/scripts/time_series_annabelle.R
new file mode 100644
index 000000000..26e1f8b38
--- /dev/null
+++ b/inst/scripts/time_series_annabelle.R
@@ -0,0 +1,89 @@
+library(data.table)
+library(shapr)
+
+devtools::load_all()
+
+set.seed(1)
+n_train = 1000
+n_test = 6
+n_features = 200
+# x = rnorm((n_train + n_test) * (n_features + 5), mean = 1, sd = 2)
+# x = matrix(x, nrow = n_train + n_test, byrow = T)
+# x1 = t(apply(x, 1, cumsum))
+# x = data.table(x[, c(1:n_features, n_features + 5)])
+
+alpha <- 1
+beta <- 0
+theta <- 0.8
+
+data = NULL
+for(n in 1:(n_train + n_test)){
+ set.seed(n)
+ e <- rnorm(n_features + 6, mean = 0, sd = 1)
+
+ m_1 <- 0
+ for(i in 2:length(e)){
+ m_1[i] <- alpha + beta * i + theta * m_1[i - 1] + e[i]
+ }
+ data = rbind(data, m_1)
+}
+
+
+x <- data[, c(2:(n_features + 1), n_features + 5)]
+x <- data.table(x)
+
+plot(ts((t(x)[,1])))
+points(ts((t(x)[,1])), pch = 19)
+
+Q1_days <- 1:(floor(n_features / 4))
+Q2_days <- 1:(floor(n_features / 4)) + max(Q1_days)
+Q3_days <- 1:(floor(n_features / 4)) + max(Q2_days)
+Q4_days <- (max(Q3_days) + 1):n_features
+
+group <- list(Q1 = paste0("V", Q1_days),
+ Q2 = paste0("V", Q2_days),
+ Q3 = paste0("V", Q3_days),
+ Q4 = paste0("V", Q4_days))
+
+response = paste0("V", n_features + 1)
+formula = as.formula(paste0(response, "~ ", paste0("V", 1:n_features, collapse = " + ")))
+
+model = lm(formula, data = x)
+
+x_all <- x[, 1:n_features]
+y_all <- x[[response]]
+
+all_pred <- predict(model, x_all)
+mean((all_pred-y_all)^2)
+# [1] 1.8074
+
+# ---------------
+
+x_explain = x_all[-c(1:n_train), ]
+x_train = x_all[1:n_train, ]
+
+p0 <- mean(y_all[-c(1:n_train)])
+
+# ---------------
+
+explanation_group <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "timeseries",
+ prediction_zero = p0,
+ group = group,
+ timeseries.fixed_sigma_vec = 2
+ # timeseries.bounds = c(-1, 2)
+)
+
+explanation_group
+# none Q1 Q2 Q3 Q4
+# 1: 5.1217 -0.0019489 0.201396 -0.208099 0.74808
+# 2: 5.1217 0.0164650 -0.148537 0.639499 0.38405
+# 3: 5.1217 -0.4625373 0.564378 -0.281495 0.61380
+# 4: 5.1217 -0.1859842 -0.121323 0.048696 -0.25682
+# 5: 5.1217 -1.2290037 -0.896415 1.096474 -0.10961
+# 6: 5.1217 -0.0435240 -0.049311 0.898789 -1.36716
+
+plot(explanation_group, plot_phi0 = F)
diff --git a/inst/scripts/timing_script_2023.R b/inst/scripts/timing_script_2023.R
new file mode 100644
index 000000000..d43db74f6
--- /dev/null
+++ b/inst/scripts/timing_script_2023.R
@@ -0,0 +1,113 @@
+#.libPaths("/disk/home/jullum/R/x86_64-pc-linux-gnu-library/4.1","/opt/R/4.1.1/lib/R/library")
+sys_time_initial <- Sys.time()
+
+# libraries
+library(shapr)
+library(future)
+library(MASS)
+library(microbenchmark)
+library(data.table)
+
+# Initial setup
+max_n <- 10^5
+max_p <- 16
+rho <- 0.3
+sigma <- 1
+mu_const <- 0
+beta0 <- 1
+sigma_eps <- 1
+
+mu <- rep(mu_const,max_p)
+beta <- c(beta0,seq_len(max_p)/max_p)
+Sigma <- matrix(rho,max_p,max_p)
+diag(Sigma) <- sigma
+
+set.seed(123)
+x_all <- MASS::mvrnorm(max_n,mu = mu,Sigma = Sigma)
+y_all <- as.vector(cbind(1,x_all)%*%beta)+rnorm(max_n,mean = 0,sd = sigma_eps)
+
+# Arguments from bash
+args <- commandArgs(trailingOnly = TRUE)
+if(length(args)==0) args = c(0,4,100,10,16,1,"empirical","sequential","timing_test_2023_new2.csv")
+
+
+this_rep <- as.numeric(args[1])
+p <- as.numeric(args[2])
+n_train <- as.numeric(args[3])
+n_explain <- as.numeric(args[4])
+n_batches <- as.numeric(args[5])
+n_cores <- as.numeric(args[6])
+approach <- args[7]
+multicore_method <- args[8]
+logfilename <- args[9]
+
+set.seed(123)
+
+
+these_p <- sample.int(max_p,size=p)
+these_train <- sample.int(max_n,size=n_train)
+these_explain <- sample.int(max_n,size=n_explain)
+
+x_train <- as.data.frame(x_all[these_train,these_p,drop=F])
+x_explain <- as.data.frame(x_all[these_explain,these_p,drop=F])
+
+colnames(x_explain) <- colnames(x_train) <- paste0("X",seq_len(p))
+
+y_train <- y_all[these_train]
+
+xy_train <- cbind(x_train,y=y_train)
+
+model <- lm(formula = y~.,data=xy_train)
+
+prediction_zero <- mean(y_train)
+
+n_batches_use <- min(2^p-2,n_batches)
+
+
+sys_time_start_explain <- Sys.time()
+
+explanation <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = approach,
+ n_batches = n_batches_use,
+ prediction_zero = prediction_zero,
+ n_combinations = 10^4
+)
+
+sys_time_end_explain <- Sys.time()
+
+secs_explain <- as.double(difftime(sys_time_end_explain,sys_time_start_explain),units="secs")
+print(secs_explain)
+
+explanation$timing$timing_secs
+
+timing <- list(p = p,
+ n_train = n_train,
+ n_explain = n_explain,
+ n_batches = n_batches,
+ n_cores = n_cores,
+ approach = approach,
+ n_combinations = explanation$internal$parameters$used_n_combinations,
+ sys_time_initial = as.character(sys_time_initial),
+ sys_time_start_explain = as.character(sys_time_start_explain),
+ sys_time_end_explain = as.character(sys_time_end_explain),
+ secs_explain = secs_explain,
+ this_rep = this_rep,
+ max_n = max_n,
+ max_p = max_p,
+ rho = rho,
+ sigma = sigma,
+ mu_const = mu_const,
+ beta0 = beta0,
+ sigma_eps = sigma_eps,
+ timing_setup = explanation$timing$timing_secs["setup"],
+ timing_test_prediction = explanation$timing$timing_secs["test_prediction"],
+ timing_setup_computation = explanation$timing$timing_secs["setup_computation"],
+ timing_compute_vS = explanation$timing$timing_secs["compute_vS"],
+ timing_postprocessing = explanation$timing$timing_secs["postprocessing"],
+ timing_shapley_computation = explanation$timing$timing_secs["shapley_computation"])
+
+#print(unlist(timing))
+data.table::fwrite(timing,logfilename,append = T)
diff --git a/inst/scripts/timing_test_2023.csv b/inst/scripts/timing_test_2023.csv
new file mode 100644
index 000000000..ee6e1a6e9
--- /dev/null
+++ b/inst/scripts/timing_test_2023.csv
@@ -0,0 +1,296 @@
+2,100,10,1,1,empirical,2023-01-17 15:06:10,2023-01-17 15:06:10,2023-01-17 15:06:10,0.316483736038208,0,1e+05,13,0.3,1,0,1,1
+2,100,10,1,1,gaussian,2023-01-17 15:06:16,2023-01-17 15:06:16,2023-01-17 15:06:17,0.311131954193115,0,1e+05,13,0.3,1,0,1,1
+2,100,10,1,1,ctree,2023-01-17 15:06:22,2023-01-17 15:06:23,2023-01-17 15:06:24,1.30662298202515,0,1e+05,13,0.3,1,0,1,1
+2,100,10,1,1,independence,2023-01-17 15:06:29,2023-01-17 15:06:30,2023-01-17 15:06:30,0.276997566223145,0,1e+05,13,0.3,1,0,1,1
+2,100,10,2,1,empirical,2023-01-17 15:06:36,2023-01-17 15:06:36,2023-01-17 15:06:36,0.355516910552979,0,1e+05,13,0.3,1,0,1,1
+2,100,10,2,1,gaussian,2023-01-17 15:06:42,2023-01-17 15:06:42,2023-01-17 15:06:42,0.342517852783203,0,1e+05,13,0.3,1,0,1,1
+2,100,10,2,1,ctree,2023-01-17 15:06:48,2023-01-17 15:06:48,2023-01-17 15:06:50,1.31686520576477,0,1e+05,13,0.3,1,0,1,1
+2,100,10,2,1,independence,2023-01-17 15:06:55,2023-01-17 15:06:56,2023-01-17 15:06:56,0.289998054504395,0,1e+05,13,0.3,1,0,1,1
+2,100,10,4,1,empirical,2023-01-17 15:07:01,2023-01-17 15:07:02,2023-01-17 15:07:02,0.357321500778198,0,1e+05,13,0.3,1,0,1,1
+2,100,10,4,1,gaussian,2023-01-17 15:07:08,2023-01-17 15:07:08,2023-01-17 15:07:08,0.335101366043091,0,1e+05,13,0.3,1,0,1,1
+2,100,10,4,1,ctree,2023-01-17 15:07:14,2023-01-17 15:07:14,2023-01-17 15:07:15,1.33222341537476,0,1e+05,13,0.3,1,0,1,1
+2,100,10,4,1,independence,2023-01-17 15:07:21,2023-01-17 15:07:21,2023-01-17 15:07:22,0.287325859069824,0,1e+05,13,0.3,1,0,1,1
+2,100,10,8,1,empirical,2023-01-17 15:07:27,2023-01-17 15:07:28,2023-01-17 15:07:28,0.358258008956909,0,1e+05,13,0.3,1,0,1,1
+2,100,10,8,1,gaussian,2023-01-17 15:07:33,2023-01-17 15:07:34,2023-01-17 15:07:34,0.333145380020142,0,1e+05,13,0.3,1,0,1,1
+2,100,10,8,1,ctree,2023-01-17 15:07:40,2023-01-17 15:07:40,2023-01-17 15:07:41,1.32788729667664,0,1e+05,13,0.3,1,0,1,1
+2,100,10,8,1,independence,2023-01-17 15:07:47,2023-01-17 15:07:47,2023-01-17 15:07:47,0.291688442230225,0,1e+05,13,0.3,1,0,1,1
+2,100,10,16,1,empirical,2023-01-17 15:07:53,2023-01-17 15:07:53,2023-01-17 15:07:54,0.352696895599365,0,1e+05,13,0.3,1,0,1,1
+2,100,10,16,1,gaussian,2023-01-17 15:07:59,2023-01-17 15:08:00,2023-01-17 15:08:00,0.343620538711548,0,1e+05,13,0.3,1,0,1,1
+2,100,10,16,1,ctree,2023-01-17 15:08:05,2023-01-17 15:08:06,2023-01-17 15:08:07,1.34182691574097,0,1e+05,13,0.3,1,0,1,1
+2,100,10,16,1,independence,2023-01-17 15:08:13,2023-01-17 15:08:13,2023-01-17 15:08:13,0.286065578460693,0,1e+05,13,0.3,1,0,1,1
+2,100,10,32,1,empirical,2023-01-17 15:08:19,2023-01-17 15:08:19,2023-01-17 15:08:20,0.374706029891968,0,1e+05,13,0.3,1,0,1,1
+2,100,10,32,1,gaussian,2023-01-17 15:08:25,2023-01-17 15:08:25,2023-01-17 15:08:26,0.332473516464233,0,1e+05,13,0.3,1,0,1,1
+2,100,10,32,1,ctree,2023-01-17 15:08:31,2023-01-17 15:08:32,2023-01-17 15:08:33,1.32303214073181,0,1e+05,13,0.3,1,0,1,1
+2,100,10,32,1,independence,2023-01-17 15:08:38,2023-01-17 15:08:39,2023-01-17 15:08:39,0.292641878128052,0,1e+05,13,0.3,1,0,1,1
+2,100,100,1,1,empirical,2023-01-17 15:08:45,2023-01-17 15:08:45,2023-01-17 15:08:46,0.693960905075073,0,1e+05,13,0.3,1,0,1,1
+2,100,100,1,1,gaussian,2023-01-17 15:08:52,2023-01-17 15:08:52,2023-01-17 15:08:53,0.602218151092529,0,1e+05,13,0.3,1,0,1,1
+2,100,100,1,1,ctree,2023-01-17 15:08:59,2023-01-17 15:08:59,2023-01-17 15:09:01,1.98834037780762,0,1e+05,13,0.3,1,0,1,1
+2,100,100,1,1,independence,2023-01-17 15:09:07,2023-01-17 15:09:08,2023-01-17 15:09:08,0.390305042266846,0,1e+05,13,0.3,1,0,1,1
+2,100,100,2,1,empirical,2023-01-17 15:09:14,2023-01-17 15:09:14,2023-01-17 15:09:15,1.08482670783997,0,1e+05,13,0.3,1,0,1,1
+2,100,100,2,1,gaussian,2023-01-17 15:09:21,2023-01-17 15:09:21,2023-01-17 15:09:22,0.684945344924927,0,1e+05,13,0.3,1,0,1,1
+2,100,100,2,1,ctree,2023-01-17 15:09:28,2023-01-17 15:09:28,2023-01-17 15:09:31,2.12776708602905,0,1e+05,13,0.3,1,0,1,1
+2,100,100,2,1,independence,2023-01-17 15:09:36,2023-01-17 15:09:37,2023-01-17 15:09:37,0.534481525421143,0,1e+05,13,0.3,1,0,1,1
+2,100,100,4,1,empirical,2023-01-17 15:09:43,2023-01-17 15:09:43,2023-01-17 15:09:44,1.08192563056946,0,1e+05,13,0.3,1,0,1,1
+2,100,100,4,1,gaussian,2023-01-17 15:09:50,2023-01-17 15:09:50,2023-01-17 15:09:51,0.700071573257446,0,1e+05,13,0.3,1,0,1,1
+2,100,100,4,1,ctree,2023-01-17 15:09:57,2023-01-17 15:09:57,2023-01-17 15:10:00,2.14614129066467,0,1e+05,13,0.3,1,0,1,1
+2,100,100,4,1,independence,2023-01-17 15:10:05,2023-01-17 15:10:06,2023-01-17 15:10:06,0.554580688476563,0,1e+05,13,0.3,1,0,1,1
+2,100,100,8,1,empirical,2023-01-17 15:10:12,2023-01-17 15:10:12,2023-01-17 15:10:13,1.1063392162323,0,1e+05,13,0.3,1,0,1,1
+2,100,100,8,1,gaussian,2023-01-17 15:10:19,2023-01-17 15:10:19,2023-01-17 15:10:20,0.685787200927734,0,1e+05,13,0.3,1,0,1,1
+2,100,100,8,1,ctree,2023-01-17 15:10:26,2023-01-17 15:10:26,2023-01-17 15:10:29,2.14231562614441,0,1e+05,13,0.3,1,0,1,1
+2,100,100,8,1,independence,2023-01-17 15:10:34,2023-01-17 15:10:35,2023-01-17 15:10:35,0.55462646484375,0,1e+05,13,0.3,1,0,1,1
+2,100,100,16,1,empirical,2023-01-17 15:10:41,2023-01-17 15:10:41,2023-01-17 15:10:42,1.07916855812073,0,1e+05,13,0.3,1,0,1,1
+2,100,100,16,1,gaussian,2023-01-17 15:10:48,2023-01-17 15:10:48,2023-01-17 15:10:49,0.720760345458984,0,1e+05,13,0.3,1,0,1,1
+2,100,100,16,1,ctree,2023-01-17 15:10:55,2023-01-17 15:10:55,2023-01-17 15:10:58,2.09656834602356,0,1e+05,13,0.3,1,0,1,1
+2,100,100,16,1,independence,2023-01-17 15:11:03,2023-01-17 15:11:04,2023-01-17 15:11:04,0.545693635940552,0,1e+05,13,0.3,1,0,1,1
+2,100,100,32,1,empirical,2023-01-17 15:11:10,2023-01-17 15:11:10,2023-01-17 15:11:11,1.08544635772705,0,1e+05,13,0.3,1,0,1,1
+2,100,100,32,1,gaussian,2023-01-17 15:11:17,2023-01-17 15:11:17,2023-01-17 15:11:18,0.70287299156189,0,1e+05,13,0.3,1,0,1,1
+2,100,100,32,1,ctree,2023-01-17 15:11:24,2023-01-17 15:11:25,2023-01-17 15:11:27,2.15682244300842,0,1e+05,13,0.3,1,0,1,1
+2,100,100,32,1,independence,2023-01-17 15:11:32,2023-01-17 15:11:33,2023-01-17 15:11:33,0.541534423828125,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,1,1,empirical,2023-01-17 15:11:39,2023-01-17 15:11:39,2023-01-17 15:11:39,0.383393049240112,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,1,1,gaussian,2023-01-17 15:11:45,2023-01-17 15:11:45,2023-01-17 15:11:46,0.33311915397644,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,1,1,ctree,2023-01-17 15:11:51,2023-01-17 15:11:51,2023-01-17 15:11:53,1.37176656723022,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,1,1,independence,2023-01-17 15:11:58,2023-01-17 15:11:59,2023-01-17 15:11:59,0.312752962112427,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,2,1,empirical,2023-01-17 15:12:04,2023-01-17 15:12:05,2023-01-17 15:12:05,0.411961317062378,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,2,1,gaussian,2023-01-17 15:12:11,2023-01-17 15:12:11,2023-01-17 15:12:11,0.358123779296875,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,2,1,ctree,2023-01-17 15:12:17,2023-01-17 15:12:17,2023-01-17 15:12:19,1.42444825172424,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,2,1,independence,2023-01-17 15:12:24,2023-01-17 15:12:24,2023-01-17 15:12:25,0.341542482376099,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,4,1,empirical,2023-01-17 15:12:30,2023-01-17 15:12:31,2023-01-17 15:12:31,0.410071849822998,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,4,1,gaussian,2023-01-17 15:12:36,2023-01-17 15:12:37,2023-01-17 15:12:37,0.364272117614746,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,4,1,ctree,2023-01-17 15:12:43,2023-01-17 15:12:43,2023-01-17 15:12:44,1.40929126739502,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,4,1,independence,2023-01-17 15:12:50,2023-01-17 15:12:50,2023-01-17 15:12:51,0.344814777374268,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,8,1,empirical,2023-01-17 15:12:56,2023-01-17 15:12:56,2023-01-17 15:12:57,0.414499998092651,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,8,1,gaussian,2023-01-17 15:13:02,2023-01-17 15:13:03,2023-01-17 15:13:03,0.362139225006104,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,8,1,ctree,2023-01-17 15:13:08,2023-01-17 15:13:09,2023-01-17 15:13:10,1.43294835090637,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,8,1,independence,2023-01-17 15:13:16,2023-01-17 15:13:16,2023-01-17 15:13:16,0.333022832870483,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,16,1,empirical,2023-01-17 15:13:22,2023-01-17 15:13:22,2023-01-17 15:13:23,0.407428741455078,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,16,1,gaussian,2023-01-17 15:13:28,2023-01-17 15:13:28,2023-01-17 15:13:29,0.381525278091431,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,16,1,ctree,2023-01-17 15:13:34,2023-01-17 15:13:35,2023-01-17 15:13:36,1.39694333076477,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,16,1,independence,2023-01-17 15:13:42,2023-01-17 15:13:42,2023-01-17 15:13:42,0.338482618331909,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,32,1,empirical,2023-01-17 15:13:48,2023-01-17 15:13:48,2023-01-17 15:13:48,0.423784732818604,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,32,1,gaussian,2023-01-17 15:13:54,2023-01-17 15:13:54,2023-01-17 15:13:55,0.377947568893433,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,32,1,ctree,2023-01-17 15:14:00,2023-01-17 15:14:00,2023-01-17 15:14:02,1.39988160133362,0,1e+05,13,0.3,1,0,1,1
+2,1000,10,32,1,independence,2023-01-17 15:14:07,2023-01-17 15:14:08,2023-01-17 15:14:08,0.3384690284729,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,1,1,empirical,2023-01-17 15:14:13,2023-01-17 15:14:14,2023-01-17 15:14:15,0.799488067626953,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,1,1,gaussian,2023-01-17 15:14:21,2023-01-17 15:14:21,2023-01-17 15:14:22,0.61540699005127,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,1,1,ctree,2023-01-17 15:14:27,2023-01-17 15:14:27,2023-01-17 15:14:29,2.05205845832825,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,1,1,independence,2023-01-17 15:14:35,2023-01-17 15:14:36,2023-01-17 15:14:36,0.501956939697266,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,2,1,empirical,2023-01-17 15:14:41,2023-01-17 15:14:42,2023-01-17 15:14:43,1.21703958511353,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,2,1,gaussian,2023-01-17 15:14:49,2023-01-17 15:14:49,2023-01-17 15:14:50,0.712919473648071,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,2,1,ctree,2023-01-17 15:14:56,2023-01-17 15:14:56,2023-01-17 15:14:59,2.19771456718445,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,2,1,independence,2023-01-17 15:15:04,2023-01-17 15:15:05,2023-01-17 15:15:05,0.627683877944946,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,4,1,empirical,2023-01-17 15:15:12,2023-01-17 15:15:12,2023-01-17 15:15:13,1.21958661079407,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,4,1,gaussian,2023-01-17 15:15:19,2023-01-17 15:15:19,2023-01-17 15:15:20,0.711959362030029,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,4,1,ctree,2023-01-17 15:15:26,2023-01-17 15:15:26,2023-01-17 15:15:29,2.21992778778076,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,4,1,independence,2023-01-17 15:15:34,2023-01-17 15:15:35,2023-01-17 15:15:35,0.616476774215698,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,8,1,empirical,2023-01-17 15:15:42,2023-01-17 15:15:42,2023-01-17 15:15:43,1.1998438835144,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,8,1,gaussian,2023-01-17 15:15:49,2023-01-17 15:15:49,2023-01-17 15:15:50,0.73582911491394,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,8,1,ctree,2023-01-17 15:15:56,2023-01-17 15:15:56,2023-01-17 15:15:59,2.1871874332428,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,8,1,independence,2023-01-17 15:16:04,2023-01-17 15:16:05,2023-01-17 15:16:05,0.629563093185425,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,16,1,empirical,2023-01-17 15:16:12,2023-01-17 15:16:12,2023-01-17 15:16:13,1.18770790100098,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,16,1,gaussian,2023-01-17 15:16:19,2023-01-17 15:16:19,2023-01-17 15:16:20,0.72991156578064,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,16,1,ctree,2023-01-17 15:16:26,2023-01-17 15:16:27,2023-01-17 15:16:29,2.18601489067078,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,16,1,independence,2023-01-17 15:16:35,2023-01-17 15:16:35,2023-01-17 15:16:36,0.608983755111694,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,32,1,empirical,2023-01-17 15:16:41,2023-01-17 15:16:41,2023-01-17 15:16:42,1.23225998878479,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,32,1,gaussian,2023-01-17 15:16:48,2023-01-17 15:16:48,2023-01-17 15:16:49,0.708033561706543,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,32,1,ctree,2023-01-17 15:16:55,2023-01-17 15:16:56,2023-01-17 15:16:58,2.19448590278626,0,1e+05,13,0.3,1,0,1,1
+2,1000,100,32,1,independence,2023-01-17 15:17:04,2023-01-17 15:17:04,2023-01-17 15:17:05,0.625814914703369,0,1e+05,13,0.3,1,0,1,1
+4,100,10,1,1,empirical,2023-01-17 15:17:11,2023-01-17 15:17:11,2023-01-17 15:17:12,0.327366828918457,0,1e+05,13,0.3,1,0,1,1
+4,100,10,1,1,gaussian,2023-01-17 15:17:17,2023-01-17 15:17:17,2023-01-17 15:17:18,0.517061471939087,0,1e+05,13,0.3,1,0,1,1
+4,100,10,1,1,ctree,2023-01-17 15:17:23,2023-01-17 15:17:24,2023-01-17 15:17:25,1.73293709754944,0,1e+05,13,0.3,1,0,1,1
+4,100,10,1,1,independence,2023-01-17 15:17:32,2023-01-17 15:17:32,2023-01-17 15:17:32,0.306885242462158,0,1e+05,13,0.3,1,0,1,1
+4,100,10,2,1,empirical,2023-01-17 15:17:38,2023-01-17 15:17:38,2023-01-17 15:17:39,0.380265712738037,0,1e+05,13,0.3,1,0,1,1
+4,100,10,2,1,gaussian,2023-01-17 15:17:44,2023-01-17 15:17:44,2023-01-17 15:17:45,0.562438249588013,0,1e+05,13,0.3,1,0,1,1
+4,100,10,2,1,ctree,2023-01-17 15:17:50,2023-01-17 15:17:51,2023-01-17 15:17:52,1.93632698059082,0,1e+05,13,0.3,1,0,1,1
+4,100,10,2,1,independence,2023-01-17 15:17:59,2023-01-17 15:17:59,2023-01-17 15:17:59,0.318980693817139,0,1e+05,13,0.3,1,0,1,1
+4,100,10,4,1,empirical,2023-01-17 15:18:05,2023-01-17 15:18:05,2023-01-17 15:18:06,0.46616268157959,0,1e+05,13,0.3,1,0,1,1
+4,100,10,4,1,gaussian,2023-01-17 15:18:11,2023-01-17 15:18:11,2023-01-17 15:18:12,0.5863196849823,0,1e+05,13,0.3,1,0,1,1
+4,100,10,4,1,ctree,2023-01-17 15:18:17,2023-01-17 15:18:17,2023-01-17 15:18:19,1.89016652107239,0,1e+05,13,0.3,1,0,1,1
+4,100,10,4,1,independence,2023-01-17 15:18:25,2023-01-17 15:18:26,2023-01-17 15:18:26,0.400885820388794,0,1e+05,13,0.3,1,0,1,1
+4,100,10,8,1,empirical,2023-01-17 15:18:32,2023-01-17 15:18:32,2023-01-17 15:18:33,0.66105318069458,0,1e+05,13,0.3,1,0,1,1
+4,100,10,8,1,gaussian,2023-01-17 15:18:39,2023-01-17 15:18:39,2023-01-17 15:18:40,0.759965419769287,0,1e+05,13,0.3,1,0,1,1
+4,100,10,8,1,ctree,2023-01-17 15:18:46,2023-01-17 15:18:46,2023-01-17 15:18:48,1.92150068283081,0,1e+05,13,0.3,1,0,1,1
+4,100,10,8,1,independence,2023-01-17 15:18:54,2023-01-17 15:18:55,2023-01-17 15:18:55,0.451948881149292,0,1e+05,13,0.3,1,0,1,1
+4,100,10,16,1,empirical,2023-01-17 15:19:01,2023-01-17 15:19:01,2023-01-17 15:19:02,0.945892810821533,0,1e+05,13,0.3,1,0,1,1
+4,100,10,16,1,gaussian,2023-01-17 15:19:08,2023-01-17 15:19:08,2023-01-17 15:19:09,0.871599435806274,0,1e+05,13,0.3,1,0,1,1
+4,100,10,16,1,ctree,2023-01-17 15:19:15,2023-01-17 15:19:15,2023-01-17 15:19:17,1.99962306022644,0,1e+05,13,0.3,1,0,1,1
+4,100,10,16,1,independence,2023-01-17 15:19:23,2023-01-17 15:19:24,2023-01-17 15:19:24,0.485783338546753,0,1e+05,13,0.3,1,0,1,1
+4,100,10,32,1,empirical,2023-01-17 15:19:30,2023-01-17 15:19:30,2023-01-17 15:19:31,0.889486312866211,0,1e+05,13,0.3,1,0,1,1
+4,100,10,32,1,gaussian,2023-01-17 15:19:37,2023-01-17 15:19:37,2023-01-17 15:19:38,0.845785856246948,0,1e+05,13,0.3,1,0,1,1
+4,100,10,32,1,ctree,2023-01-17 15:19:44,2023-01-17 15:19:45,2023-01-17 15:19:47,2.01532888412476,0,1e+05,13,0.3,1,0,1,1
+4,100,10,32,1,independence,2023-01-17 15:19:53,2023-01-17 15:19:53,2023-01-17 15:19:53,0.513545036315918,0,1e+05,13,0.3,1,0,1,1
+4,100,100,1,1,empirical,2023-01-17 15:19:59,2023-01-17 15:19:59,2023-01-17 15:20:00,0.785656213760376,0,1e+05,13,0.3,1,0,1,1
+4,100,100,1,1,gaussian,2023-01-17 15:20:06,2023-01-17 15:20:06,2023-01-17 15:20:09,2.64088177680969,0,1e+05,13,0.3,1,0,1,1
+4,100,100,1,1,ctree,2023-01-17 15:20:14,2023-01-17 15:20:15,2023-01-17 15:20:21,5.92083716392517,0,1e+05,13,0.3,1,0,1,1
+4,100,100,1,1,independence,2023-01-17 15:20:26,2023-01-17 15:20:26,2023-01-17 15:20:27,0.486744165420532,0,1e+05,13,0.3,1,0,1,1
+4,100,100,2,1,empirical,2023-01-17 15:20:32,2023-01-17 15:20:32,2023-01-17 15:20:34,1.20081543922424,0,1e+05,13,0.3,1,0,1,1
+4,100,100,2,1,gaussian,2023-01-17 15:20:39,2023-01-17 15:20:40,2023-01-17 15:20:42,2.56840300559998,0,1e+05,13,0.3,1,0,1,1
+4,100,100,2,1,ctree,2023-01-17 15:20:48,2023-01-17 15:20:48,2023-01-17 15:20:54,6.00723266601563,0,1e+05,13,0.3,1,0,1,1
+4,100,100,2,1,independence,2023-01-17 15:20:59,2023-01-17 15:21:00,2023-01-17 15:21:00,0.644494771957398,0,1e+05,13,0.3,1,0,1,1
+4,100,100,4,1,empirical,2023-01-17 15:21:07,2023-01-17 15:21:07,2023-01-17 15:21:09,2.08159017562866,0,1e+05,13,0.3,1,0,1,1
+4,100,100,4,1,gaussian,2023-01-17 15:21:15,2023-01-17 15:21:15,2023-01-17 15:21:18,2.76961994171143,0,1e+05,13,0.3,1,0,1,1
+4,100,100,4,1,ctree,2023-01-17 15:21:23,2023-01-17 15:21:24,2023-01-17 15:21:30,6.38518142700195,0,1e+05,13,0.3,1,0,1,1
+4,100,100,4,1,independence,2023-01-17 15:21:36,2023-01-17 15:21:36,2023-01-17 15:21:37,0.937007904052734,0,1e+05,13,0.3,1,0,1,1
+4,100,100,8,1,empirical,2023-01-17 15:21:43,2023-01-17 15:21:44,2023-01-17 15:21:47,3.68725776672363,0,1e+05,13,0.3,1,0,1,1
+4,100,100,8,1,gaussian,2023-01-17 15:21:53,2023-01-17 15:21:53,2023-01-17 15:21:56,3.16380023956299,0,1e+05,13,0.3,1,0,1,1
+4,100,100,8,1,ctree,2023-01-17 15:22:02,2023-01-17 15:22:02,2023-01-17 15:22:09,6.76805973052979,0,1e+05,13,0.3,1,0,1,1
+4,100,100,8,1,independence,2023-01-17 15:22:15,2023-01-17 15:22:15,2023-01-17 15:22:17,1.5560200214386,0,1e+05,13,0.3,1,0,1,1
+4,100,100,16,1,empirical,2023-01-17 15:22:22,2023-01-17 15:22:22,2023-01-17 15:22:29,6.11842370033264,0,1e+05,13,0.3,1,0,1,1
+4,100,100,16,1,gaussian,2023-01-17 15:22:35,2023-01-17 15:22:35,2023-01-17 15:22:39,3.88023734092712,0,1e+05,13,0.3,1,0,1,1
+4,100,100,16,1,ctree,2023-01-17 15:22:45,2023-01-17 15:22:46,2023-01-17 15:22:53,7.48032641410828,0,1e+05,13,0.3,1,0,1,1
+4,100,100,16,1,independence,2023-01-17 15:22:59,2023-01-17 15:22:59,2023-01-17 15:23:02,2.4059534072876,0,1e+05,13,0.3,1,0,1,1
+4,100,100,32,1,empirical,2023-01-17 15:23:07,2023-01-17 15:23:08,2023-01-17 15:23:14,6.12038803100586,0,1e+05,13,0.3,1,0,1,1
+4,100,100,32,1,gaussian,2023-01-17 15:23:20,2023-01-17 15:23:20,2023-01-17 15:23:24,3.83148813247681,0,1e+05,13,0.3,1,0,1,1
+4,100,100,32,1,ctree,2023-01-17 15:23:30,2023-01-17 15:23:30,2023-01-17 15:23:37,7.44462990760803,0,1e+05,13,0.3,1,0,1,1
+4,100,100,32,1,independence,2023-01-17 15:23:43,2023-01-17 15:23:44,2023-01-17 15:23:46,2.4243175983429,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,1,1,empirical,2023-01-17 15:23:52,2023-01-17 15:23:52,2023-01-17 15:23:53,0.463680267333984,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,1,1,gaussian,2023-01-17 15:23:58,2023-01-17 15:23:58,2023-01-17 15:23:59,0.566849946975708,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,1,1,ctree,2023-01-17 15:24:04,2023-01-17 15:24:05,2023-01-17 15:24:07,1.95824027061462,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,1,1,independence,2023-01-17 15:24:13,2023-01-17 15:24:13,2023-01-17 15:24:13,0.394290924072266,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,2,1,empirical,2023-01-17 15:24:19,2023-01-17 15:24:19,2023-01-17 15:24:20,0.569451570510864,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,2,1,gaussian,2023-01-17 15:24:25,2023-01-17 15:24:25,2023-01-17 15:24:26,0.591575622558594,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,2,1,ctree,2023-01-17 15:24:31,2023-01-17 15:24:31,2023-01-17 15:24:34,2.04104018211365,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,2,1,independence,2023-01-17 15:24:39,2023-01-17 15:24:40,2023-01-17 15:24:40,0.43762469291687,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,4,1,empirical,2023-01-17 15:24:46,2023-01-17 15:24:46,2023-01-17 15:24:47,0.71804666519165,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,4,1,gaussian,2023-01-17 15:24:53,2023-01-17 15:24:53,2023-01-17 15:24:54,0.661683797836304,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,4,1,ctree,2023-01-17 15:25:00,2023-01-17 15:25:01,2023-01-17 15:25:03,2.18773317337036,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,4,1,independence,2023-01-17 15:25:09,2023-01-17 15:25:09,2023-01-17 15:25:09,0.487057447433472,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,8,1,empirical,2023-01-17 15:25:15,2023-01-17 15:25:15,2023-01-17 15:25:16,0.74691915512085,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,8,1,gaussian,2023-01-17 15:25:22,2023-01-17 15:25:22,2023-01-17 15:25:23,0.903489112854004,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,8,1,ctree,2023-01-17 15:25:29,2023-01-17 15:25:30,2023-01-17 15:25:32,2.19019651412964,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,8,1,independence,2023-01-17 15:25:38,2023-01-17 15:25:38,2023-01-17 15:25:39,0.742049694061279,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,16,1,empirical,2023-01-17 15:25:45,2023-01-17 15:25:45,2023-01-17 15:25:46,1.00054264068604,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,16,1,gaussian,2023-01-17 15:25:52,2023-01-17 15:25:52,2023-01-17 15:25:53,0.925986766815186,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,16,1,ctree,2023-01-17 15:25:59,2023-01-17 15:26:00,2023-01-17 15:26:02,2.54504060745239,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,16,1,independence,2023-01-17 15:26:08,2023-01-17 15:26:08,2023-01-17 15:26:09,0.760806560516357,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,32,1,empirical,2023-01-17 15:26:15,2023-01-17 15:26:15,2023-01-17 15:26:16,1.0059826374054,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,32,1,gaussian,2023-01-17 15:26:22,2023-01-17 15:26:23,2023-01-17 15:26:24,1.02837729454041,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,32,1,ctree,2023-01-17 15:26:30,2023-01-17 15:26:30,2023-01-17 15:26:32,2.53876662254334,0,1e+05,13,0.3,1,0,1,1
+4,1000,10,32,1,independence,2023-01-17 15:26:38,2023-01-17 15:26:38,2023-01-17 15:26:39,0.78394079208374,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,1,1,empirical,2023-01-17 15:26:45,2023-01-17 15:26:46,2023-01-17 15:26:47,1.27847743034363,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,1,1,gaussian,2023-01-17 15:26:53,2023-01-17 15:26:53,2023-01-17 15:26:56,2.72077345848084,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,1,1,ctree,2023-01-17 15:27:01,2023-01-17 15:27:01,2023-01-17 15:27:07,6.19993448257446,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,1,1,independence,2023-01-17 15:27:14,2023-01-17 15:27:14,2023-01-17 15:27:15,1.26962947845459,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,2,1,empirical,2023-01-17 15:27:21,2023-01-17 15:27:21,2023-01-17 15:27:23,1.67736959457397,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,2,1,gaussian,2023-01-17 15:27:28,2023-01-17 15:27:28,2023-01-17 15:27:31,2.70183849334717,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,2,1,ctree,2023-01-17 15:27:37,2023-01-17 15:27:37,2023-01-17 15:27:43,6.11967539787293,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,2,1,independence,2023-01-17 15:27:49,2023-01-17 15:27:50,2023-01-17 15:27:51,1.4513885974884,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,4,1,empirical,2023-01-17 15:27:57,2023-01-17 15:27:57,2023-01-17 15:27:59,2.58360242843628,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,4,1,gaussian,2023-01-17 15:28:05,2023-01-17 15:28:05,2023-01-17 15:28:08,2.81032943725586,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,4,1,ctree,2023-01-17 15:28:13,2023-01-17 15:28:14,2023-01-17 15:28:20,6.63074016571045,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,4,1,independence,2023-01-17 15:28:26,2023-01-17 15:28:26,2023-01-17 15:28:28,1.61182975769043,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,8,1,empirical,2023-01-17 15:28:33,2023-01-17 15:28:34,2023-01-17 15:28:38,4.52241444587708,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,8,1,gaussian,2023-01-17 15:28:44,2023-01-17 15:28:44,2023-01-17 15:28:47,3.20509147644043,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,8,1,ctree,2023-01-17 15:28:53,2023-01-17 15:28:54,2023-01-17 15:29:00,6.89972352981567,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,8,1,independence,2023-01-17 15:29:06,2023-01-17 15:29:06,2023-01-17 15:29:08,2.11854410171509,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,16,1,empirical,2023-01-17 15:29:14,2023-01-17 15:29:15,2023-01-17 15:29:22,7.0019805431366,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,16,1,gaussian,2023-01-17 15:29:27,2023-01-17 15:29:27,2023-01-17 15:29:31,3.93916773796082,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,16,1,ctree,2023-01-17 15:29:37,2023-01-17 15:29:38,2023-01-17 15:29:46,7.73425912857056,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,16,1,independence,2023-01-17 15:29:51,2023-01-17 15:29:52,2023-01-17 15:29:55,2.9846363067627,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,32,1,empirical,2023-01-17 15:30:01,2023-01-17 15:30:01,2023-01-17 15:30:08,6.94886875152588,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,32,1,gaussian,2023-01-17 15:30:14,2023-01-17 15:30:14,2023-01-17 15:30:18,3.88484477996826,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,32,1,ctree,2023-01-17 15:30:23,2023-01-17 15:30:23,2023-01-17 15:30:31,7.68797039985657,0,1e+05,13,0.3,1,0,1,1
+4,1000,100,32,1,independence,2023-01-17 15:30:37,2023-01-17 15:30:37,2023-01-17 15:30:40,2.90780282020569,0,1e+05,13,0.3,1,0,1,1
+8,100,10,1,1,empirical,2023-01-17 15:30:46,2023-01-17 15:30:47,2023-01-17 15:30:47,0.521091461181641,0,1e+05,13,0.3,1,0,1,1
+8,100,10,1,1,gaussian,2023-01-17 15:30:52,2023-01-17 15:30:53,2023-01-17 15:31:00,6.80686378479004,0,1e+05,13,0.3,1,0,1,1
+8,100,10,1,1,ctree,2023-01-17 15:31:05,2023-01-17 15:31:05,2023-01-17 15:31:17,12.0090234279633,0,1e+05,13,0.3,1,0,1,1
+8,100,10,1,1,independence,2023-01-17 15:31:23,2023-01-17 15:31:24,2023-01-17 15:31:24,0.616299629211426,0,1e+05,13,0.3,1,0,1,1
+8,100,10,2,1,empirical,2023-01-17 15:31:29,2023-01-17 15:31:30,2023-01-17 15:31:30,0.63243556022644,0,1e+05,13,0.3,1,0,1,1
+8,100,10,2,1,gaussian,2023-01-17 15:31:37,2023-01-17 15:31:37,2023-01-17 15:31:43,6.07836222648621,0,1e+05,13,0.3,1,0,1,1
+8,100,10,2,1,ctree,2023-01-17 15:31:49,2023-01-17 15:31:50,2023-01-17 15:32:02,11.8521258831024,0,1e+05,13,0.3,1,0,1,1
+8,100,10,2,1,independence,2023-01-17 15:32:08,2023-01-17 15:32:08,2023-01-17 15:32:09,0.66156816482544,0,1e+05,13,0.3,1,0,1,1
+8,100,10,4,1,empirical,2023-01-17 15:32:15,2023-01-17 15:32:15,2023-01-17 15:32:16,0.84393572807312,0,1e+05,13,0.3,1,0,1,1
+8,100,10,4,1,gaussian,2023-01-17 15:32:22,2023-01-17 15:32:22,2023-01-17 15:32:28,5.97628092765808,0,1e+05,13,0.3,1,0,1,1
+8,100,10,4,1,ctree,2023-01-17 15:32:34,2023-01-17 15:32:34,2023-01-17 15:32:46,11.7008435726166,0,1e+05,13,0.3,1,0,1,1
+8,100,10,4,1,independence,2023-01-17 15:32:52,2023-01-17 15:32:52,2023-01-17 15:32:53,0.662321329116821,0,1e+05,13,0.3,1,0,1,1
+8,100,10,8,1,empirical,2023-01-17 15:32:59,2023-01-17 15:33:00,2023-01-17 15:33:01,1.23075103759766,0,1e+05,13,0.3,1,0,1,1
+8,100,10,8,1,gaussian,2023-01-17 15:33:06,2023-01-17 15:33:07,2023-01-17 15:33:13,6.33079314231873,0,1e+05,13,0.3,1,0,1,1
+8,100,10,8,1,ctree,2023-01-17 15:33:19,2023-01-17 15:33:19,2023-01-17 15:33:31,11.8886168003082,0,1e+05,13,0.3,1,0,1,1
+8,100,10,8,1,independence,2023-01-17 15:33:37,2023-01-17 15:33:38,2023-01-17 15:33:38,0.728377342224121,0,1e+05,13,0.3,1,0,1,1
+8,100,10,16,1,empirical,2023-01-17 15:33:45,2023-01-17 15:33:45,2023-01-17 15:33:46,1.5467209815979,0,1e+05,13,0.3,1,0,1,1
+8,100,10,16,1,gaussian,2023-01-17 15:33:52,2023-01-17 15:33:52,2023-01-17 15:33:59,6.32891392707825,0,1e+05,13,0.3,1,0,1,1
+8,100,10,16,1,ctree,2023-01-17 15:34:05,2023-01-17 15:34:05,2023-01-17 15:34:17,12.1841323375702,0,1e+05,13,0.3,1,0,1,1
+8,100,10,16,1,independence,2023-01-17 15:34:23,2023-01-17 15:34:23,2023-01-17 15:34:24,1.22370219230652,0,1e+05,13,0.3,1,0,1,1
+8,100,10,32,1,empirical,2023-01-17 15:34:30,2023-01-17 15:34:31,2023-01-17 15:34:32,1.9131555557251,0,1e+05,13,0.3,1,0,1,1
+8,100,10,32,1,gaussian,2023-01-17 15:34:39,2023-01-17 15:34:39,2023-01-17 15:34:46,7.11068916320801,0,1e+05,13,0.3,1,0,1,1
+8,100,10,32,1,ctree,2023-01-17 15:34:51,2023-01-17 15:34:52,2023-01-17 15:35:05,13.2358200550079,0,1e+05,13,0.3,1,0,1,1
+8,100,10,32,1,independence,2023-01-17 15:35:11,2023-01-17 15:35:11,2023-01-17 15:35:13,1.64725971221924,0,1e+05,13,0.3,1,0,1,1
+8,100,100,1,1,empirical,2023-01-17 15:35:18,2023-01-17 15:35:18,2023-01-17 15:35:21,2.52920317649841,0,1e+05,13,0.3,1,0,1,1
+8,100,100,1,1,gaussian,2023-01-17 15:35:26,2023-01-17 15:35:27,2023-01-17 15:36:13,46.176328420639,0,1e+05,13,0.3,1,0,1,1
+8,100,100,1,1,ctree,2023-01-17 15:36:19,2023-01-17 15:36:19,2023-01-17 15:37:47,88.1325743198395,0,1e+05,13,0.3,1,0,1,1
+8,100,100,1,1,independence,2023-01-17 15:37:53,2023-01-17 15:37:53,2023-01-17 15:37:56,2.82889485359192,0,1e+05,13,0.3,1,0,1,1
+8,100,100,2,1,empirical,2023-01-17 15:38:02,2023-01-17 15:38:02,2023-01-17 15:38:05,2.90581512451172,0,1e+05,13,0.3,1,0,1,1
+8,100,100,2,1,gaussian,2023-01-17 15:38:12,2023-01-17 15:38:12,2023-01-17 15:38:56,43.8373718261719,0,1e+05,13,0.3,1,0,1,1
+8,100,100,2,1,ctree,2023-01-17 15:39:02,2023-01-17 15:39:02,2023-01-17 15:40:31,89.5417714118958,0,1e+05,13,0.3,1,0,1,1
+8,100,100,2,1,independence,2023-01-17 15:40:38,2023-01-17 15:40:38,2023-01-17 15:40:41,2.78291606903076,0,1e+05,13,0.3,1,0,1,1
+8,100,100,4,1,empirical,2023-01-17 15:40:46,2023-01-17 15:40:46,2023-01-17 15:40:50,3.82991290092468,0,1e+05,13,0.3,1,0,1,1
+8,100,100,4,1,gaussian,2023-01-17 15:40:55,2023-01-17 15:40:56,2023-01-17 15:41:40,43.7740831375122,0,1e+05,13,0.3,1,0,1,1
+8,100,100,4,1,ctree,2023-01-17 15:41:46,2023-01-17 15:41:46,2023-01-17 15:43:16,90.1353435516357,0,1e+05,13,0.3,1,0,1,1
+8,100,100,4,1,independence,2023-01-17 15:43:22,2023-01-17 15:43:22,2023-01-17 15:43:25,3.03668189048767,0,1e+05,13,0.3,1,0,1,1
+8,100,100,8,1,empirical,2023-01-17 15:43:31,2023-01-17 15:43:31,2023-01-17 15:43:37,5.81819915771484,0,1e+05,13,0.3,1,0,1,1
+8,100,100,8,1,gaussian,2023-01-17 15:43:43,2023-01-17 15:43:43,2023-01-17 15:44:27,44.1066203117371,0,1e+05,13,0.3,1,0,1,1
+8,100,100,8,1,ctree,2023-01-17 15:44:33,2023-01-17 15:44:33,2023-01-17 15:46:04,90.4668819904327,0,1e+05,13,0.3,1,0,1,1
+8,100,100,8,1,independence,2023-01-17 15:46:10,2023-01-17 15:46:10,2023-01-17 15:46:14,3.78640365600586,0,1e+05,13,0.3,1,0,1,1
+8,100,100,16,1,empirical,2023-01-17 15:46:19,2023-01-17 15:46:19,2023-01-17 15:46:29,9.62103366851807,0,1e+05,13,0.3,1,0,1,1
+8,100,100,16,1,gaussian,2023-01-17 15:46:35,2023-01-17 15:46:35,2023-01-17 15:47:21,46.0475871562958,0,1e+05,13,0.3,1,0,1,1
+8,100,100,16,1,ctree,2023-01-17 15:47:27,2023-01-17 15:47:27,2023-01-17 15:49:01,93.388240814209,0,1e+05,13,0.3,1,0,1,1
+8,100,100,16,1,independence,2023-01-17 15:49:06,2023-01-17 15:49:07,2023-01-17 15:49:12,5.11238145828247,0,1e+05,13,0.3,1,0,1,1
+8,100,100,32,1,empirical,2023-01-17 15:49:18,2023-01-17 15:49:18,2023-01-17 15:49:35,16.40411901474,0,1e+05,13,0.3,1,0,1,1
+8,100,100,32,1,gaussian,2023-01-17 15:49:40,2023-01-17 15:49:41,2023-01-17 15:50:32,51.3861076831818,0,1e+05,13,0.3,1,0,1,1
+8,100,100,32,1,ctree,2023-01-17 15:50:38,2023-01-17 15:50:38,2023-01-17 15:52:14,95.5757768154144,0,1e+05,13,0.3,1,0,1,1
+8,100,100,32,1,independence,2023-01-17 15:52:19,2023-01-17 15:52:20,2023-01-17 15:52:27,7.16790509223938,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,1,1,empirical,2023-01-17 15:52:32,2023-01-17 15:52:32,2023-01-17 15:52:34,1.18484902381897,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,1,1,gaussian,2023-01-17 15:52:39,2023-01-17 15:52:40,2023-01-17 15:52:45,5.31188631057739,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,1,1,ctree,2023-01-17 15:52:51,2023-01-17 15:52:51,2023-01-17 15:53:05,13.1584029197693,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,1,1,independence,2023-01-17 15:53:10,2023-01-17 15:53:11,2023-01-17 15:53:13,2.40209031105042,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,2,1,empirical,2023-01-17 15:53:19,2023-01-17 15:53:19,2023-01-17 15:53:20,1.22292709350586,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,2,1,gaussian,2023-01-17 15:53:26,2023-01-17 15:53:26,2023-01-17 15:53:31,5.20261836051941,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,2,1,ctree,2023-01-17 15:53:38,2023-01-17 15:53:38,2023-01-17 15:53:51,13.0766038894653,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,2,1,independence,2023-01-17 15:53:57,2023-01-17 15:53:57,2023-01-17 15:53:59,2.32577633857727,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,4,1,empirical,2023-01-17 15:54:05,2023-01-17 15:54:06,2023-01-17 15:54:07,1.53740668296814,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,4,1,gaussian,2023-01-17 15:54:12,2023-01-17 15:54:13,2023-01-17 15:54:18,5.15698647499085,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,4,1,ctree,2023-01-17 15:54:24,2023-01-17 15:54:24,2023-01-17 15:54:37,12.8616545200348,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,4,1,independence,2023-01-17 15:54:43,2023-01-17 15:54:44,2023-01-17 15:54:46,2.23945641517639,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,8,1,empirical,2023-01-17 15:54:52,2023-01-17 15:54:52,2023-01-17 15:54:54,1.96186923980713,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,8,1,gaussian,2023-01-17 15:55:00,2023-01-17 15:55:00,2023-01-17 15:55:06,5.27766394615173,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,8,1,ctree,2023-01-17 15:55:12,2023-01-17 15:55:12,2023-01-17 15:55:25,13.0711436271667,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,8,1,independence,2023-01-17 15:55:31,2023-01-17 15:55:31,2023-01-17 15:55:34,2.47513723373413,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,16,1,empirical,2023-01-17 15:55:39,2023-01-17 15:55:40,2023-01-17 15:55:43,3.00969076156616,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,16,1,gaussian,2023-01-17 15:55:49,2023-01-17 15:55:49,2023-01-17 15:55:55,5.68810653686523,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,16,1,ctree,2023-01-17 15:56:01,2023-01-17 15:56:01,2023-01-17 15:56:16,14.815646648407,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,16,1,independence,2023-01-17 15:56:21,2023-01-17 15:56:21,2023-01-17 15:56:24,2.9530508518219,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,32,1,empirical,2023-01-17 15:56:30,2023-01-17 15:56:31,2023-01-17 15:56:35,4.7873375415802,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,32,1,gaussian,2023-01-17 15:56:41,2023-01-17 15:56:41,2023-01-17 15:56:47,6.07144618034363,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,32,1,ctree,2023-01-17 15:56:53,2023-01-17 15:56:53,2023-01-17 15:57:08,14.781482219696,0,1e+05,13,0.3,1,0,1,1
+8,1000,10,32,1,independence,2023-01-17 15:57:13,2023-01-17 15:57:13,2023-01-17 15:57:17,3.8247766494751,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,1,empirical,2023-01-17 15:57:23,2023-01-17 15:57:23,2023-01-17 15:57:29,6.25084543228149,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,1,gaussian,2023-01-17 15:57:35,2023-01-17 15:57:36,2023-01-17 15:58:20,44.0653507709503,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,1,ctree,2023-01-17 15:58:26,2023-01-17 15:58:26,2023-01-17 15:59:55,88.9777586460114,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,1,1,independence,2023-01-17 16:00:01,2023-01-17 16:00:01,2023-01-17 16:00:17,15.7805869579315,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,1,empirical,2023-01-17 16:00:22,2023-01-17 16:00:23,2023-01-17 16:00:30,7.02579522132874,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,1,gaussian,2023-01-17 16:00:35,2023-01-17 16:00:35,2023-01-17 16:01:19,43.2370238304138,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,1,ctree,2023-01-17 16:01:24,2023-01-17 16:01:25,2023-01-17 16:02:54,89.2597358226776,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,2,1,independence,2023-01-17 16:02:59,2023-01-17 16:03:00,2023-01-17 16:03:15,15.5606532096863,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,1,empirical,2023-01-17 16:03:21,2023-01-17 16:03:21,2023-01-17 16:03:31,9.73530268669128,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,1,gaussian,2023-01-17 16:03:37,2023-01-17 16:03:37,2023-01-17 16:04:20,42.7635488510132,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,1,ctree,2023-01-17 16:04:26,2023-01-17 16:04:26,2023-01-17 16:05:58,91.8564298152924,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,4,1,independence,2023-01-17 16:06:04,2023-01-17 16:06:05,2023-01-17 16:06:20,15.1916291713715,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,1,empirical,2023-01-17 16:06:26,2023-01-17 16:06:26,2023-01-17 16:06:38,12.0821299552917,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,1,gaussian,2023-01-17 16:06:44,2023-01-17 16:06:44,2023-01-17 16:07:28,43.5405502319336,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,1,ctree,2023-01-17 16:07:34,2023-01-17 16:07:34,2023-01-17 16:09:06,91.4960811138153,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,8,1,independence,2023-01-17 16:09:12,2023-01-17 16:09:12,2023-01-17 16:09:28,15.4554131031036,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,1,empirical,2023-01-17 16:09:34,2023-01-17 16:09:34,2023-01-17 16:09:51,16.451602935791,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,1,gaussian,2023-01-17 16:09:56,2023-01-17 16:09:57,2023-01-17 16:10:41,44.6388359069824,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,1,ctree,2023-01-17 16:10:47,2023-01-17 16:10:48,2023-01-17 16:12:23,95.319215297699,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,16,1,independence,2023-01-17 16:12:29,2023-01-17 16:12:29,2023-01-17 16:12:46,16.5056393146515,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,1,empirical,2023-01-17 16:12:51,2023-01-17 16:12:52,2023-01-17 16:13:16,24.0710308551788,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,1,gaussian,2023-01-17 16:13:22,2023-01-17 16:13:22,2023-01-17 16:14:10,48.4784061908722,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,1,ctree,2023-01-17 16:14:16,2023-01-17 16:14:16,2023-01-17 16:15:53,97.2089774608612,0,1e+05,13,0.3,1,0,1,1
+8,1000,100,32,1,independence,2023-01-17 16:15:59,2023-01-17 16:16:00,2023-01-17 16:16:18,18.6080703735352,0,1e+05,13,0.3,1,0,1,1
+4,100,10,1,1,empirical,2023-01-18 15:53:39,2023-01-18 15:53:40,2023-01-18 15:53:40,0.347006797790527,0,1e+05,16,0.3,1,0,1,1
+4,100,10,1,1,gaussian,2023-01-18 15:53:46,2023-01-18 15:53:46,2023-01-18 15:53:46,0.493424415588379,0,1e+05,16,0.3,1,0,1,1
+4,100,10,1,1,ctree,2023-01-18 15:53:52,2023-01-18 15:53:52,2023-01-18 15:53:54,1.71922731399536,0,1e+05,16,0.3,1,0,1,1
+4,100,10,1,1,independence,2023-01-18 15:54:00,2023-01-18 15:54:00,2023-01-18 15:54:01,0.29311728477478,0,1e+05,16,0.3,1,0,1,1
+4,100,10,2,1,empirical,2023-01-18 15:54:06,2023-01-18 15:54:07,2023-01-18 15:54:07,0.380102872848511,0,1e+05,16,0.3,1,0,1,1
+4,100,10,2,1,gaussian,2023-01-18 15:54:12,2023-01-18 15:54:13,2023-01-18 15:54:13,0.532634973526001,0,1e+05,16,0.3,1,0,1,1
+4,100,10,2,1,ctree,2023-01-18 15:54:19,2023-01-18 15:54:19,2023-01-18 15:54:21,1.76299524307251,0,1e+05,16,0.3,1,0,1,1
+4,100,10,2,1,independence,2023-01-18 15:54:27,2023-01-18 15:54:27,2023-01-18 15:54:28,0.330147504806519,0,1e+05,16,0.3,1,0,1,1
diff --git a/inst/scripts/vilde/Rplot.pdf b/inst/scripts/vilde/Rplot.pdf
new file mode 100644
index 000000000..fc1fdc2fe
Binary files /dev/null and b/inst/scripts/vilde/Rplot.pdf differ
diff --git a/inst/scripts/vilde/Rplot01.pdf b/inst/scripts/vilde/Rplot01.pdf
new file mode 100644
index 000000000..50be0ae01
Binary files /dev/null and b/inst/scripts/vilde/Rplot01.pdf differ
diff --git a/inst/scripts/vilde/Rplot02.pdf b/inst/scripts/vilde/Rplot02.pdf
new file mode 100644
index 000000000..e683d6036
Binary files /dev/null and b/inst/scripts/vilde/Rplot02.pdf differ
diff --git a/inst/scripts/vilde/airquality_example.R b/inst/scripts/vilde/airquality_example.R
new file mode 100644
index 000000000..9c162bfe2
--- /dev/null
+++ b/inst/scripts/vilde/airquality_example.R
@@ -0,0 +1,37 @@
+
+data("airquality")
+airquality <- airquality[complete.cases(airquality), ]
+# Split data into test- and training data
+train <- head(airquality, -50)
+test <- tail(airquality, 50)
+
+# Fit a linear model
+model <- lm(Ozone ~ Solar.R + Wind+ Temp + Month, data = x_train)
+
+p <- mean(train$Ozone)
+
+x <- explain(
+ train,
+ test,
+ model = model,
+ approach = "empirical",
+ prediction_zero = p
+)
+
+if (requireNamespace("ggplot2", quietly = TRUE)) {
+ # The default plotting option is a bar plot of the Shapley values
+ # We draw bar plots for the first 4 observations
+ plot(x, index_x_explain = 1:4)
+
+ # We can also make waterfall plots
+ plot(x, plot_type = "waterfall", index_x_explain = 1:4)
+ plot(x, plot_type = "waterfall", index_x_explain = 1:4, top_k_features = 2) # top_k_features = 2 shows the 2 features with largest contribution
+
+ # Or scatter plots showing the distribution of the shapley values and feature values
+ plot(x, plot_type = "scatter")
+ plot(x, plot_type = "scatter", scatter_features = "Temp") # if we only want the scatter plot for a specific feature
+
+ # Or a beeswarm plot summarising the Shapley values and feature values for all features
+ plot(x, plot_type = "beeswarm")
+ plot(x, plot_type = "beeswarm", col = c("red", "black")) # we can change colors
+}
diff --git a/inst/scripts/vilde/arrow_waterfall.pdf b/inst/scripts/vilde/arrow_waterfall.pdf
new file mode 100644
index 000000000..2aa6ef77f
Binary files /dev/null and b/inst/scripts/vilde/arrow_waterfall.pdf differ
diff --git a/inst/scripts/vilde/bug_example.pdf b/inst/scripts/vilde/bug_example.pdf
new file mode 100644
index 000000000..944842872
Binary files /dev/null and b/inst/scripts/vilde/bug_example.pdf differ
diff --git a/inst/scripts/vilde/check_progress.R b/inst/scripts/vilde/check_progress.R
new file mode 100644
index 000000000..aee0f765c
--- /dev/null
+++ b/inst/scripts/vilde/check_progress.R
@@ -0,0 +1,58 @@
+library(progressr)
+library(future.apply)
+library(xgboost)
+library(shapr)
+library(data.table)
+
+data("Boston", package = "MASS")
+
+x_var <- c("lstat", "rm", "dis", "indus", "age", "ptratio")
+y_var <- "medv"
+
+x_train <- as.matrix(Boston[-1:-15, x_var])
+y_train <- Boston[-1:-15, y_var]
+x_test <- as.matrix(Boston[1:100, x_var])
+
+# Fitting a basic xgboost model to the training data
+model <- xgboost(
+ data = x_train,
+ label = y_train,
+ nround = 20,
+ verbose = FALSE
+)
+p <- mean(y_train)
+
+plan(multisession, workers=3)
+
+# when we simply call explain(), no progress bar is shown
+x <- explain(x_train, x_test, model, approach="gaussian", prediction_zero=p, n_batches = 4)
+
+# the handler specifies what kind of progress bar is shown
+# Wrapping explain() in with_progress() gives a progress bar when calling explain()
+handlers("txtprogressbar")
+x <- with_progress(
+ explain(x_train, x_test, model, approach="empirical", prediction_zero=p, n_batches = 5)
+ )
+
+# with global=TRUE the progress bar is displayed whenever the explain-function is called, and there is no need to use with_progress()
+handlers(global = TRUE)
+x <- explain(x_train, x_test, model, approach="gaussian", prediction_zero=p, n_batches = 4)
+
+# there are different options for what kind of progress bar should be displayed
+handlers("txtprogressbar") #this is the default
+x <- explain(x_train, x_test, model, approach="independence", prediction_zero=p, n_batches = 4)
+
+handlers("progress")
+x <- explain(x_train, x_test, model, approach="independence", prediction_zero=p, n_batches = 4)
+
+# you can edit the symbol used to draw completed progress in the progress bar (as well as other features) with handler_progress()
+handlers(handler_progress(complete = "#"))
+x <- explain(x_train, x_test, model, approach="copula", prediction_zero=p, n_batches = 4)
+
+plan("sequential")
+
+handlers("progress")
+x <- explain(x_train, x_test, model, approach=c(rep("ctree",4),"independence","independence"), prediction_zero=p, n_batches = 4)
+
+
+
diff --git a/inst/scripts/vilde/sketch_for_waterfall_plot.R b/inst/scripts/vilde/sketch_for_waterfall_plot.R
new file mode 100644
index 000000000..dc9e9278f
--- /dev/null
+++ b/inst/scripts/vilde/sketch_for_waterfall_plot.R
@@ -0,0 +1,68 @@
+library(xgboost)
+library(shapr)
+library(ggplot2)
+library(data.table)
+
+data("Boston", package = "MASS")
+
+x_var <- c("lstat", "rm", "dis", "indus")
+y_var <- "medv"
+
+x_train <- as.matrix(Boston[-1:-6, x_var])
+y_train <- Boston[-1:-6, y_var]
+x_test <- as.matrix(Boston[1:6, x_var])
+
+# Looking at the dependence between the features
+cor(x_train)
+
+# Fitting a basic xgboost model to the training data
+model <- xgboost(
+ data = x_train,
+ label = y_train,
+ nround = 20,
+ verbose = FALSE
+)
+p <- mean(y_train)
+
+# Prepare the data for explanation
+res <- explain_final(x_train,x_test,model,approach="independence",prediction_zero=p,n_batches = 4)
+plot(res)
+
+i<- 1 # index for observation we want to plot
+dt <- data.table(feat_name = paste0(colnames(res$shapley_values[,-1]), " = ", format(res$internal$data$x_explain[i,], 2) ),
+ shapley_value = as.numeric(res$shapley_values[i,-1])
+ )
+dt
+expected <- as.numeric(res$shapley_values[i,])[1]
+observed <- res$pred_explain[i]
+
+dt[, sign := ifelse(shapley_value > 0, "Increases", "Decreases")]
+dt[, rank := frank(abs(shapley_value))]
+setorder(dt, rank)
+dt[, end := cumsum(shapley_value)+expected]
+dt[, start := c(expected, head(end, -1))]
+dt[, description := factor(feat_name, levels = unique(feat_name[order(abs(shapley_value))]))]
+dt
+
+p <- ggplot(dt, aes(x = description, fill = sign)) +
+ geom_rect(aes(x=description, xmin = rank - 0.45, xmax = rank + 0.45, ymin = end,ymax = start)) +
+ scale_fill_manual(values=c("steelblue", "lightsteelblue")) +
+ geom_segment(x=-0.1, xend = 0.56, y=expected, yend=expected, linetype="dashed", col="dark grey") +
+ labs(
+ y = "Feature contribution",
+ x = "Feature",
+ fill = "",
+ title = "Shapley value prediction explanation"
+ ) +
+ geom_text(aes(label = format(shapley_value,digits=2), x=rank, y=start + (end-start)/2)) +
+ annotate("text",label=paste0("E(italic(f(x)))==", format(expected,digits=3)), y=expected, x=-Inf,parse = TRUE) +
+ coord_flip(clip = 'off', xlim=c(0.5, 4)) +
+ theme(plot.margin = unit(c(1,1,3,1), "lines")) +
+ geom_segment(x=-0.1, xend = 4.46, y=observed, yend=observed, linetype="dashed", col="dark grey") +
+ annotate("text",label=paste0("italic(f(x))==", format(observed,digits=3)), y=observed, x=Inf, parse = TRUE) +
+ geom_segment(aes(x=ifelse(rank==last(rank), as.numeric(rank), as.numeric(rank)-0.45), xend = ifelse(rank==last(rank), as.numeric(rank), as.numeric(rank)+1.45),
+ y=end, yend=end), linetype="dashed", col="dark grey")
+p
+
+
+
diff --git a/inst/scripts/vilde/waterfall_plot.R b/inst/scripts/vilde/waterfall_plot.R
new file mode 100644
index 000000000..531f1e4c1
--- /dev/null
+++ b/inst/scripts/vilde/waterfall_plot.R
@@ -0,0 +1,79 @@
+library(xgboost)
+library(shapr)
+library(ggplot2)
+library(data.table)
+
+#test plotting w Boston data
+data("Boston", package = "MASS")
+x_var <- c("lstat", "rm", "dis", "indus", "crim", "age")
+y_var <- "medv"
+b <- 150
+x_train <- as.matrix(Boston[-1:-b, x_var])
+y_train <- Boston[-1:-b, y_var]
+x_test <- as.matrix(Boston[1:b, x_var])
+
+model <- xgboost(
+ data = x_train,
+ label = y_train,
+ nround = 20,
+ verbose = FALSE
+)
+p <- mean(y_train)
+x <- explain_final(x_train,x_test,model,approach="independence",prediction_zero=p,n_batches = 4)
+plot.shapr(x,
+ plot_type = "bar",
+ digits = 3,
+ plot_phi0 = TRUE,
+ index_x_explain = NULL,
+ top_k_features = NULL,
+ col = c("#00BA38","#F8766D"), #first increasing color, then decreasing color
+ plot_order = "largest_first",
+ features_to_plot = NULL,
+ histogram = TRUE,
+ )
+
+# data("AdultUCI", package = "arules")
+# names(AdultUCI) <- gsub("-","_",names(AdultUCI))
+# data <- na.omit(AdultUCI)
+# data$income <-ifelse(data$income==2,1,0)
+# x_var <- c("age", "workclass", "hours_per_week","native_country")
+# y_var <- "income"
+# x_train <- as.matrix(data[-1:-b, x_var])
+# y_train <- data[-1:-b, y_var]
+# x_test <- as.matrix(data[1:b, x_var])
+
+#test plotting with simulated data
+test <- data.frame(x1 = rnorm(5000, mean=10, sd=4),
+ x2 = rnorm(5000, mean=-60, sd=2),
+ x3 = rnorm(5000, mean=100, sd=1),
+ x4 = rnorm(5000, mean=0, sd=1),
+ y = rnorm(5000, mean=-5, sd=2))
+
+x_var <- c("x1", "x2", "x3", "x4")
+y_var <- "y"
+b <- 350
+x_train <- as.matrix(test[-1:-b, x_var])
+y_train <- test[-1:-b, y_var]
+x_test <- as.matrix(test[1:b, x_var])
+
+# Fitting a basic xgboost model to the training data
+model <- xgboost(
+ data = x_train,
+ label = y_train,
+ nround = 20,
+ verbose = FALSE
+)
+p <- mean(y_train)
+
+plot.shapr(x,
+ plot_type = "bar",
+ digits = 3,
+ plot_phi0 = TRUE,
+ index_x_explain = NULL,
+ top_k_features = NULL,
+ col = c("#00BA38","#F8766D"), #first increasing color, then decreasing color
+ plot_order = "largest_first",
+ features_to_plot = NULL,
+ histogram = TRUE
+ )
+
diff --git a/inst/scripts/vilde/waterfall_plot.pdf b/inst/scripts/vilde/waterfall_plot.pdf
new file mode 100644
index 000000000..bdae1d34a
Binary files /dev/null and b/inst/scripts/vilde/waterfall_plot.pdf differ
diff --git a/inst/scripts/vilde/waterfall_plot_featurename_fixed.pdf b/inst/scripts/vilde/waterfall_plot_featurename_fixed.pdf
new file mode 100644
index 000000000..e3c3d2b36
Binary files /dev/null and b/inst/scripts/vilde/waterfall_plot_featurename_fixed.pdf differ
diff --git a/logfile b/logfile
new file mode 100644
index 000000000..9f6e0f3f5
--- /dev/null
+++ b/logfile
@@ -0,0 +1,26 @@
+DAY: 2022-01-20, TIME:14:17:23 MEMORY:
+ 6.8M
+DAY: 2022-01-20, TIME:14:17:33 MEMORY:
+ 6.8M
+DAY: 2022-01-20, TIME:14:17:44 MEMORY:
+ 6.8M
+DAY: 2022-01-20, TIME:14:17:54 MEMORY:
+ 6.8M
+DAY: 2022-01-20, TIME:14:18:04 MEMORY:
+ 6.8M
+DAY: 2022-01-20, TIME:14:18:14 MEMORY:
+ 6.9M
+DAY: 2022-01-20, TIME:14:18:24 MEMORY:
+ 388.5M
+DAY: 2022-01-20, TIME:14:18:34 MEMORY:
+ 256.6M
+DAY: 2022-01-20, TIME:14:18:44 MEMORY:
+ 256.5M
+DAY: 2022-01-20, TIME:14:18:54 MEMORY:
+ 6.8M
+2022-01-20, 14:47:06 ,
+ 6.8M
+2022-01-20, 14:47:35,
+ 6.9M
+2022-01-20, 14:55:32,
+ 7.0M
diff --git a/logfile2 b/logfile2
new file mode 100644
index 000000000..0e002077f
--- /dev/null
+++ b/logfile2
@@ -0,0 +1,5 @@
+2022-01-20, 14:59:20 5.7M
+2022-01-20, 14:59:22 5.7M
+2022-01-20, 14:59:24 5.7M
+2022-01-20, 14:59:26 5.7M
+2022-01-20, 14:59:28 5.6M
diff --git a/man/apply_dummies.Rd b/man/apply_dummies.Rd
deleted file mode 100644
index 315a9282c..000000000
--- a/man/apply_dummies.Rd
+++ /dev/null
@@ -1,28 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/features.R
-\name{apply_dummies}
-\alias{apply_dummies}
-\title{Apply dummy variables - this is an internal function intended only to be used in
-predict_model.xgb.Booster()}
-\usage{
-apply_dummies(feature_list, testdata)
-}
-\arguments{
-\item{feature_list}{List. The \code{feature_list} object in the output object after running
-\code{\link[shapr:make_dummies]{make_dummies}}}
-
-\item{testdata}{data.table or data.frame. New data that has the same
-feature names, types, and levels as \code{feature_list}.}
-}
-\value{
-A data.table with all features but where the factors in \code{testdata} are
-one-hot encoded variables as specified in feature_list
-}
-\description{
-Apply dummy variables - this is an internal function intended only to be used in
-predict_model.xgb.Booster()
-}
-\author{
-Annabelle Redelmeier, Martin Jullum
-}
-\keyword{internal}
diff --git a/man/check_features.Rd b/man/check_features.Rd
deleted file mode 100644
index 5207bd7a9..000000000
--- a/man/check_features.Rd
+++ /dev/null
@@ -1,42 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/preprocess_data.R
-\name{check_features}
-\alias{check_features}
-\title{Checks that two extracted feature lists have exactly the same properties}
-\usage{
-check_features(f_list_1, f_list_2, use_1_as_truth = T)
-}
-\arguments{
-\item{f_list_1, f_list_2}{List. As extracted from either \code{get_data_specs} or \code{get_model_specs}.}
-
-\item{use_1_as_truth}{Logical. If TRUE, \code{f_list_2} is compared to \code{f_list_1}, i.e. additional elements
-is allowed in \code{f_list_2}, and if \code{f_list_1}'s feature classes contains NAs, feature class check is
-ignored regardless of what is specified in \code{f_list_1}. If FALSE, \code{f_list_1} and \code{f_list_2} are
-equated and they need to contain exactly the same elements. Set to TRUE when comparing a model and data, and FALSE
-when comparing two data sets.}
-}
-\value{
-List. The \code{f_list_1} is returned as inserted if there all check are carried out. If some info is
-missing from \code{f_list_1}, the function continues consistency checking using \code{f_list_2} and returns that.
-}
-\description{
-Checks that two extracted feature lists have exactly the same properties
-}
-\examples{
-# Load example data
-if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- # Split data into test- and training data
- x_train <- data.table::as.data.table(head(Boston))
- x_train[, rad := as.factor(rad)]
- data_features <- get_data_specs(x_train)
- model <- lm(medv ~ lstat + rm + rad + indus, data = x_train)
-
- model_features <- get_model_specs(model)
- check_features(model_features, data_features)
-}
-}
-\author{
-Martin Jullum
-}
-\keyword{internal}
diff --git a/man/check_groups.Rd b/man/check_groups.Rd
index 21366aad9..4618eb3b7 100644
--- a/man/check_groups.Rd
+++ b/man/check_groups.Rd
@@ -1,18 +1,13 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/features.R
+% Please edit documentation in R/setup.R
\name{check_groups}
\alias{check_groups}
\title{Check that the group parameter has the right form and content}
\usage{
-check_groups(feature_labels, group)
+check_groups(feature_names, group)
}
\arguments{
-\item{feature_labels}{Vector of characters. Contains the feature labels used by the model}
-
-\item{group}{List. If \code{NULL} regular feature wise Shapley values are computed.
-If provided, group wise Shapley values are computed. \code{group} then has length equal to
-the number of groups. The list element contains character vectors with the features included
-in each of the different groups.}
+\item{feature_names}{Vector of characters. Contains the feature labels used by the model}
}
\value{
Error or NULL
diff --git a/man/compute_shapley.Rd b/man/compute_shapley_new.Rd
similarity index 59%
rename from man/compute_shapley.Rd
rename to man/compute_shapley_new.Rd
index 7ec98017c..7396b6d9e 100644
--- a/man/compute_shapley.Rd
+++ b/man/compute_shapley_new.Rd
@@ -1,15 +1,15 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/predictions.R
-\name{compute_shapley}
-\alias{compute_shapley}
+% Please edit documentation in R/finalize_explanation.R
+\name{compute_shapley_new}
+\alias{compute_shapley_new}
\title{Compute shapley values}
\usage{
-compute_shapley(explainer, contribution_mat)
+compute_shapley_new(internal, dt_vS)
}
\arguments{
-\item{explainer}{An \code{explain} object.}
+\item{dt_vS}{The contribution matrix.}
-\item{contribution_mat}{The contribution matrix.}
+\item{explainer}{An \code{explain} object.}
}
\value{
A \code{data.table} with shapley values for each test observation.
diff --git a/man/compute_vS.Rd b/man/compute_vS.Rd
new file mode 100644
index 000000000..1988ef5c5
--- /dev/null
+++ b/man/compute_vS.Rd
@@ -0,0 +1,27 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/compute_vS.R
+\name{compute_vS}
+\alias{compute_vS}
+\title{Computes \code{v(S)} for all features subsets \code{S}.}
+\usage{
+compute_vS(internal, model, predict_model, method = "future")
+}
+\arguments{
+\item{internal}{List.
+Holds all parameters, data, functions and computed objects used within \code{\link[=explain]{explain()}}
+The list contains one or more of the elements \code{parameters}, \code{data}, \code{objects}, \code{output}.}
+
+\item{model}{Objects.
+The model object that ought to be explained.
+See the documentation of \code{\link[=explain]{explain()}} for details.}
+
+\item{predict_model}{Function.
+The prediction function used when \code{model} is not natively supported.
+See the documentation of \code{\link[=explain]{explain()}} for details.}
+
+\item{method}{Character
+Indicates whether the lappy method (default) or loop method should be used.}
+}
+\description{
+Computes \code{v(S)} for all features subsets \code{S}.
+}
diff --git a/man/create_S_batch.Rd b/man/create_S_batch.Rd
deleted file mode 100644
index adee91bff..000000000
--- a/man/create_S_batch.Rd
+++ /dev/null
@@ -1,26 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/explanation.R
-\name{create_S_batch}
-\alias{create_S_batch}
-\title{Compute Shapley values in batches}
-\usage{
-create_S_batch(explainer, n_batches, index_S = NULL)
-}
-\arguments{
-\item{explainer}{The binary matrix \code{S} returned from \code{\link{shapr}}.}
-
-\item{n_batches}{Numeric value specifying how many batches \code{S} should be split into.}
-
-\item{index_S}{Numeric vector specifying which rows of \code{S} that should be considered.}
-}
-\value{
-A list of length \code{n_batches}.
-}
-\description{
-Create a list of indexes used to compute Shapley values in batches.
-}
-\details{
-If \code{index_S} is not \code{NULL} then the number of batches is scaled such that the
-total number of batches is equal \code{n_batches} and not within the rows specified by\code{index_S}.
-}
-\keyword{internal}
diff --git a/man/create_ctree.Rd b/man/create_ctree.Rd
index ade2b927c..3c3db21f6 100644
--- a/man/create_ctree.Rd
+++ b/man/create_ctree.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/sampling.R
+% Please edit documentation in R/approach_ctree.R
\name{create_ctree}
\alias{create_ctree}
\title{Make all conditional inference trees}
@@ -16,16 +16,16 @@ create_ctree(
\arguments{
\item{given_ind}{Numeric value. Indicates which features are conditioned on.}
-\item{x_train}{Numeric vector. Indicates the specific values of features for individual i.}
+\item{mincriterion}{Numeric scalar or vector. (default = 0.95)
+Either a scalar or vector of length equal to the number of features in the model.
+Value is equal to 1 - \eqn{\alpha} where \eqn{\alpha} is the nominal level of the conditional independence tests.
+If it is a vector, this indicates which value to use when conditioning on various numbers of features.}
-\item{mincriterion}{Numeric value or vector equal to 1 - alpha where alpha is the nominal level of the conditional
-independence tests.
-Can also be a vector equal to the length of the number of features indicating which mincriterion to use
-when conditioning on various numbers of features.}
+\item{minsplit}{Numeric scalar. (default = 20)
+Determines minimum value that the sum of the left and right daughter nodes required for a split.}
-\item{minsplit}{Numeric value. Equal to the value that the sum of the left and right daughter nodes need to exceed.}
-
-\item{minbucket}{Numeric value. Equal to the minimum sum of weights in a terminal node.}
+\item{minbucket}{Numeric scalar. (default = 7)
+Determines the minimum sum of weights in a terminal node required for a split}
\item{use_partykit}{String. In some semi-rare cases \code{partyk::ctree} runs into an error related to the LINPACK
used by R. To get around this problem, one may fall back to using the newer (but slower) \code{partykit::ctree}
@@ -40,26 +40,6 @@ List with conditional inference tree and the variables conditioned/not condition
\description{
Make all conditional inference trees
}
-\examples{
-if (requireNamespace("MASS", quietly = TRUE) & requireNamespace("party", quietly = TRUE)) {
- m <- 10
- n <- 40
- n_samples <- 50
- mu <- rep(1, m)
- cov_mat <- cov(matrix(rnorm(n * m), n, m))
- x_train <- data.table::data.table(MASS::mvrnorm(n, mu, cov_mat))
- given_ind <- c(4, 7)
- mincriterion <- 0.95
- minsplit <- 20
- minbucket <- 7
- sample <- TRUE
- create_ctree(
- given_ind = given_ind, x_train = x_train,
- mincriterion = mincriterion, minsplit = minsplit,
- minbucket = minbucket, use_partykit = "on_error"
- )
-}
-}
\author{
Annabelle Redelmeier, Martin Jullum
}
diff --git a/man/default_doc.Rd b/man/default_doc.Rd
new file mode 100644
index 000000000..eb2ee0e0d
--- /dev/null
+++ b/man/default_doc.Rd
@@ -0,0 +1,36 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/documentation.R
+\name{default_doc}
+\alias{default_doc}
+\title{Unexported documentation helper function.}
+\usage{
+default_doc()
+}
+\arguments{
+\item{internal}{List.
+Holds all parameters, data, functions and computed objects used within \code{\link[=explain]{explain()}}
+The list contains one or more of the elements \code{parameters}, \code{data}, \code{objects}, \code{output}.}
+
+\item{model}{Objects.
+The model object that ought to be explained.
+See the documentation of \code{\link[=explain]{explain()}} for details.}
+
+\item{predict_model}{Function.
+The prediction function used when \code{model} is not natively supported.
+See the documentation of \code{\link[=explain]{explain()}} for details.}
+
+\item{output_size}{TODO: Document}
+
+\item{extra}{TODO: Document}
+
+\item{...}{Further arguments passed to \code{approach}-specific functions.}
+}
+\value{
+List \code{internal}
+It holds all parameters, data, and computed objects used within \code{\link[=explain]{explain()}}.
+The list contains one or more of the elements \code{parameters}, \code{data}, \code{objects}, \code{output}.
+}
+\description{
+Unexported documentation helper function.
+}
+\keyword{internal}
diff --git a/man/default_doc_explain.Rd b/man/default_doc_explain.Rd
new file mode 100644
index 000000000..3893ddce2
--- /dev/null
+++ b/man/default_doc_explain.Rd
@@ -0,0 +1,15 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/documentation.R
+\name{default_doc_explain}
+\alias{default_doc_explain}
+\title{Exported documentation helper function.}
+\usage{
+default_doc_explain()
+}
+\arguments{
+\item{internal}{Not used.}
+}
+\description{
+Exported documentation helper function.
+}
+\keyword{internal}
diff --git a/man/explain.Rd b/man/explain.Rd
index 1dbb5c216..781255a3c 100644
--- a/man/explain.Rd
+++ b/man/explain.Rd
@@ -1,234 +1,215 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/explanation.R
+% Please edit documentation in R/explain.R
\name{explain}
\alias{explain}
-\alias{explain.independence}
-\alias{explain.empirical}
-\alias{explain.gaussian}
-\alias{explain.copula}
-\alias{explain.ctree}
-\alias{explain.combined}
-\alias{explain.ctree_comb_mincrit}
\title{Explain the output of machine learning models with more accurately estimated Shapley values}
\usage{
explain(
- x,
- explainer,
+ model,
+ x_explain,
+ x_train,
approach,
prediction_zero,
+ n_combinations = NULL,
+ group = NULL,
n_samples = 1000,
- n_batches = 1,
- ...
-)
-
-\method{explain}{independence}(
- x,
- explainer,
- approach,
- prediction_zero,
- n_samples = 1000,
- n_batches = 1,
- seed = 1,
- ...
-)
-
-\method{explain}{empirical}(
- x,
- explainer,
- approach,
- prediction_zero,
- n_samples = 1000,
- n_batches = 1,
- seed = 1,
- w_threshold = 0.95,
- type = "fixed_sigma",
- fixed_sigma_vec = 0.1,
- n_samples_aicc = 1000,
- eval_max_aicc = 20,
- start_aicc = 0.1,
- cov_mat = NULL,
- ...
-)
-
-\method{explain}{gaussian}(
- x,
- explainer,
- approach,
- prediction_zero,
- n_samples = 1000,
- n_batches = 1,
- seed = 1,
- mu = NULL,
- cov_mat = NULL,
- ...
-)
-
-\method{explain}{copula}(
- x,
- explainer,
- approach,
- prediction_zero,
- n_samples = 1000,
- n_batches = 1,
- seed = 1,
- ...
-)
-
-\method{explain}{ctree}(
- x,
- explainer,
- approach,
- prediction_zero,
- n_samples = 1000,
- n_batches = 1,
- seed = 1,
- mincriterion = 0.95,
- minsplit = 20,
- minbucket = 7,
- sample = TRUE,
- ...
-)
-
-\method{explain}{combined}(
- x,
- explainer,
- approach,
- prediction_zero,
- n_samples = 1000,
- n_batches = 1,
- seed = 1,
- mu = NULL,
- cov_mat = NULL,
- ...
-)
-
-\method{explain}{ctree_comb_mincrit}(
- x,
- explainer,
- approach,
- prediction_zero,
- n_samples,
- n_batches = 1,
+ n_batches = NULL,
seed = 1,
- mincriterion,
+ keep_samp_for_vS = FALSE,
+ predict_model = NULL,
+ get_model_specs = NULL,
+ timing = TRUE,
...
)
}
\arguments{
-\item{x}{A matrix or data.frame. Contains the the features, whose
-predictions ought to be explained (test data).}
+\item{model}{The model whose predictions we want to explain.
+Run \code{\link[=get_supported_models]{get_supported_models()}}
+for a table of which models \code{explain} supports natively. Unsupported models
+can still be explained by passing \code{predict_model} and (optionally) \code{get_model_specs},
+see details for more information.}
+
+\item{x_explain}{A matrix or data.frame/data.table.
+Contains the the features, whose predictions ought to be explained.}
-\item{explainer}{An \code{explainer} object to use for explaining the observations.
-See \code{\link{shapr}}.}
+\item{x_train}{Matrix or data.frame/data.table.
+Contains the data used to estimate the (conditional) distributions for the features
+needed to properly estimate the conditional expectations in the Shapley formula.}
\item{approach}{Character vector of length \code{1} or \code{n_features}.
\code{n_features} equals the total number of features in the model. All elements should,
-either be \code{"gaussian"}, \code{"copula"}, \code{"empirical"}, \code{"ctree"}, or \code{"independence"}.
+either be \code{"gaussian"}, \code{"copula"}, \code{"empirical"}, \code{"ctree"}, \code{"categorical"}, \code{"timeseries"}, or \code{"independence"}.
See details for more information.}
-\item{prediction_zero}{Numeric. The prediction value for unseen data, typically equal to the mean of
-the response.}
-
-\item{n_samples}{Positive integer. Indicating the maximum number of samples to use in the
+\item{prediction_zero}{Numeric.
+The prediction value for unseen data, i.e. an estimate of the expected prediction without conditioning on any
+features.
+Typically we set this value equal to the mean of the response variable in our training data, but other choices
+such as the mean of the predictions in the training data are also reasonable.}
+
+\item{n_combinations}{Integer.
+If \code{group = NULL}, \code{n_combinations} represents the number of unique feature combinations to sample.
+If \code{group != NULL}, \code{n_combinations} represents the number of unique group combinations to sample.
+If \code{n_combinations = NULL}, the exact method is used and all combinations are considered.
+The maximum number of combinations equals \code{2^m}, where \code{m} is the number of features.}
+
+\item{group}{List.
+If \code{NULL} regular feature wise Shapley values are computed.
+If provided, group wise Shapley values are computed. \code{group} then has length equal to
+the number of groups. The list element contains character vectors with the features included
+in each of the different groups.}
+
+\item{n_samples}{Positive integer.
+Indicating the maximum number of samples to use in the
Monte Carlo integration for every conditional expectation. See also details.}
-\item{n_batches}{Positive integer.
+\item{n_batches}{Positive integer (or NULL).
Specifies how many batches the total number of feature combinations should be split into when calculating the
contribution function for each test observation.
-The default value is 1.
-Increasing the number of batches may significantly reduce the RAM allocation for models with many features.
+The default value is NULL which uses a reasonable trade-off between RAM allocation and computation speed,
+which depends on \code{approach} and \code{n_combinations}.
+For models with many features, increasing the number of batches reduces the RAM allocation significantly.
This typically comes with a small increase in computation time.}
-\item{...}{Additional arguments passed to \code{\link{prepare_and_predict}}}
-
-\item{seed}{Positive integer. If \code{NULL} the seed will be inherited from the calling environment.}
-
-\item{w_threshold}{Numeric vector of length 1, with \code{0 < w_threshold <= 1} representing the minimum proportion
-of the total empirical weight that data samples should use. If e.g. \code{w_threshold = .8} we will choose the
-\code{K} samples with the largest weight so that the sum of the weights accounts for 80\% of the total weight.
-\code{w_threshold} is the \eqn{\eta} parameter in equation (15) of Aas et al (2021).}
-
-\item{type}{Character. Should be equal to either \code{"independence"},
-\code{"fixed_sigma"}, \code{"AICc_each_k"} or \code{"AICc_full"}.}
-
-\item{fixed_sigma_vec}{Numeric. Represents the kernel bandwidth. Note that this argument is only
-applicable when \code{approach = "empirical"}, and \code{type = "fixed_sigma"}}
-
-\item{n_samples_aicc}{Positive integer. Number of samples to consider in AICc optimization.
-Note that this argument is only applicable when \code{approach = "empirical"}, and \code{type}
-is either equal to \code{"AICc_each_k"} or \code{"AICc_full"}}
-
-\item{eval_max_aicc}{Positive integer. Maximum number of iterations when
-optimizing the AICc. Note that this argument is only applicable when
-\code{approach = "empirical"}, and \code{type} is either equal to
-\code{"AICc_each_k"} or \code{"AICc_full"}}
-
-\item{start_aicc}{Numeric. Start value of \code{sigma} when optimizing the AICc. Note that this argument
-is only applicable when \code{approach = "empirical"}, and \code{type} is either equal to
-\code{"AICc_each_k"} or \code{"AICc_full"}}
-
-\item{cov_mat}{Numeric matrix. (Optional) Containing the covariance matrix of the data
-generating distribution. \code{NULL} means it is estimated from the data if needed
-(in the Gaussian approach).}
-
-\item{mu}{Numeric vector. (Optional) Containing the mean of the data generating distribution.
-If \code{NULL} the expected values are estimated from the data. Note that this is only used
-when \code{approach = "gaussian"}.}
-
-\item{mincriterion}{Numeric value or vector where length of vector is the number of features in model.
-Value is equal to 1 - alpha where alpha is the nominal level of the conditional
-independence tests.
-If it is a vector, this indicates which mincriterion to use
-when conditioning on various numbers of features.}
-
-\item{minsplit}{Numeric value. Equal to the value that the sum of the left and right daughter nodes need to exceed.}
-
-\item{minbucket}{Numeric value. Equal to the minimum sum of weights in a terminal node.}
-
-\item{sample}{Boolean. If TRUE, then the method always samples \code{n_samples} from the leaf (with replacement).
-If FALSE and the number of obs in the leaf is less than \code{n_samples}, the method will take all observations
-in the leaf. If FALSE and the number of obs in the leaf is more than \code{n_samples}, the method will sample
-\code{n_samples} (with replacement). This means that there will always be sampling in the leaf unless
+\item{seed}{Positive integer.
+Specifies the seed before any randomness based code is being run.
+If \code{NULL} the seed will be inherited from the calling environment.}
+
+\item{keep_samp_for_vS}{Logical.
+Indicates whether the samples used in the Monte Carlo estimation of v_S should be returned
+(in \code{internal$output})}
+
+\item{predict_model}{Function.
+The prediction function used when \code{model} is not natively supported.
+(Run \code{\link[=get_supported_models]{get_supported_models()}} for a list of natively supported
+models.)
+The function must have two arguments, \code{model} and \code{newdata} which specify, respectively, the model
+and a data.frame/data.table to compute predictions for. The function must give the prediction as a numeric vector.
+\code{NULL} (the default) uses functions specified internally.
+Can also be used to override the default function for natively supported model classes.}
+
+\item{get_model_specs}{Function.
+An optional function for checking model/data consistency when \code{model} is not natively supported.
+(Run \code{\link[=get_supported_models]{get_supported_models()}} for a list of natively supported
+models.)
+The function takes \code{model} as argument and provides a list with 3 elements:
+\describe{
+\item{labels}{Character vector with the names of each feature.}
+\item{classes}{Character vector with the classes of each features.}
+\item{factor_levels}{Character vector with the levels for any categorical features.}
+}
+If \code{NULL} (the default) internal functions are used for natively supported model classes, and the checking is
+disabled for unsupported model classes.
+Can also be used to override the default function for natively supported model classes.}
+
+\item{timing}{Logical.
+Whether the timing of the different parts of the \code{explain()} should saved in the model object.}
+
+\item{...}{
+ Arguments passed on to \code{\link[=setup_approach.empirical]{setup_approach.empirical}}, \code{\link[=setup_approach.independence]{setup_approach.independence}}, \code{\link[=setup_approach.gaussian]{setup_approach.gaussian}}, \code{\link[=setup_approach.copula]{setup_approach.copula}}, \code{\link[=setup_approach.ctree]{setup_approach.ctree}}, \code{\link[=setup_approach.categorical]{setup_approach.categorical}}, \code{\link[=setup_approach.timeseries]{setup_approach.timeseries}}
+ \describe{
+ \item{\code{empirical.type}}{Character. (default = \code{"fixed_sigma"})
+Should be equal to either \code{"independence"},\code{"fixed_sigma"}, \code{"AICc_each_k"} \code{"AICc_full"}.
+TODO: Describe better what the methods do here.}
+ \item{\code{empirical.eta}}{Numeric. (default = 0.95)
+Needs to be \verb{0 < eta <= 1}.
+Represents the minimum proportion of the total empirical weight that data samples should use.
+If e.g. \code{eta = .8} we will choose the \code{K} samples with the largest weight so that the sum of the weights
+accounts for 80\\% of the total weight.
+\code{eta} is the \eqn{\eta} parameter in equation (15) of Aas et al (2021).}
+ \item{\code{empirical.fixed_sigma}}{Positive numeric scalar. (default = 0.1)
+Represents the kernel bandwidth in the distance computation used when conditioning on all different combinations.
+Only used when \code{empirical.type = "fixed_sigma"}}
+ \item{\code{empirical.n_samples_aicc}}{Positive integer. (default = 1000)
+Number of samples to consider in AICc optimization.
+Only used for \code{empirical.type} is either \code{"AICc_each_k"} or \code{"AICc_full"}.}
+ \item{\code{empirical.eval_max_aicc}}{Positive integer. (default = 20)
+Maximum number of iterations when optimizing the AICc.
+Only used for \code{empirical.type} is either \code{"AICc_each_k"} or \code{"AICc_full"}.}
+ \item{\code{empirical.start_aicc}}{Numeric. (default = 0.1)
+Start value of the \code{sigma} parameter when optimizing the AICc.
+Only used for \code{empirical.type} is either \code{"AICc_each_k"} or \code{"AICc_full"}.}
+ \item{\code{empirical.cov_mat}}{Numeric matrix. (Optional, default = NULL)
+Containing the covariance matrix of the data generating distribution used to define the Mahalanobis distance.
+\code{NULL} means it is estimated from \code{x_train}.}
+ \item{\code{internal}}{Not used.}
+ \item{\code{gaussian.mu}}{Numeric vector. (Optional)
+Containing the mean of the data generating distribution.
+\code{NULL} means it is estimated from the \code{x_train}.}
+ \item{\code{gaussian.cov_mat}}{Numeric matrix. (Optional)
+Containing the covariance matrix of the data generating distribution.
+\code{NULL} means it is estimated from the \code{x_train}.}
+ \item{\code{ctree.mincriterion}}{Numeric scalar or vector. (default = 0.95)
+Either a scalar or vector of length equal to the number of features in the model.
+Value is equal to 1 - \eqn{\alpha} where \eqn{\alpha} is the nominal level of the conditional independence tests.
+If it is a vector, this indicates which value to use when conditioning on various numbers of features.}
+ \item{\code{ctree.minsplit}}{Numeric scalar. (default = 20)
+Determines minimum value that the sum of the left and right daughter nodes required for a split.}
+ \item{\code{ctree.minbucket}}{Numeric scalar. (default = 7)
+Determines the minimum sum of weights in a terminal node required for a split}
+ \item{\code{ctree.sample}}{Boolean. (default = TRUE)
+If TRUE, then the method always samples \code{n_samples} observations from the leaf nodes (with replacement).
+If FALSE and the number of observations in the leaf node is less than \code{n_samples},
+the method will take all observations in the leaf.
+If FALSE and the number of observations in the leaf node is more than \code{n_samples},
+the method will sample \code{n_samples} observations (with replacement).
+This means that there will always be sampling in the leaf unless
\code{sample} = FALSE AND the number of obs in the node is less than \code{n_samples}.}
+ \item{\code{categorical.joint_prob_dt}}{Data.table. (Optional)
+Containing the joint probability distribution for each combination of feature
+values.
+\code{NULL} means it is estimated from the \code{x_train} and \code{x_explain}.}
+ \item{\code{categorical.epsilon}}{Numeric value. (Optional)
+If \code{joint_probability_dt} is not supplied, probabilities/frequencies are
+estimated using \code{x_train}. If certain observations occur in \code{x_train} and NOT in \code{x_explain},
+then epsilon is used as the proportion of times that these observations occurs in the training data.
+In theory, this proportion should be zero, but this causes an error later in the Shapley computation.}
+ \item{\code{timeseries.fixed_sigma_vec}}{Numeric. (Default = 2)
+Represents the kernel bandwidth in the distance computation. TODO: What length should it have? 1?}
+ \item{\code{timeseries.bounds}}{Numeric vector of length two. (Default = c(NULL, NULL))
+If one or both of these bounds are not NULL, we restrict the sampled time series to be
+between these bounds.
+This is useful if the underlying time series are scaled between 0 and 1, for example.}
+ }}
}
\value{
Object of class \code{c("shapr", "list")}. Contains the following items:
\describe{
- \item{dt}{data.table}
- \item{model}{Model object}
- \item{p}{Numeric vector}
- \item{x_test}{data.table}
+\item{shapley_values}{data.table with the estimated Shapley values}
+\item{internal}{List with the different parameters, data and functions used internally}
+\item{pred_explain}{Numeric vector with the predictions for the explained observations.}
}
-Note that the returned items \code{model}, \code{p} and \code{x_test} are mostly added due
-to the implementation of \code{plot.shapr}. If you only want to look at the numerical results
-it is sufficient to focus on \code{dt}. \code{dt} is a data.table where the number of rows equals
+\code{shapley_values} is a data.table where the number of rows equals
the number of observations you'd like to explain, and the number of columns equals \code{m +1},
where \code{m} equals the total number of features in your model.
-If \code{dt[i, j + 1] > 0} it indicates that the j-th feature increased the prediction for
-the i-th observation. Likewise, if \code{dt[i, j + 1] < 0} it indicates that the j-th feature
-decreased the prediction for the i-th observation. The magnitude of the value is also important
-to notice. E.g. if \code{dt[i, k + 1]} and \code{dt[i, j + 1]} are greater than \code{0},
-where \code{j != k}, and \code{dt[i, k + 1]} > \code{dt[i, j + 1]} this indicates that feature
+If \code{shapley_values[i, j + 1] > 0} it indicates that the j-th feature increased the prediction for
+the i-th observation. Likewise, if \code{shapley_values[i, j + 1] < 0} it indicates that the j-th feature
+decreased the prediction for the i-th observation.
+The magnitude of the value is also important to notice. E.g. if \code{shapley_values[i, k + 1]} and
+\code{shapley_values[i, j + 1]} are greater than \code{0}, where \code{j != k}, and
+\code{shapley_values[i, k + 1]} > \code{shapley_values[i, j + 1]} this indicates that feature
\code{j} and \code{k} both increased the value of the prediction, but that the effect of the k-th
feature was larger than the j-th feature.
-The first column in \code{dt}, called `none`, is the prediction value not assigned to any of the features
+The first column in \code{dt}, called \code{none}, is the prediction value not assigned to any of the features
(\ifelse{html}{\eqn{\phi}\out{
0 }}{\eqn{\phi_0}}).
It's equal for all observations and set by the user through the argument \code{prediction_zero}.
+The difference between the prediction and \code{none} is distributed among the other features.
In theory this value should be the expected prediction without conditioning on any features.
Typically we set this value equal to the mean of the response variable in our training data, but other choices
-such as the mean of the predictions in the training data are also reasonable.
+such as the mean of the predictions in the training data are also reasonable. \code{\link[=explain]{explain()}} \code{\link[=explain]{explain()}}
}
\description{
-Explain the output of machine learning models with more accurately estimated Shapley values
+Computes dependence-aware Shapley values for observations in \code{x_explain} from the specified
+\code{model} by using the method specified in \code{approach} to estimate the conditional expectation.
}
\details{
-The most important thing to notice is that \code{shapr} has implemented five different
+The most important thing to notice is that \code{shapr} has implemented six different
approaches for estimating the conditional distributions of the data, namely \code{"empirical"},
-\code{"gaussian"}, \code{"copula"}, \code{"ctree"} and \code{"independence"}.
-In addition, the user also has the option of combining the four approaches.
+\code{"gaussian"}, \code{"copula"}, \code{"ctree"}, \code{"categorical"}, \code{"timeseries"}, and \code{"independence"}.
+In addition, the user also has the option of combining the different approaches.
E.g., if you're in a situation where you have trained a model that consists of 10 features,
and you'd like to use the \code{"gaussian"} approach when you condition on a single feature,
the \code{"empirical"} approach if you condition on 2-5 features, and \code{"copula"} version
@@ -241,82 +222,109 @@ For \code{approach="ctree"}, \code{n_samples} corresponds to the number of sampl
from the leaf node (see an exception related to the \code{sample} argument).
For \code{approach="empirical"}, \code{n_samples} is the \eqn{K} parameter in equations (14-15) of
Aas et al. (2021), i.e. the maximum number of observations (with largest weights) that is used, see also the
-\code{w_threshold} argument.
+\code{empirical.eta} argument.
}
\examples{
-if (requireNamespace("MASS", quietly = TRUE)) {
- # Load example data
- data("Boston", package = "MASS")
-
- # Split data into test- and training data
- x_train <- head(Boston, -3)
- x_test <- tail(Boston, 3)
-
- # Fit a linear model
- model <- lm(medv ~ lstat + rm + dis + indus, data = x_train)
-
- # Create an explainer object
- explainer <- shapr(x_train, model)
-
- # Explain predictions
- p <- mean(x_train$medv)
-
- # Empirical approach
- explain1 <- explain(x_test, explainer,
- approach = "empirical",
- prediction_zero = p, n_samples = 1e2
- )
-
- # Gaussian approach
- explain2 <- explain(x_test, explainer,
- approach = "gaussian",
- prediction_zero = p, n_samples = 1e2
- )
-
- # Gaussian copula approach
- explain3 <- explain(x_test, explainer,
- approach = "copula",
- prediction_zero = p, n_samples = 1e2
- )
-
- # ctree approach
- explain4 <- explain(x_test, explainer,
- approach = "ctree",
- prediction_zero = p
- )
-
- # Combined approach
- approach <- c("gaussian", "gaussian", "empirical", "empirical")
- explain5 <- explain(x_test, explainer,
- approach = approach,
- prediction_zero = p, n_samples = 1e2
- )
-
- # Print the Shapley values
- print(explain1$dt)
-
- # Plot the results
- if (requireNamespace("ggplot2", quietly = TRUE)) {
- plot(explain1)
- }
-
- # Group-wise explanations
- group <- list(A = c("lstat", "rm"), B = c("dis", "indus"))
- explainer_group <- shapr(x_train, model, group = group)
- explain_groups <- explain(
- x_test,
- explainer_group,
- approach = "empirical",
- prediction_zero = p,
- n_samples = 1e2
- )
- print(explain_groups$dt)
+
+# Load example data
+data("airquality")
+airquality <- airquality[complete.cases(airquality), ]
+x_var <- c("Solar.R", "Wind", "Temp", "Month")
+y_var <- "Ozone"
+
+# Split data into test- and training data
+data_train <- head(airquality, -3)
+data_explain <- tail(airquality, 3)
+
+x_train <- data_train[, x_var]
+x_explain <- data_explain[, x_var]
+
+# Fit a linear model
+lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
+model <- lm(lm_formula, data = data_train)
+
+# Explain predictions
+p <- mean(data_train[, y_var])
+
+# Empirical approach
+explain1 <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "empirical",
+ prediction_zero = p,
+ n_samples = 1e2
+)
+
+# Gaussian approach
+explain2 <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "gaussian",
+ prediction_zero = p,
+ n_samples = 1e2
+)
+
+# Gaussian copula approach
+explain3 <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "copula",
+ prediction_zero = p,
+ n_samples = 1e2
+)
+
+# ctree approach
+explain4 <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "ctree",
+ prediction_zero = p,
+ n_samples = 1e2
+)
+
+# Combined approach
+approach <- c("gaussian", "gaussian", "empirical", "empirical")
+explain5 <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = approach,
+ prediction_zero = p,
+ n_samples = 1e2
+)
+
+# Print the Shapley values
+print(explain1$shapley_values)
+
+# Plot the results
+if (requireNamespace("ggplot2", quietly = TRUE)) {
+ plot(explain1)
+ plot(explain1, plot_type = "waterfall")
}
+
+# Group-wise explanations
+group_list <- list(A = c("Temp", "Month"), B = c("Wind", "Solar.R"))
+
+explain_groups <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ group = group_list,
+ approach = "empirical",
+ prediction_zero = p,
+ n_samples = 1e2
+)
+print(explain_groups$shapley_values)
+
}
\references{
-Aas, K., Jullum, M., & Løland, A. (2021). Explaining individual predictions when features are dependent:
- More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502.
+Aas, K., Jullum, M., & L
land, A. (2021). Explaining individual predictions when features are dependent:
+More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502.
}
\author{
-Camilla Lingjaerde, Nikolai Sellereite, Martin Jullum, Annabelle Redelmeier
+Martin Jullum
}
diff --git a/man/explain_forecast.Rd b/man/explain_forecast.Rd
new file mode 100644
index 000000000..998697055
--- /dev/null
+++ b/man/explain_forecast.Rd
@@ -0,0 +1,283 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/explain_forecast.R
+\name{explain_forecast}
+\alias{explain_forecast}
+\title{Explain a forecast from a time series model using Shapley values.}
+\usage{
+explain_forecast(
+ model,
+ y,
+ xreg = NULL,
+ train_idx = NULL,
+ explain_idx,
+ explain_y_lags,
+ explain_xreg_lags = explain_y_lags,
+ horizon,
+ approach,
+ prediction_zero,
+ n_combinations = NULL,
+ group_lags = TRUE,
+ group = NULL,
+ n_samples = 1000,
+ n_batches = NULL,
+ seed = 1,
+ keep_samp_for_vS = FALSE,
+ predict_model = NULL,
+ get_model_specs = NULL,
+ timing = TRUE,
+ ...
+)
+}
+\arguments{
+\item{model}{The model whose predictions we want to explain.
+Run \code{\link[=get_supported_models]{get_supported_models()}}
+for a table of which models \code{explain} supports natively. Unsupported models
+can still be explained by passing \code{predict_model} and (optionally) \code{get_model_specs},
+see details for more information.}
+
+\item{y}{Matrix, data.frame/data.table or a numeric vector.
+Contains the endogenous variables used to estimate the (conditional) distributions
+needed to properly estimate the conditional expectations in the Shapley formula
+including the observations to be explained.}
+
+\item{xreg}{Matrix, data.frame/data.table or a numeric vector.
+Contains the exogenous variables used to estimate the (conditional) distributions
+needed to properly estimate the conditional expectations in the Shapley formula
+including the observations to be explained.
+As exogenous variables are used contemporaneusly when producing a forecast,
+this item should contain nrow(y) + horizon rows.}
+
+\item{train_idx}{Numeric vector
+The row indices in data and reg denoting points in time to use when estimating the conditional expectations in
+the Shapley value formula.
+If \code{train_idx = NULL} (default) all indices not selected to be explained will be used.}
+
+\item{explain_idx}{Numeric vector
+The row indices in data and reg denoting points in time to explain.}
+
+\item{explain_y_lags}{Numeric vector.
+Denotes the number of lags that should be used for each variable in \code{y} when making a forecast.}
+
+\item{explain_xreg_lags}{Numeric vector.
+If \code{xreg != NULL}, denotes the number of lags that should be used for each variable in \code{xreg} when making a forecast.}
+
+\item{horizon}{Numeric.
+The forecast horizon to explain. Passed to the \code{predict_model} function.}
+
+\item{approach}{Character vector of length \code{1} or \code{n_features}.
+\code{n_features} equals the total number of features in the model. All elements should,
+either be \code{"gaussian"}, \code{"copula"}, \code{"empirical"}, \code{"ctree"}, \code{"categorical"}, \code{"timeseries"}, or \code{"independence"}.
+See details for more information.}
+
+\item{prediction_zero}{Numeric.
+The prediction value for unseen data, i.e. an estimate of the expected prediction without conditioning on any
+features.
+Typically we set this value equal to the mean of the response variable in our training data, but other choices
+such as the mean of the predictions in the training data are also reasonable.}
+
+\item{n_combinations}{Integer.
+If \code{group = NULL}, \code{n_combinations} represents the number of unique feature combinations to sample.
+If \code{group != NULL}, \code{n_combinations} represents the number of unique group combinations to sample.
+If \code{n_combinations = NULL}, the exact method is used and all combinations are considered.
+The maximum number of combinations equals \code{2^m}, where \code{m} is the number of features.}
+
+\item{group_lags}{Logical.
+If \code{TRUE} all lags of each variable are grouped together and explained as a group.
+If \code{FALSE} all lags of each variable are explained individually.}
+
+\item{group}{List.
+If \code{NULL} regular feature wise Shapley values are computed.
+If provided, group wise Shapley values are computed. \code{group} then has length equal to
+the number of groups. The list element contains character vectors with the features included
+in each of the different groups.}
+
+\item{n_samples}{Positive integer.
+Indicating the maximum number of samples to use in the
+Monte Carlo integration for every conditional expectation. See also details.}
+
+\item{n_batches}{Positive integer (or NULL).
+Specifies how many batches the total number of feature combinations should be split into when calculating the
+contribution function for each test observation.
+The default value is NULL which uses a reasonable trade-off between RAM allocation and computation speed,
+which depends on \code{approach} and \code{n_combinations}.
+For models with many features, increasing the number of batches reduces the RAM allocation significantly.
+This typically comes with a small increase in computation time.}
+
+\item{seed}{Positive integer.
+Specifies the seed before any randomness based code is being run.
+If \code{NULL} the seed will be inherited from the calling environment.}
+
+\item{keep_samp_for_vS}{Logical.
+Indicates whether the samples used in the Monte Carlo estimation of v_S should be returned
+(in \code{internal$output})}
+
+\item{predict_model}{Function.
+The prediction function used when \code{model} is not natively supported.
+(Run \code{\link[=get_supported_models]{get_supported_models()}} for a list of natively supported
+models.)
+The function must have two arguments, \code{model} and \code{newdata} which specify, respectively, the model
+and a data.frame/data.table to compute predictions for. The function must give the prediction as a numeric vector.
+\code{NULL} (the default) uses functions specified internally.
+Can also be used to override the default function for natively supported model classes.}
+
+\item{get_model_specs}{Function.
+An optional function for checking model/data consistency when \code{model} is not natively supported.
+(Run \code{\link[=get_supported_models]{get_supported_models()}} for a list of natively supported
+models.)
+The function takes \code{model} as argument and provides a list with 3 elements:
+\describe{
+\item{labels}{Character vector with the names of each feature.}
+\item{classes}{Character vector with the classes of each features.}
+\item{factor_levels}{Character vector with the levels for any categorical features.}
+}
+If \code{NULL} (the default) internal functions are used for natively supported model classes, and the checking is
+disabled for unsupported model classes.
+Can also be used to override the default function for natively supported model classes.}
+
+\item{timing}{Logical.
+Whether the timing of the different parts of the \code{explain()} should saved in the model object.}
+
+\item{...}{
+ Arguments passed on to \code{\link[=setup_approach.empirical]{setup_approach.empirical}}, \code{\link[=setup_approach.independence]{setup_approach.independence}}, \code{\link[=setup_approach.gaussian]{setup_approach.gaussian}}, \code{\link[=setup_approach.copula]{setup_approach.copula}}, \code{\link[=setup_approach.ctree]{setup_approach.ctree}}, \code{\link[=setup_approach.categorical]{setup_approach.categorical}}, \code{\link[=setup_approach.timeseries]{setup_approach.timeseries}}
+ \describe{
+ \item{\code{empirical.type}}{Character. (default = \code{"fixed_sigma"})
+Should be equal to either \code{"independence"},\code{"fixed_sigma"}, \code{"AICc_each_k"} \code{"AICc_full"}.
+TODO: Describe better what the methods do here.}
+ \item{\code{empirical.eta}}{Numeric. (default = 0.95)
+Needs to be \verb{0 < eta <= 1}.
+Represents the minimum proportion of the total empirical weight that data samples should use.
+If e.g. \code{eta = .8} we will choose the \code{K} samples with the largest weight so that the sum of the weights
+accounts for 80\\% of the total weight.
+\code{eta} is the \eqn{\eta} parameter in equation (15) of Aas et al (2021).}
+ \item{\code{empirical.fixed_sigma}}{Positive numeric scalar. (default = 0.1)
+Represents the kernel bandwidth in the distance computation used when conditioning on all different combinations.
+Only used when \code{empirical.type = "fixed_sigma"}}
+ \item{\code{empirical.n_samples_aicc}}{Positive integer. (default = 1000)
+Number of samples to consider in AICc optimization.
+Only used for \code{empirical.type} is either \code{"AICc_each_k"} or \code{"AICc_full"}.}
+ \item{\code{empirical.eval_max_aicc}}{Positive integer. (default = 20)
+Maximum number of iterations when optimizing the AICc.
+Only used for \code{empirical.type} is either \code{"AICc_each_k"} or \code{"AICc_full"}.}
+ \item{\code{empirical.start_aicc}}{Numeric. (default = 0.1)
+Start value of the \code{sigma} parameter when optimizing the AICc.
+Only used for \code{empirical.type} is either \code{"AICc_each_k"} or \code{"AICc_full"}.}
+ \item{\code{empirical.cov_mat}}{Numeric matrix. (Optional, default = NULL)
+Containing the covariance matrix of the data generating distribution used to define the Mahalanobis distance.
+\code{NULL} means it is estimated from \code{x_train}.}
+ \item{\code{internal}}{Not used.}
+ \item{\code{gaussian.mu}}{Numeric vector. (Optional)
+Containing the mean of the data generating distribution.
+\code{NULL} means it is estimated from the \code{x_train}.}
+ \item{\code{gaussian.cov_mat}}{Numeric matrix. (Optional)
+Containing the covariance matrix of the data generating distribution.
+\code{NULL} means it is estimated from the \code{x_train}.}
+ \item{\code{ctree.mincriterion}}{Numeric scalar or vector. (default = 0.95)
+Either a scalar or vector of length equal to the number of features in the model.
+Value is equal to 1 - \eqn{\alpha} where \eqn{\alpha} is the nominal level of the conditional independence tests.
+If it is a vector, this indicates which value to use when conditioning on various numbers of features.}
+ \item{\code{ctree.minsplit}}{Numeric scalar. (default = 20)
+Determines minimum value that the sum of the left and right daughter nodes required for a split.}
+ \item{\code{ctree.minbucket}}{Numeric scalar. (default = 7)
+Determines the minimum sum of weights in a terminal node required for a split}
+ \item{\code{ctree.sample}}{Boolean. (default = TRUE)
+If TRUE, then the method always samples \code{n_samples} observations from the leaf nodes (with replacement).
+If FALSE and the number of observations in the leaf node is less than \code{n_samples},
+the method will take all observations in the leaf.
+If FALSE and the number of observations in the leaf node is more than \code{n_samples},
+the method will sample \code{n_samples} observations (with replacement).
+This means that there will always be sampling in the leaf unless
+\code{sample} = FALSE AND the number of obs in the node is less than \code{n_samples}.}
+ \item{\code{categorical.joint_prob_dt}}{Data.table. (Optional)
+Containing the joint probability distribution for each combination of feature
+values.
+\code{NULL} means it is estimated from the \code{x_train} and \code{x_explain}.}
+ \item{\code{categorical.epsilon}}{Numeric value. (Optional)
+If \code{joint_probability_dt} is not supplied, probabilities/frequencies are
+estimated using \code{x_train}. If certain observations occur in \code{x_train} and NOT in \code{x_explain},
+then epsilon is used as the proportion of times that these observations occurs in the training data.
+In theory, this proportion should be zero, but this causes an error later in the Shapley computation.}
+ \item{\code{timeseries.fixed_sigma_vec}}{Numeric. (Default = 2)
+Represents the kernel bandwidth in the distance computation. TODO: What length should it have? 1?}
+ \item{\code{timeseries.bounds}}{Numeric vector of length two. (Default = c(NULL, NULL))
+If one or both of these bounds are not NULL, we restrict the sampled time series to be
+between these bounds.
+This is useful if the underlying time series are scaled between 0 and 1, for example.}
+ }}
+}
+\value{
+Object of class \code{c("shapr", "list")}. Contains the following items:
+\describe{
+\item{shapley_values}{data.table with the estimated Shapley values}
+\item{internal}{List with the different parameters, data and functions used internally}
+\item{pred_explain}{Numeric vector with the predictions for the explained observations.}
+}
+
+\code{shapley_values} is a data.table where the number of rows equals
+the number of observations you'd like to explain, and the number of columns equals \code{m +1},
+where \code{m} equals the total number of features in your model.
+
+If \code{shapley_values[i, j + 1] > 0} it indicates that the j-th feature increased the prediction for
+the i-th observation. Likewise, if \code{shapley_values[i, j + 1] < 0} it indicates that the j-th feature
+decreased the prediction for the i-th observation.
+The magnitude of the value is also important to notice. E.g. if \code{shapley_values[i, k + 1]} and
+\code{shapley_values[i, j + 1]} are greater than \code{0}, where \code{j != k}, and
+\code{shapley_values[i, k + 1]} > \code{shapley_values[i, j + 1]} this indicates that feature
+\code{j} and \code{k} both increased the value of the prediction, but that the effect of the k-th
+feature was larger than the j-th feature.
+
+The first column in \code{dt}, called \code{none}, is the prediction value not assigned to any of the features
+(\ifelse{html}{\eqn{\phi}\out{0 }}{\eqn{\phi_0}}).
+It's equal for all observations and set by the user through the argument \code{prediction_zero}.
+The difference between the prediction and \code{none} is distributed among the other features.
+In theory this value should be the expected prediction without conditioning on any features.
+Typically we set this value equal to the mean of the response variable in our training data, but other choices
+such as the mean of the predictions in the training data are also reasonable. \code{\link[=explain]{explain()}} \code{\link[=explain]{explain()}}
+}
+\description{
+Computes dependence-aware Shapley values for observations in \code{explain_idx} from the specified
+\code{model} by using the method specified in \code{approach} to estimate the conditional expectation.
+}
+\details{
+This function explains a forecast of length \code{horizon}. The argument \code{train_idx}
+is analogous to x_train in \code{explain()}, however, it just contains the time indices of where
+in the data the forecast should start for each training sample. In the same way \code{explain_idx}
+defines the time index (indices) which will precede a forecast to be explained.
+
+As any autoregressive forecast model will require a set of lags to make a forecast at an
+arbitrary point in time, \code{explain_y_lags} and \code{explain_xreg_lags} define how many lags
+are required to "refit" the model at any given time index. This allows the different
+approaches to work in the same way they do for time-invariant models.
+}
+\examples{
+
+# Load example data
+data("airquality")
+data <- data.table::as.data.table(airquality)
+
+# Fit an AR(2) model.
+model_ar_temp <- ar(data$Temp, order = 2)
+
+# Calculate the zero prediction values for a three step forecast.
+p0_ar <- rep(mean(data$Temp), 3)
+
+# Empirical approach, explaining forecasts starting at T = 152 and T = 153.
+explain_forecast(
+ model = model_ar_temp,
+ y = data[, "Temp"],
+ train_idx = 2:151,
+ explain_idx = 152:153,
+ explain_y_lags = 2,
+ horizon = 3,
+ approach = "empirical",
+ prediction_zero = p0_ar,
+ group_lags = FALSE
+)
+
+}
+\references{
+Aas, K., Jullum, M., & Lland, A. (2021). Explaining individual predictions when features are dependent:
+More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502.
+}
+\author{
+Martin Jullum
+}
diff --git a/man/feature_combinations.Rd b/man/feature_combinations.Rd
index 810d2b865..f6b6c4220 100644
--- a/man/feature_combinations.Rd
+++ b/man/feature_combinations.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/features.R
+% Please edit documentation in R/setup_computation.R
\name{feature_combinations}
\alias{feature_combinations}
\title{Define feature combinations, and fetch additional information about each unique combination}
diff --git a/man/feature_group.Rd b/man/feature_group.Rd
index 1f4729773..ce6775245 100644
--- a/man/feature_group.Rd
+++ b/man/feature_group.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/features.R
+% Please edit documentation in R/setup_computation.R
\name{feature_group}
\alias{feature_group}
\title{Analogue to feature_exact, but for groups instead.}
diff --git a/man/feature_group_not_exact.Rd b/man/feature_group_not_exact.Rd
index 5c84614e7..da4d90d66 100644
--- a/man/feature_group_not_exact.Rd
+++ b/man/feature_group_not_exact.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/features.R
+% Please edit documentation in R/setup_computation.R
\name{feature_group_not_exact}
\alias{feature_group_not_exact}
\title{Analogue to feature_not_exact, but for groups instead.}
@@ -10,10 +10,6 @@ feature_group_not_exact(group_num, n_combinations = 200, weight_zero_m = 10^6)
\item{group_num}{List. Contains vector of integers indicating the feature numbers for the
different groups.}
-\item{n_combinations}{Integer. The number of feature combinations to sample. If \code{NULL},
-the exact method is used and all combinations are considered. The maximum number of
-combinations equals \code{2^ncol(x)}.}
-
\item{weight_zero_m}{Positive integer. Represents the Shapley weight for two special
cases, i.e. the case where you have either \code{0} or \code{m} features/feature groups.}
}
diff --git a/man/figures/README-basic_example-1.png b/man/figures/README-basic_example-1.png
index 03c2761e3..95378c7c3 100644
Binary files a/man/figures/README-basic_example-1.png and b/man/figures/README-basic_example-1.png differ
diff --git a/man/finalize_explanation.Rd b/man/finalize_explanation.Rd
new file mode 100644
index 000000000..7e419f57a
--- /dev/null
+++ b/man/finalize_explanation.Rd
@@ -0,0 +1,172 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/finalize_explanation.R
+\name{finalize_explanation}
+\alias{finalize_explanation}
+\title{Computes the Shapley values given \code{v(S)}}
+\usage{
+finalize_explanation(vS_list, internal)
+}
+\arguments{
+\item{vS_list}{List
+Output from \code{\link[=compute_vS]{compute_vS()}}}
+
+\item{internal}{List.
+Holds all parameters, data, functions and computed objects used within \code{\link[=explain]{explain()}}
+The list contains one or more of the elements \code{parameters}, \code{data}, \code{objects}, \code{output}.}
+}
+\value{
+Object of class \code{c("shapr", "list")}. Contains the following items:
+\describe{
+\item{shapley_values}{data.table with the estimated Shapley values}
+\item{internal}{List with the different parameters, data and functions used internally}
+\item{pred_explain}{Numeric vector with the predictions for the explained observations.}
+}
+
+\code{shapley_values} is a data.table where the number of rows equals
+the number of observations you'd like to explain, and the number of columns equals \code{m +1},
+where \code{m} equals the total number of features in your model.
+
+If \code{shapley_values[i, j + 1] > 0} it indicates that the j-th feature increased the prediction for
+the i-th observation. Likewise, if \code{shapley_values[i, j + 1] < 0} it indicates that the j-th feature
+decreased the prediction for the i-th observation.
+The magnitude of the value is also important to notice. E.g. if \code{shapley_values[i, k + 1]} and
+\code{shapley_values[i, j + 1]} are greater than \code{0}, where \code{j != k}, and
+\code{shapley_values[i, k + 1]} > \code{shapley_values[i, j + 1]} this indicates that feature
+\code{j} and \code{k} both increased the value of the prediction, but that the effect of the k-th
+feature was larger than the j-th feature.
+
+The first column in \code{dt}, called \code{none}, is the prediction value not assigned to any of the features
+(\ifelse{html}{\eqn{\phi}\out{0 }}{\eqn{\phi_0}}).
+It's equal for all observations and set by the user through the argument \code{prediction_zero}.
+The difference between the prediction and \code{none} is distributed among the other features.
+In theory this value should be the expected prediction without conditioning on any features.
+Typically we set this value equal to the mean of the response variable in our training data, but other choices
+such as the mean of the predictions in the training data are also reasonable. \code{\link[=explain]{explain()}} \code{\link[=explain]{explain()}}
+}
+\description{
+Computes dependence-aware Shapley values for observations in \code{x_explain} from the specified
+\code{model} by using the method specified in \code{approach} to estimate the conditional expectation.
+}
+\details{
+The most important thing to notice is that \code{shapr} has implemented six different
+approaches for estimating the conditional distributions of the data, namely \code{"empirical"},
+\code{"gaussian"}, \code{"copula"}, \code{"ctree"}, \code{"categorical"}, \code{"timeseries"}, and \code{"independence"}.
+In addition, the user also has the option of combining the different approaches.
+E.g., if you're in a situation where you have trained a model that consists of 10 features,
+and you'd like to use the \code{"gaussian"} approach when you condition on a single feature,
+the \code{"empirical"} approach if you condition on 2-5 features, and \code{"copula"} version
+if you condition on more than 5 features this can be done by simply passing
+\code{approach = c("gaussian", rep("empirical", 4), rep("copula", 5))}. If
+\code{"approach[i]" = "gaussian"} means that you'd like to use the \code{"gaussian"} approach
+when conditioning on \code{i} features.
+
+For \code{approach="ctree"}, \code{n_samples} corresponds to the number of samples
+from the leaf node (see an exception related to the \code{sample} argument).
+For \code{approach="empirical"}, \code{n_samples} is the \eqn{K} parameter in equations (14-15) of
+Aas et al. (2021), i.e. the maximum number of observations (with largest weights) that is used, see also the
+\code{empirical.eta} argument.
+}
+\examples{
+
+# Load example data
+data("airquality")
+airquality <- airquality[complete.cases(airquality), ]
+x_var <- c("Solar.R", "Wind", "Temp", "Month")
+y_var <- "Ozone"
+
+# Split data into test- and training data
+data_train <- head(airquality, -3)
+data_explain <- tail(airquality, 3)
+
+x_train <- data_train[, x_var]
+x_explain <- data_explain[, x_var]
+
+# Fit a linear model
+lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
+model <- lm(lm_formula, data = data_train)
+
+# Explain predictions
+p <- mean(data_train[, y_var])
+
+# Empirical approach
+explain1 <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "empirical",
+ prediction_zero = p,
+ n_samples = 1e2
+)
+
+# Gaussian approach
+explain2 <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "gaussian",
+ prediction_zero = p,
+ n_samples = 1e2
+)
+
+# Gaussian copula approach
+explain3 <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "copula",
+ prediction_zero = p,
+ n_samples = 1e2
+)
+
+# ctree approach
+explain4 <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "ctree",
+ prediction_zero = p,
+ n_samples = 1e2
+)
+
+# Combined approach
+approach <- c("gaussian", "gaussian", "empirical", "empirical")
+explain5 <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = approach,
+ prediction_zero = p,
+ n_samples = 1e2
+)
+
+# Print the Shapley values
+print(explain1$shapley_values)
+
+# Plot the results
+if (requireNamespace("ggplot2", quietly = TRUE)) {
+ plot(explain1)
+ plot(explain1, plot_type = "waterfall")
+}
+
+# Group-wise explanations
+group_list <- list(A = c("Temp", "Month"), B = c("Wind", "Solar.R"))
+
+explain_groups <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ group = group_list,
+ approach = "empirical",
+ prediction_zero = p,
+ n_samples = 1e2
+)
+print(explain_groups$shapley_values)
+
+}
+\references{
+Aas, K., Jullum, M., & Lland, A. (2021). Explaining individual predictions when features are dependent:
+More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502.
+}
+\author{
+Martin Jullum
+}
diff --git a/man/gaussian_transform.Rd b/man/gaussian_transform.Rd
index 3da08882f..c0af625c4 100644
--- a/man/gaussian_transform.Rd
+++ b/man/gaussian_transform.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/transformation.R
+% Please edit documentation in R/approach_copula.R
\name{gaussian_transform}
\alias{gaussian_transform}
\title{Transforms a sample to standardized normal distribution}
diff --git a/man/gaussian_transform_separate.Rd b/man/gaussian_transform_separate.Rd
index 420af791a..eef1e0c6a 100644
--- a/man/gaussian_transform_separate.Rd
+++ b/man/gaussian_transform_separate.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/transformation.R
+% Please edit documentation in R/approach_copula.R
\name{gaussian_transform_separate}
\alias{gaussian_transform_separate}
\title{Transforms new data to standardized normal (dimension 1) based on other data transformations}
diff --git a/man/get_cov_mat.Rd b/man/get_cov_mat.Rd
new file mode 100644
index 000000000..c3e7386d7
--- /dev/null
+++ b/man/get_cov_mat.Rd
@@ -0,0 +1,20 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/approach_gaussian.R
+\name{get_cov_mat}
+\alias{get_cov_mat}
+\title{get_cov_mat}
+\usage{
+get_cov_mat(x_train, min_eigen_value = 1e-06)
+}
+\arguments{
+\item{x_train}{Matrix or data.frame/data.table.
+Contains the data used to estimate the (conditional) distributions for the features
+needed to properly estimate the conditional expectations in the Shapley formula.}
+
+\item{min_eigen_value}{Numeric
+Specifies the smallest allowed eigen value before the covariance matrix of \code{x_train} is assumed to not be
+positive definite, and \code{\link[Matrix:nearPD]{Matrix::nearPD()}} is used to find the nearest one.}
+}
+\description{
+get_cov_mat
+}
diff --git a/man/get_data_forecast.Rd b/man/get_data_forecast.Rd
new file mode 100644
index 000000000..74fc0bf78
--- /dev/null
+++ b/man/get_data_forecast.Rd
@@ -0,0 +1,46 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/explain_forecast.R
+\name{get_data_forecast}
+\alias{get_data_forecast}
+\title{Set up data for explain_forecast}
+\usage{
+get_data_forecast(
+ y,
+ xreg,
+ train_idx,
+ explain_idx,
+ explain_y_lags,
+ explain_xreg_lags,
+ horizon
+)
+}
+\arguments{
+\item{y}{A matrix or numeric vector containing the endogenous variables for the model.
+One variable per column, one observation per row.}
+
+\item{xreg}{A matrix containing exogenous regressors for the model.
+One variable per column, one observation per row. Should have nrow(data) + horizon rows.}
+
+\item{train_idx}{The observations indices in data to use as training examples.}
+
+\item{explain_idx}{The observations indices in data to explain.}
+
+\item{explain_y_lags}{Numeric vector
+Indicates the number of lags of y to include in the explanation.}
+
+\item{explain_xreg_lags}{Numeric vector
+Indicates the number of lags of xreg to include in the explanation.}
+
+\item{horizon}{The forecast horizon to explain.}
+}
+\value{
+A list containing
+\itemize{
+\item The data.frames x_train and x_explain which holds the lagged data examples.
+\item A numeric, n_endo denoting how many columns are endogenous in x_train and x_explain.
+\item A list, group with groupings of each variable to explain per variable and not per variable and lag.
+}
+}
+\description{
+Set up data for explain_forecast
+}
diff --git a/man/get_data_specs.Rd b/man/get_data_specs.Rd
index ae0bd6d8b..8c4b98b55 100644
--- a/man/get_data_specs.Rd
+++ b/man/get_data_specs.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/preprocess_data.R
+% Please edit documentation in R/setup.R
\name{get_data_specs}
\alias{get_data_specs}
\title{Fetches feature information from a given data set}
@@ -12,10 +12,10 @@ get_data_specs(x)
\value{
A list with the following elements:
\describe{
- \item{labels}{character vector with the feature names to compute Shapley values for}
- \item{classes}{a named character vector with the labels as names and the class types as elements}
- \item{factor_levels}{a named list with the labels as names and character vectors with the factor levels as elements
- (NULL if the feature is not a factor)}
+\item{labels}{character vector with the feature names to compute Shapley values for}
+\item{classes}{a named character vector with the labels as names and the class types as elements}
+\item{factor_levels}{a named list with the labels as names and character vectors with the factor levels as elements
+(NULL if the feature is not a factor)}
}
}
\description{
@@ -23,19 +23,19 @@ Fetches feature information from a given data set
}
\details{
This function is used to extract the feature information to be checked against the corresponding
-information extracted from the model and other data sets. The function is called from
-\code{\link[shapr:preprocess_data]{preprocess_data}}
-and \code{\link[shapr:make_dummies]{make_dummies}}
+information extracted from the model and other data sets. The function is called from internally
}
\examples{
# Load example data
-if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- # Split data into test- and training data
- x_train <- data.table::as.data.table(head(Boston))
- x_train[, rad := as.factor(rad)]
- get_data_specs(x_train)
-}
+data("airquality")
+airquality <- airquality[complete.cases(airquality), ]
+# Split data into test- and training data
+x_train <- head(airquality, -3)
+x_explain <- tail(airquality, 3)
+# Split data into test- and training data
+x_train <- data.table::as.data.table(head(airquality))
+x_train[, Temp := as.factor(Temp)]
+get_data_specs(x_train)
}
\author{
Martin Jullum
diff --git a/man/get_extra_parameters.Rd b/man/get_extra_parameters.Rd
new file mode 100644
index 000000000..de1acfa35
--- /dev/null
+++ b/man/get_extra_parameters.Rd
@@ -0,0 +1,12 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/setup.R
+\name{get_extra_parameters}
+\alias{get_extra_parameters}
+\title{This includes both extra parameters and other objects}
+\usage{
+get_extra_parameters(internal)
+}
+\description{
+This includes both extra parameters and other objects
+}
+\keyword{internal}
diff --git a/man/get_list_approaches.Rd b/man/get_list_approaches.Rd
deleted file mode 100644
index 06218ec3f..000000000
--- a/man/get_list_approaches.Rd
+++ /dev/null
@@ -1,26 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/explanation.R
-\name{get_list_approaches}
-\alias{get_list_approaches}
-\title{Helper function used in \code{\link{explain.combined}}}
-\usage{
-get_list_approaches(n_features, approach)
-}
-\arguments{
-\item{n_features}{Integer vector. Note that
-\code{length(n_features) <= 2^m}, where \code{m} equals the number
-of features.}
-
-\item{approach}{Character vector of length \code{m}. All elements should be
-either \code{"empirical"}, \code{"gaussian"} or \code{"copula"}.}
-}
-\value{
-List
-}
-\description{
-Helper function used in \code{\link{explain.combined}}
-}
-\author{
-Nikolai Sellereite
-}
-\keyword{internal}
diff --git a/man/get_model_specs.Rd b/man/get_model_specs.Rd
index 5db8b40ab..dcad6b450 100644
--- a/man/get_model_specs.Rd
+++ b/man/get_model_specs.Rd
@@ -1,23 +1,34 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/models.R
+% Please edit documentation in R/model.R, R/model_ar.R, R/model_arima.R,
+% R/model_glm.R, R/model_lm.R, R/model_mgcv_gam.R, R/model_ranger.R,
+% R/model_xgboost.R
\name{get_model_specs}
\alias{get_model_specs}
\alias{get_model_specs.default}
-\alias{get_model_specs.lm}
+\alias{get_model_specs.ar}
+\alias{get_model_specs.Arima}
+\alias{get_model_specs.forecast_ARIMA}
\alias{get_model_specs.glm}
+\alias{get_model_specs.lm}
\alias{get_model_specs.gam}
\alias{get_model_specs.ranger}
\alias{get_model_specs.xgb.Booster}
-\title{Fetches feature information from a given model object}
+\title{Fetches feature information from natively supported models}
\usage{
get_model_specs(x)
\method{get_model_specs}{default}(x)
-\method{get_model_specs}{lm}(x)
+\method{get_model_specs}{ar}(x)
+
+\method{get_model_specs}{Arima}(x)
+
+\method{get_model_specs}{forecast_ARIMA}(x)
\method{get_model_specs}{glm}(x)
+\method{get_model_specs}{lm}(x)
+
\method{get_model_specs}{gam}(x)
\method{get_model_specs}{ranger}(x)
@@ -30,30 +41,38 @@ get_model_specs(x)
\value{
A list with the following elements:
\describe{
- \item{labels}{character vector with the feature names to compute Shapley values for}
- \item{classes}{a named character vector with the labels as names and the class type as elements}
- \item{factor_levels}{a named list with the labels as names and character vectors with the factor levels as elements
- (NULL if the feature is not a factor)}
+\item{labels}{character vector with the feature names to compute Shapley values for}
+\item{classes}{a named character vector with the labels as names and the class type as elements}
+\item{factor_levels}{a named list with the labels as names and character vectors with the factor levels as elements
+(NULL if the feature is not a factor)}
}
}
\description{
-Fetches feature information from a given model object
+This function is used to extract the feature information from the model to be checked against the
+corresponding feature information in the data passed to \verb{[explain()]}.
+
+NOTE: You should never need to call this function explicitly.
+It is exported just to be easier accessible for users, see details.
}
\details{
-This function is used to extract the feature information to be checked against data passed to \code{shapr}
-and \code{explain}. The function is called from \code{preprocess_data}.
+If you are explaining a model not supported natively, you may (optionally) enable such checking by
+creating this function yourself and passing it on to \verb{[explain()]}.
}
\examples{
-if (requireNamespace("MASS", quietly = TRUE)) {
- # Load example data
- data("Boston", package = "MASS")
- # Split data into test- and training data
- x_train <- data.table::as.data.table(head(Boston))
- x_train[, rad := as.factor(rad)]
- model <- lm(medv ~ lstat + rm + rad + indus, data = x_train)
+# Load example data
+data("airquality")
+airquality <- airquality[complete.cases(airquality), ]
+# Split data into test- and training data
+x_train <- head(airquality, -3)
+x_explain <- tail(airquality, 3)
+# Fit a linear model
+model <- lm(Ozone ~ Solar.R + Wind + Temp + Month, data = x_train)
+get_model_specs(model)
- get_model_specs(model)
}
+\seealso{
+For model classes not supported natively, you NEED to create an analogue to \verb{[predict_model()]}. See it's
+help file for details.
}
\author{
Martin Jullum
diff --git a/man/get_mu_vec.Rd b/man/get_mu_vec.Rd
new file mode 100644
index 000000000..5c25d7dbd
--- /dev/null
+++ b/man/get_mu_vec.Rd
@@ -0,0 +1,16 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/approach_gaussian.R
+\name{get_mu_vec}
+\alias{get_mu_vec}
+\title{get_mu_vec}
+\usage{
+get_mu_vec(x_train)
+}
+\arguments{
+\item{x_train}{Matrix or data.frame/data.table.
+Contains the data used to estimate the (conditional) distributions for the features
+needed to properly estimate the conditional expectations in the Shapley formula.}
+}
+\description{
+get_mu_vec
+}
diff --git a/man/get_predict_model.Rd b/man/get_predict_model.Rd
new file mode 100644
index 000000000..2fda6c8aa
--- /dev/null
+++ b/man/get_predict_model.Rd
@@ -0,0 +1,21 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/get_predict_model.R
+\name{get_predict_model}
+\alias{get_predict_model}
+\title{Get predict_model function}
+\usage{
+get_predict_model(predict_model, model)
+}
+\arguments{
+\item{predict_model}{Function.
+The prediction function used when \code{model} is not natively supported.
+See the documentation of \code{\link[=explain]{explain()}} for details.}
+
+\item{model}{Objects.
+The model object that ought to be explained.
+See the documentation of \code{\link[=explain]{explain()}} for details.}
+}
+\description{
+Get predict_model function
+}
+\keyword{internal}
diff --git a/man/get_supported_approaches.Rd b/man/get_supported_approaches.Rd
new file mode 100644
index 000000000..8a7de6c5e
--- /dev/null
+++ b/man/get_supported_approaches.Rd
@@ -0,0 +1,15 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/setup.R
+\name{get_supported_approaches}
+\alias{get_supported_approaches}
+\title{Gets the implemented approaches}
+\usage{
+get_supported_approaches()
+}
+\value{
+Character vector.
+The names of the implemented approaches that can be passed to argument \code{approach} in \code{\link[=explain]{explain()}}.
+}
+\description{
+Gets the implemented approaches
+}
diff --git a/man/get_supported_models.Rd b/man/get_supported_models.Rd
index 7bcd24ab9..985ae7966 100644
--- a/man/get_supported_models.Rd
+++ b/man/get_supported_models.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/models.R
+% Please edit documentation in R/model.R
\name{get_supported_models}
\alias{get_supported_models}
\title{Provides a data.table with the supported models}
diff --git a/man/inv_gaussian_transform.Rd b/man/inv_gaussian_transform.Rd
index 540fb79b2..76f058772 100644
--- a/man/inv_gaussian_transform.Rd
+++ b/man/inv_gaussian_transform.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/transformation.R
+% Please edit documentation in R/approach_copula.R
\name{inv_gaussian_transform}
\alias{inv_gaussian_transform}
\title{Transforms new data to a standardized normal distribution}
diff --git a/man/lag_data.Rd b/man/lag_data.Rd
new file mode 100644
index 000000000..874af4eab
--- /dev/null
+++ b/man/lag_data.Rd
@@ -0,0 +1,23 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/explain_forecast.R
+\name{lag_data}
+\alias{lag_data}
+\title{Lag a matrix of variables a specific number of lags for each variables.}
+\usage{
+lag_data(x, lags)
+}
+\arguments{
+\item{x}{The matrix of variables (one variable per column).}
+
+\item{lags}{A numeric vector denoting how many lags each variable should have.}
+}
+\value{
+A list with two items
+\itemize{
+\item A matrix, lagged with the lagged data.
+\item A list, group, with groupings of the lagged data per variable.
+}
+}
+\description{
+Lag a matrix of variables a specific number of lags for each variables.
+}
diff --git a/man/make_dummies.Rd b/man/make_dummies.Rd
deleted file mode 100644
index e68c0e037..000000000
--- a/man/make_dummies.Rd
+++ /dev/null
@@ -1,50 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/features.R
-\name{make_dummies}
-\alias{make_dummies}
-\title{Initiate the making of dummy variables}
-\usage{
-make_dummies(traindata, testdata)
-}
-\arguments{
-\item{traindata}{data.table or data.frame.}
-
-\item{testdata}{data.table or data.frame. New data that has the same
-feature names, types, and levels as \code{traindata}.}
-}
-\value{
-A list that contains the following entries:
-\describe{
-\item{feature_list}{List. Output from \code{check_features}}
-\item{train_dummies}{A data.frame containing all of the factors in \code{traindata} as
-one-hot encoded variables.}
-\item{test_dummies}{A data.frame containing all of the factors in \code{testdata} as
-one-hot encoded variables.}
-\item{traindata_new}{Original traindata with correct column ordering and factor levels. To be passed to
-\code{\link[shapr:shapr]{shapr}.}}
-\item{testdata_new}{Original testdata with correct column ordering and factor levels. To be passed to
-\code{\link[shapr:explain]{explain}.}}
-}
-}
-\description{
-Initiate the making of dummy variables
-}
-\examples{
-if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
- x_train <- as.data.frame(Boston[401:411, x_var])
- y_train <- Boston[401:408, y_var]
- x_test <- as.data.frame(Boston[1:4, x_var])
-
- # convert to factors for illustational purpose
- x_train$rm <- factor(round(x_train$rm))
- x_test$rm <- factor(round(x_test$rm), levels = levels(x_train$rm))
-
- dummylist <- make_dummies(traindata = x_train, testdata = x_test)
-}
-}
-\author{
-Annabelle Redelmeier, Martin Jullum
-}
diff --git a/man/model_checker.Rd b/man/model_checker.Rd
index 63e4ea90b..313902a13 100644
--- a/man/model_checker.Rd
+++ b/man/model_checker.Rd
@@ -1,27 +1,38 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/models.R
+% Please edit documentation in R/model.R, R/model_ar.R, R/model_arima.R,
+% R/model_glm.R, R/model_lm.R, R/model_mgcv_gam.R, R/model_ranger.R,
+% R/model_xgboost.R
\name{model_checker}
\alias{model_checker}
\alias{model_checker.default}
-\alias{model_checker.lm}
+\alias{model_checker.ar}
+\alias{model_checker.Arima}
+\alias{model_checker.forecast_ARIMA}
\alias{model_checker.glm}
-\alias{model_checker.ranger}
+\alias{model_checker.lm}
\alias{model_checker.gam}
+\alias{model_checker.ranger}
\alias{model_checker.xgb.Booster}
-\title{Check that the type of model is supported by the explanation method}
+\title{Check that the type of model is supported by the native implementation of the model class}
\usage{
model_checker(x)
\method{model_checker}{default}(x)
-\method{model_checker}{lm}(x)
+\method{model_checker}{ar}(x)
+
+\method{model_checker}{Arima}(x)
+
+\method{model_checker}{forecast_ARIMA}(x)
\method{model_checker}{glm}(x)
-\method{model_checker}{ranger}(x)
+\method{model_checker}{lm}(x)
\method{model_checker}{gam}(x)
+\method{model_checker}{ranger}(x)
+
\method{model_checker}{xgb.Booster}(x)
}
\arguments{
@@ -35,21 +46,7 @@ The function checks whether the model given by \code{x} is supported.
If \code{x} is not a supported model the function will return an error message, otherwise it return NULL
(meaning all types of models with this class is supported)
}
-\details{
-See \code{\link{predict_model}} for more information about
-what type of models \code{shapr} currently support.
-}
-\examples{
-if (requireNamespace("MASS", quietly = TRUE)) {
- # Load example data
- data("Boston", package = "MASS")
- # Split data into test- and training data
- x_train <- head(Boston, -3)
- # Fit a linear model
- model <- lm(medv ~ lstat + rm + dis + indus, data = x_train)
-
- # Checking the model object
- model_checker(x = model)
-}
+\seealso{
+See \code{\link[=predict_model]{predict_model()}} for more information about what type of models \code{shapr} currently support.
}
\keyword{internal}
diff --git a/man/observation_impute.Rd b/man/observation_impute.Rd
index dd48d6c1f..813869b28 100644
--- a/man/observation_impute.Rd
+++ b/man/observation_impute.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/observations.R
+% Please edit documentation in R/approach_empirical.R
\name{observation_impute}
\alias{observation_impute}
\title{Generate permutations of training data using test observations}
@@ -8,29 +8,25 @@ observation_impute(
W_kernel,
S,
x_train,
- x_test,
- w_threshold = 0.7,
+ x_explain,
+ empirical.eta = 0.7,
n_samples = 1000
)
}
\arguments{
\item{W_kernel}{Numeric matrix. Contains all nonscaled weights between training and test
-observations for all feature combinations. The dimension equals \code{n_train x m}.}
+observations for all feature combinations. The dimension equals \verb{n_train x m}.}
-\item{S}{Integer matrix of dimension \code{n_combinations x m}, where \code{n_combinations}
+\item{S}{Integer matrix of dimension \verb{n_combinations x m}, where \code{n_combinations}
and \code{m} equals the total number of sampled/non-sampled feature combinations and
the total number of unique features, respectively. Note that \code{m = ncol(x_train)}.}
\item{x_train}{Numeric matrix}
-\item{x_test}{Numeric matrix}
+\item{x_explain}{Numeric matrix}
-\item{w_threshold}{Numeric vector of length 1, with \code{0 < w_threshold <= 1} representing the minimum proportion
-of the total empirical weight that data samples should use. If e.g. \code{w_threshold = .8} we will choose the
-\code{K} samples with the largest weight so that the sum of the weights accounts for 80\% of the total weight.
-\code{w_threshold} is the \eqn{\eta} parameter in equation (15) of Aas et al (2021).}
-
-\item{n_samples}{Positive integer. Indicating the maximum number of samples to use in the
+\item{n_samples}{Positive integer.
+Indicating the maximum number of samples to use in the
Monte Carlo integration for every conditional expectation. See also details.}
}
\value{
@@ -39,10 +35,6 @@ data.table
\description{
Generate permutations of training data using test observations
}
-\references{
-Aas, K., Jullum, M., & Løland, A. (2021). Explaining individual predictions when features are dependent:
- More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502.
-}
\author{
Nikolai Sellereite
}
diff --git a/man/plot.shapr.Rd b/man/plot.shapr.Rd
index 1eccfd78b..f45485d4e 100644
--- a/man/plot.shapr.Rd
+++ b/man/plot.shapr.Rd
@@ -6,27 +6,88 @@
\usage{
\method{plot}{shapr}(
x,
+ plot_type = "bar",
digits = 3,
- plot_phi0 = TRUE,
- index_x_test = NULL,
+ index_x_explain = NULL,
top_k_features = NULL,
+ col = NULL,
+ bar_plot_phi0 = TRUE,
+ bar_plot_order = "largest_first",
+ scatter_features = NULL,
+ scatter_hist = TRUE,
...
)
}
\arguments{
-\item{x}{An \code{shapr} object. See \code{\link{explain}}.}
+\item{x}{An \code{shapr} object.
+The output from \code{\link[=explain]{explain()}}.}
-\item{digits}{Integer. Number of significant digits to use in the feature description}
+\item{plot_type}{Character.
+Specifies the type of plot to produce.
+\code{"bar"} (the default) gives a regular horizontal bar plot of the Shapley value magnitudes.
+\code{"waterfall"} gives a waterfall plot indicating the changes in the prediction score due to each features
+contribution (their Shapley values).
+\code{"scatter"} plots the feature values on the x-axis and Shapley values on the y-axis, as well as
+(optionally) a background scatter_hist showing the distribution of the feature data.
+\code{"beeswarm"} summarises the distribution of the Shapley values along the x-axis for all the features.
+Each point gives the shapley value of a given instance, where the points are colored by the feature value
+of that instance.}
-\item{plot_phi0}{Logical. Whether to include \code{phi0} in the plot}
+\item{digits}{Integer.
+Number of significant digits to use in the feature description.
+Applicable for \code{plot_type} \code{"bar"} and \code{"waterfall"}}
-\item{index_x_test}{Integer vector. Which of the test observations to plot. E.g. if you have
-explained 10 observations using \code{\link{explain}}, you can generate a plot for the first 5
-observations by setting \code{index_x_test = 1:5}.}
+\item{index_x_explain}{Integer vector.
+Which of the test observations to plot. E.g. if you have
+explained 10 observations using \code{\link[=explain]{explain()}}, you can generate a plot for the first 5
+observations by setting \code{index_x_explain = 1:5}.}
-\item{top_k_features}{Integer. How many features to include in the plot. E.g. if you have 15
-features in your model you can plot the 5 most important features, for each explanation, by setting
-\code{top_k_features = 1:5}.}
+\item{top_k_features}{Integer.
+How many features to include in the plot.
+E.g. if you have 15 features in your model you can plot the 5 most important features,
+for each explanation, by setting \code{top_k_features = 1:5}.
+Applicable for \code{plot_type} \code{"bar"} and \code{"waterfall"}}
+
+\item{col}{Character vector (length depends on plot type).
+The color codes (hex codes or other names understood by \code{\link[ggplot2:ggplot]{ggplot2::ggplot()}}) for positive and negative
+Shapley values, respectively.
+The default is \code{col=NULL}, plotting with the default colors respective to the plot type.
+For \code{plot_type = "bar"} and \code{plot_type = "waterfall"}, the default is \code{c("#00BA38","#F8766D")}.
+For \code{plot_type = "beeswarm"}, the default is \code{c("#F8766D","yellow","#00BA38")}.
+For \code{plot_type = "scatter"}, the default is \code{"#619CFF"}.
+
+If you want to alter the colors i the plot, the length of the \code{col} vector depends on plot type.
+For \code{plot_type = "bar"} or \code{plot_type = "waterfall"}, two colors should be provided, first for positive and
+then for negative Shapley values.
+For \code{plot_type = "beeswarm"}, either two or three colors can be given.
+If two colors are given, then the first color determines the color that points with high feature values will have,
+and the second determines the color of points with low feature values.
+If three colors are given, then the first colors high feature values, the second colors mid-range feature values,
+and the third colors low feature values.
+For instance, \code{col = c("red", "yellow", "blue")} will make high values red, mid-range values yellow,
+and low values blue.
+For \code{plot_type = "scatter"}, a single color is to be given, which determines the color of the points on the
+scatter plot.}
+
+\item{bar_plot_phi0}{Logical.
+Whether to include \code{phi0} in the plot for \code{plot_type = "bar"}.}
+
+\item{bar_plot_order}{Character.
+Specifies what order to plot the features with respect to the magnitude of the shapley values with
+\code{plot_type = "bar"}:
+\code{"largest_first"} (the default) plots the features ordered from largest to smallest absolute Shapley value.
+\code{"smallest_first"} plots the features ordered from smallest to largest absolute Shapley value.
+\code{"original"} plots the features in the original order of the data table.}
+
+\item{scatter_features}{Integer or character vector.
+Only used for \code{plot_type = "scatter"}.
+Specifies what features to include in (scatter) plot. Can be a numerical vector indicating feature index, or a
+character vector, indicating the name(s) of the feature(s) to plot.}
+
+\item{scatter_hist}{Logical.
+Only used for \code{plot_type = "scatter"}.
+Whether to include a scatter_hist indicating the distribution of the data when making the scatter plot. Note that the
+bins are scaled so that when all the bins are stacked they fit the span of the y-axis of the plot.}
\item{...}{Currently not used.}
}
@@ -37,41 +98,96 @@ ggplot object with plots of the Shapley value explanations
Plots the individual prediction explanations.
}
\details{
-See \code{vignette("understanding_shapr", package = "shapr")} for an example of
+See the examples below, or \code{vignette("understanding_shapr", package = "shapr")} for an examples of
how you should use the function.
}
\examples{
-if (requireNamespace("MASS", quietly = TRUE)) {
- #' # Load example data
- data("Boston", package = "MASS")
-
- # Split data into test- and training data
- x_train <- head(Boston, -3)
- x_test <- tail(Boston, 3)
-
- # Fit a linear model
- model <- lm(medv ~ lstat + rm + dis + indus, data = x_train)
-
- # Create an explainer object
- explainer <- shapr(x_train, model)
-
- # Explain predictions
- p <- mean(x_train$medv)
-
- # Empirical approach
- explanation <- explain(x_test,
- explainer,
- approach = "empirical",
- prediction_zero = p,
- n_samples = 1e2
- )
-
- if (requireNamespace("ggplot2", quietly = TRUE)) {
- # Plot the explantion (this function)
- plot(explanation)
- }
+
+data("airquality")
+airquality <- airquality[complete.cases(airquality), ]
+x_var <- c("Solar.R", "Wind", "Temp", "Month")
+y_var <- "Ozone"
+
+# Split data into test- and training data
+data_train <- head(airquality, -50)
+data_explain <- tail(airquality, 50)
+
+x_train <- data_train[, x_var]
+x_explain <- data_explain[, x_var]
+
+# Fit a linear model
+lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
+model <- lm(lm_formula, data = data_train)
+
+# Explain predictions
+p <- mean(data_train[, y_var])
+
+# Empirical approach
+x <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "empirical",
+ prediction_zero = p,
+ n_samples = 1e2
+)
+
+if (requireNamespace("ggplot2", quietly = TRUE)) {
+ # The default plotting option is a bar plot of the Shapley values
+ # We draw bar plots for the first 4 observations
+ plot(x, index_x_explain = 1:4)
+
+ # We can also make waterfall plots
+ plot(x, plot_type = "waterfall", index_x_explain = 1:4)
+ # And only showing the 2 features with largest contribution
+ plot(x, plot_type = "waterfall", index_x_explain = 1:4, top_k_features = 2)
+
+ # Or scatter plots showing the distribution of the shapley values and feature values
+ plot(x, plot_type = "scatter")
+ # And only for a specific feature
+ plot(x, plot_type = "scatter", scatter_features = "Temp")
+
+ # Or a beeswarm plot summarising the Shapley values and feature values for all features
+ plot(x, plot_type = "beeswarm")
+ plot(x, plot_type = "beeswarm", col = c("red", "black")) # we can change colors
}
+
+# Example of scatter and beeswarm plot with factor variables
+airquality$Month_factor <- as.factor(month.abb[airquality$Month])
+airquality <- airquality[complete.cases(airquality), ]
+x_var <- c("Solar.R", "Wind", "Temp", "Month_factor")
+y_var <- "Ozone"
+
+# Split data into test- and training data
+data_train <- airquality
+data_explain <- tail(airquality, 50)
+
+x_train <- data_train[, x_var]
+x_explain <- data_explain[, x_var]
+
+# Fit a linear model
+lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
+model <- lm(lm_formula, data = data_train)
+
+# Explain predictions
+p <- mean(data_train[, y_var])
+
+# Empirical approach
+x <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "ctree",
+ prediction_zero = p,
+ n_samples = 1e2
+)
+
+if (requireNamespace("ggplot2", quietly = TRUE)) {
+ plot(x, plot_type = "scatter")
+ plot(x, plot_type = "beeswarm")
+}
+
}
\author{
-Martin Jullum
+Martin Jullum, Vilde Ung
}
diff --git a/man/predict_model.Rd b/man/predict_model.Rd
index 94fd2d43e..9e2f06996 100644
--- a/man/predict_model.Rd
+++ b/man/predict_model.Rd
@@ -1,80 +1,105 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/models.R
+% Please edit documentation in R/model.R, R/model_ar.R, R/model_arima.R,
+% R/model_glm.R, R/model_lm.R, R/model_mgcv_gam.R, R/model_ranger.R,
+% R/model_xgboost.R
\name{predict_model}
\alias{predict_model}
\alias{predict_model.default}
-\alias{predict_model.lm}
+\alias{predict_model.ar}
+\alias{predict_model.Arima}
+\alias{predict_model.forecast_ARIMA}
\alias{predict_model.glm}
+\alias{predict_model.lm}
+\alias{predict_model.gam}
\alias{predict_model.ranger}
\alias{predict_model.xgb.Booster}
-\alias{predict_model.gam}
-\title{Generate predictions for different model classes}
+\title{Generate predictions for input data with specified model}
\usage{
-predict_model(x, newdata)
+predict_model(x, newdata, ...)
-\method{predict_model}{default}(x, newdata)
+\method{predict_model}{default}(x, newdata, ...)
-\method{predict_model}{lm}(x, newdata)
+\method{predict_model}{ar}(x, newdata, newreg, horizon, ...)
-\method{predict_model}{glm}(x, newdata)
+\method{predict_model}{Arima}(
+ x,
+ newdata,
+ newreg,
+ horizon,
+ explain_idx,
+ explain_lags,
+ y,
+ xreg,
+ ...
+)
-\method{predict_model}{ranger}(x, newdata)
+\method{predict_model}{forecast_ARIMA}(x, newdata, newreg, horizon, ...)
-\method{predict_model}{xgb.Booster}(x, newdata)
+\method{predict_model}{glm}(x, newdata, ...)
-\method{predict_model}{gam}(x, newdata)
+\method{predict_model}{lm}(x, newdata, ...)
+
+\method{predict_model}{gam}(x, newdata, ...)
+
+\method{predict_model}{ranger}(x, newdata, ...)
+
+\method{predict_model}{xgb.Booster}(x, newdata, ...)
}
\arguments{
\item{x}{Model object for the model to be explained.}
-\item{newdata}{A data frame (or matrix) in which to look for variables with which to predict.}
+\item{newdata}{A data.frame/data.table with the features to predict from.}
+
+\item{...}{\code{newreg} and \code{horizon} parameters used in models passed to \verb{[explain_forecast()]}}
}
\value{
-Numeric
+Numeric. Vector of size equal to the number of rows in \code{newdata}.
}
\description{
-Performs prediction of response \code{\link[stats]{lm}}, \code{\link[stats]{glm}},
-\code{\link[ranger]{ranger}}, \code{\link[mgcv:gam]{mgcv::gam}} and
-\code{\link[xgboost:xgb.train]{xgboost::xgb.train}} with binary or continuous
+Performs prediction of response
+\code{\link[stats:lm]{stats::lm()}},
+\code{\link[stats:glm]{stats::glm()}},
+\code{\link[ranger:ranger]{ranger::ranger()}},
+\code{\link[mgcv:gam]{mgcv::gam()}} and
+\code{\link[xgboost:xgb.train]{xgboost::xgb.train()}} with binary or continuous
response. See details for more information.
+
+NOTE: You should never need to call this function explicitly.
+It is exported just to be easier accessible for users, see details.
}
\details{
The following models are currently supported:
\itemize{
-\item \code{\link[stats:lm]{stats::lm}}
-\item \code{\link[stats:glm]{stats::glm}}
-\item \code{\link[ranger:ranger]{ranger::ranger}}
-\item \code{\link[mgcv:gam]{mgcv::gam}}
-\item \code{\link[xgboost:xgb.train]{xgboost::xgb.train}}
-}
-
-The returned object \code{p} always satisfies the following properties:
-\itemize{
-\item \code{is.atomic(p)} equals \code{TRUE}
-\item \code{is.double(p)} equals \code{TRUE}
+\item \code{\link[stats:lm]{stats::lm()}}
+\item \code{\link[stats:glm]{stats::glm()}}
+\item \code{\link[ranger:ranger]{ranger::ranger()}}
+\item \code{\link[mgcv:gam]{mgcv::gam()}}
+\item \code{\link[xgboost:xgb.train]{xgboost::xgb.train()}}
}
If you have a binary classification model we'll always return the probability prediction
for a single class.
-For more details on how to explain other types of models (i.e. custom models), see the Advanced usage section
+If you are explaining a model not supported natively, you need to create the \verb{[predict_model()]} function yourself,
+and pass it on to as an argument to \verb{[explain()]}.
+
+For more details on how to explain such non-supported models (i.e. custom models), see the Advanced usage section
of the vignette: \cr
From R: \code{vignette("understanding_shapr", package = "shapr")} \cr
Web: \url{https://norskregnesentral.github.io/shapr/articles/understanding_shapr.html#explain-custom-models}
}
\examples{
-if (requireNamespace("MASS", quietly = TRUE)) {
- # Load example data
- data("Boston", package = "MASS")
- # Split data into test- and training data
- x_train <- head(Boston, -3)
- x_test <- tail(Boston, 3)
- # Fit a linear model
- model <- lm(medv ~ lstat + rm + dis + indus, data = x_train)
-
- # Predicting for a model with a standardized format
- predict_model(x = model, newdata = x_test)
-}
+# Load example data
+data("airquality")
+airquality <- airquality[complete.cases(airquality), ]
+# Split data into test- and training data
+x_train <- head(airquality, -3)
+x_explain <- tail(airquality, 3)
+# Fit a linear model
+model <- lm(Ozone ~ Solar.R + Wind + Temp + Month, data = x_train)
+
+# Predicting for a model with a standardized format
+predict_model(x = model, newdata = x_explain)
}
\author{
Martin Jullum
diff --git a/man/prediction.Rd b/man/prediction.Rd
deleted file mode 100644
index cfc9c9232..000000000
--- a/man/prediction.Rd
+++ /dev/null
@@ -1,46 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/predictions.R
-\name{prediction}
-\alias{prediction}
-\title{Calculate Shapley weights for test data}
-\usage{
-prediction(dt, prediction_zero, explainer)
-}
-\arguments{
-\item{dt}{data.table}
-
-\item{prediction_zero}{Numeric. The value to use for \code{phi_0}.}
-
-\item{explainer}{An object of class \code{explainer}. See \code{\link{shapr}}.}
-}
-\value{
-An object of class \code{c("shapr", "list")}. For more details see \code{\link{explain}}.
-}
-\description{
-This function should only be called internally, and not be used as
-a stand-alone function.
-}
-\details{
-If \code{dt} does not contain three columns called \code{id}, \code{id_combination} and \code{w}
-the function will fail. \code{id} represents a unique key for a given test observation,
-and \code{id_combination} is a unique key for which feature combination the row represents. \code{w}
-represents the Shapley value of feature combination given by \code{id_combination}. In addition
-to these three columns, \code{dt} should also have columns which matches the variables used
-when training the model.
-
-I.e. you have fitted a linear model using the features \code{x1},
-\code{x2} and \code{x3}, and you want to explain 5 test observations using the exact method, i.e.
-setting \code{exact = TRUE} in \code{\link{shapr}}, the following properties should be satisfied
-\enumerate{
-\item \code{colnames(dt)} equals \code{c("x1", "x2", "x3", "id", "id_combination", ""w)}
-\item \code{dt[, max(id)]} equals the number of test observations
-\item \code{dt[, min(id)]} equals 1L.
-\item \code{dt[, max(id_combination)]} equals \code{2^m} where m equals the number of features.
-\item \code{dt[, min(id_combination)]} equals 1L.
-\item \code{dt[, type(w)]} equals \code{double}.
-}
-}
-\author{
-Nikolai Sellereite
-}
-\keyword{internal}
diff --git a/man/prepare_and_predict.Rd b/man/prepare_and_predict.Rd
deleted file mode 100644
index 5c261768c..000000000
--- a/man/prepare_and_predict.Rd
+++ /dev/null
@@ -1,36 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/explanation.R
-\name{prepare_and_predict}
-\alias{prepare_and_predict}
-\title{Calculate Shapley values}
-\usage{
-prepare_and_predict(explainer, n_batches, prediction_zero, ...)
-}
-\arguments{
-\item{explainer}{An \code{explainer} object to use for explaining the observations.
-See \code{\link{shapr}}.}
-
-\item{n_batches}{Positive integer.
-Specifies how many batches the total number of feature combinations should be split into when calculating the
-contribution function for each test observation.
-The default value is 1.
-Increasing the number of batches may significantly reduce the RAM allocation for models with many features.
-This typically comes with a small increase in computation time.}
-
-\item{prediction_zero}{Numeric. The prediction value for unseen data, typically equal to the mean of
-the response.}
-
-\item{...}{Arguments passed to \code{\link{prepare_data}} with exception of \code{only_return_contrib_dt},
-which is only passed to explain. If \code{TRUE} the
-\code{data.table} from \code{\link{prediction}} is returned, else an object of class \code{shapr}.
-Each column (except for \code{row_id}) correspond to the vector \code{v_D} in Equation 7 in the reference.
-The Shapley values can be calculated by \code{t(explainer$W \%*\% dt_contrib[, -"row_id"]))}}
-}
-\value{
-A list. See \code{\link{explain}} for more information.
-}
-\description{
-Sample covariate values, predict and calculate Shapley values. The sampling and prediction can be done in batches
-if \code{n_batches} is greater than 1.
-}
-\keyword{internal}
diff --git a/man/prepare_data.Rd b/man/prepare_data.Rd
index a4857a3e7..ac2fe8e00 100644
--- a/man/prepare_data.Rd
+++ b/man/prepare_data.Rd
@@ -1,56 +1,50 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/observations.R
+% Please edit documentation in R/approach.R, R/approach_categorical.R,
+% R/approach_copula.R, R/approach_ctree.R, R/approach_empirical.R,
+% R/approach_gaussian.R, R/approach_independence.R, R/approach_timeseries.R
\name{prepare_data}
\alias{prepare_data}
-\alias{prepare_data.independence}
-\alias{prepare_data.empirical}
-\alias{prepare_data.gaussian}
+\alias{prepare_data.categorical}
\alias{prepare_data.copula}
\alias{prepare_data.ctree}
+\alias{prepare_data.empirical}
+\alias{prepare_data.gaussian}
+\alias{prepare_data.independence}
+\alias{prepare_data.timeseries}
\title{Generate data used for predictions}
\usage{
-prepare_data(x, ...)
+prepare_data(internal, ...)
+
+\method{prepare_data}{categorical}(internal, index_features = NULL, ...)
+
+\method{prepare_data}{copula}(internal, index_features = NULL, ...)
-\method{prepare_data}{independence}(x, index_features = NULL, ...)
+\method{prepare_data}{ctree}(internal, index_features = NULL, ...)
-\method{prepare_data}{empirical}(x, index_features = NULL, ...)
+\method{prepare_data}{empirical}(internal, index_features = NULL, ...)
-\method{prepare_data}{gaussian}(x, index_features = NULL, ...)
+\method{prepare_data}{gaussian}(internal, index_features = NULL, ...)
-\method{prepare_data}{copula}(x, index_features = NULL, ...)
+\method{prepare_data}{independence}(internal, index_features = NULL, ...)
-\method{prepare_data}{ctree}(
- x,
- index_features = NULL,
- mc_cores = 1,
- mc_cores_create_ctree = mc_cores,
- mc_cores_sample_ctree = mc_cores,
- ...
-)
+\method{prepare_data}{timeseries}(internal, index_features = NULL, ...)
}
\arguments{
-\item{x}{Explainer object. See \code{\link{explain}} for more information.}
+\item{internal}{List.
+Holds all parameters, data, functions and computed objects used within \code{\link[=explain]{explain()}}
+The list contains one or more of the elements \code{parameters}, \code{data}, \code{objects}, \code{output}.}
\item{...}{Currently not used.}
-\item{index_features}{List. Default is NULL but if either various methods are being used or various mincriterion are
-used for different numbers of conditioned features, this will be a list with the features to pass.}
-
-\item{mc_cores}{Integer. Only for class \code{ctree} currently. The number of cores to use in paralellization of the
-tree building (\code{create_ctree}) and tree sampling (\code{sample_ctree}). Defaults to 1. Note: Uses
-parallel::mclapply which relies on forking, i.e. uses only 1 core on Windows systems.}
-
-\item{mc_cores_create_ctree}{Integer. Same as \code{mc_cores}, but specific for the tree building function
-#' Defaults to \code{mc_cores}.}
+\item{index_features}{Positive integer vector. Specifies the indices of combinations to apply to the present method.
+\code{NULL} means all combinations. Only used internally.}
-\item{mc_cores_sample_ctree}{Integer. Same as \code{mc_cores}, but specific for the tree building prediction
-function.
-Defaults to \code{mc_cores}.}
+\item{x}{Explainer object. See \code{\link[=explain]{explain()}} for more information.}
\item{seed}{Positive integer. If \code{NULL} the seed will be inherited from the calling environment.}
}
\value{
-A `data.table` containing simulated data passed to \code{\link{prediction}}.
+A data.table containing simulated data passed to prediction().
}
\description{
Generate data used for predictions
diff --git a/man/preprocess_data.Rd b/man/preprocess_data.Rd
deleted file mode 100644
index 5576add6f..000000000
--- a/man/preprocess_data.Rd
+++ /dev/null
@@ -1,44 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/preprocess_data.R
-\name{preprocess_data}
-\alias{preprocess_data}
-\title{Process (check and update) data according to specified feature list}
-\usage{
-preprocess_data(x, feature_list)
-}
-\arguments{
-\item{x}{matrix, data.frame or data.table. The data to check input for and update
-according to the specification in \code{feature_list}.}
-
-\item{feature_list}{List. Output from running \code{\link[shapr:get_data_specs]{get_data_specs}} or
-\code{\link[shapr:get_model_specs]{get_model_specs}}}
-}
-\value{
-List with two named elements: \code{x_dt}: Checked and updated data \code{x} in data.table format, and
-\code{update_feature_list} the output from \code{\link[shapr:check_features]{check_features}}
-}
-\description{
-Process (check and update) data according to specified feature list
-}
-\details{
-This function takes care of all preprocessing and checking of the provided data in \code{x} against
-the feature_list which is typically the output from \code{\link[shapr:get_model_specs]{get_model_specs}}
-}
-\examples{
-# Load example data
-if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- # Split data into test- and training data
- x_train <- data.table::as.data.table(head(Boston))
- x_train[, rad := as.factor(rad)]
- data_features <- get_data_specs(x_train)
- model <- lm(medv ~ lstat + rm + rad + indus, data = x_train)
-
- model_features <- get_model_specs(model)
- preprocess_data(x_train, model_features)
-}
-}
-\author{
-Martin Jullum
-}
-\keyword{internal}
diff --git a/man/process_factor_data.Rd b/man/process_factor_data.Rd
new file mode 100644
index 000000000..50248a79b
--- /dev/null
+++ b/man/process_factor_data.Rd
@@ -0,0 +1,21 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/plot.R
+\name{process_factor_data}
+\alias{process_factor_data}
+\title{Treat factors as numeric values}
+\usage{
+process_factor_data(dt, factor_cols)
+}
+\arguments{
+\item{dt}{data.table to plot}
+
+\item{factor_cols}{Columns that are factors or character}
+}
+\value{
+A list of a lookup table with each factor and level and its numeric value, a data.table
+very similar to the input data, but now with numeric values for factors, and the maximum feature value.
+}
+\description{
+Factors are given a numeric value above the highest numeric value in the data. The value of the different levels
+are sorted by factor and then level.
+}
diff --git a/man/process_groups.Rd b/man/process_groups.Rd
deleted file mode 100644
index d52862aba..000000000
--- a/man/process_groups.Rd
+++ /dev/null
@@ -1,31 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/preprocess_data.R
-\name{process_groups}
-\alias{process_groups}
-\title{Process (check and update names) the group list}
-\usage{
-process_groups(group, feature_labels)
-}
-\arguments{
-\item{group}{List. If \code{NULL} regular feature wise Shapley values are computed.
-If provided, group wise Shapley values are computed. \code{group} then has length equal to
-the number of groups. The list element contains character vectors with the features included
-in each of the different groups.}
-
-\item{feature_labels}{Vector of characters. Contains the feature labels used by the model}
-}
-\value{
-List with two named elements: \code{group}: The input, but with group names if non-existing,
-\code{group_num} a corresponding group list with names replaced by feature number
-}
-\description{
-Process (check and update names) the group list
-}
-\details{
-This function takes care of all preprocessing and checking of the provided data in \code{x} against
-the feature_list which is typically the output from \code{\link[shapr:get_model_specs]{get_model_specs}}
-}
-\author{
-Martin Jullum
-}
-\keyword{internal}
diff --git a/man/reg_forecast_setup.Rd b/man/reg_forecast_setup.Rd
new file mode 100644
index 000000000..85c02f5f1
--- /dev/null
+++ b/man/reg_forecast_setup.Rd
@@ -0,0 +1,25 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/explain_forecast.R
+\name{reg_forecast_setup}
+\alias{reg_forecast_setup}
+\title{Set up exogenous regressors for explanation in a forecast model.}
+\usage{
+reg_forecast_setup(x, horizon, group)
+}
+\arguments{
+\item{x}{A matrix with the exogenous variables.}
+
+\item{horizon}{The forecast horizon.}
+
+\item{group}{The list of endogenous groups, to append exogenous groups to.}
+}
+\value{
+A list containing
+\itemize{
+\item fcast A matrix containing the exogenous observations needed for each observation.
+\item group The list group with the exogenous groups appended.
+}
+}
+\description{
+Set up exogenous regressors for explanation in a forecast model.
+}
diff --git a/man/sample_combinations.Rd b/man/sample_combinations.Rd
index b669e5a64..2e9889b7c 100644
--- a/man/sample_combinations.Rd
+++ b/man/sample_combinations.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/sampling.R
+% Please edit documentation in R/approach_empirical.R
\name{sample_combinations}
\alias{sample_combinations}
\title{Helper function to sample a combination of training and testing rows, which does not risk
diff --git a/man/sample_copula.Rd b/man/sample_copula.Rd
index 245fc9dea..c180f25ca 100644
--- a/man/sample_copula.Rd
+++ b/man/sample_copula.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/sampling.R
+% Please edit documentation in R/approach_copula.R
\name{sample_copula}
\alias{sample_copula}
\title{Sample conditional variables using the Gaussian copula approach}
@@ -10,9 +10,9 @@ sample_copula(
mu,
cov_mat,
m,
- x_test_gaussian,
+ x_explain_gaussian,
x_train,
- x_test
+ x_explain
)
}
\arguments{
@@ -21,10 +21,11 @@ sample_copula(
\item{m}{Positive integer. The total number of features.}
-\item{x_test_gaussian}{Numeric matrix. Contains the observation whose predictions ought to be explained (test data),
+\item{x_explain_gaussian}{Numeric matrix. Contains the observation whose predictions ought
+to be explained (test data),
after quantile-transforming them to standard Gaussian variables.}
-\item{x_test}{Numeric matrix. Contains the features of the observation whose
+\item{x_explain}{Numeric matrix. Contains the features of the observation whose
predictions ought to be explained (test data).}
}
\value{
diff --git a/man/sample_ctree.Rd b/man/sample_ctree.Rd
index 4a47183ec..f95f74383 100644
--- a/man/sample_ctree.Rd
+++ b/man/sample_ctree.Rd
@@ -1,10 +1,10 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/sampling.R
+% Please edit documentation in R/approach_ctree.R
\name{sample_ctree}
\alias{sample_ctree}
\title{Sample ctree variables from a given conditional inference tree}
\usage{
-sample_ctree(tree, n_samples, x_test, x_train, p, sample)
+sample_ctree(tree, n_samples, x_explain, x_train, n_features, sample)
}
\arguments{
\item{tree}{List. Contains tree which is an object of type ctree built from the party package.
@@ -12,12 +12,12 @@ Also contains given_ind, the features to condition upon.}
\item{n_samples}{Numeric. Indicates how many samples to use for MCMC.}
-\item{x_test}{Matrix, data.frame or data.table with the features of the observation whose
-predictions ought to be explained (test data). Dimension \code{1xp} or \code{px1}.}
+\item{x_explain}{Matrix, data.frame or data.table with the features of the observation whose
+predictions ought to be explained (test data). Dimension \verb{1\\timesp} or \verb{p\\times1}.}
\item{x_train}{Matrix, data.frame or data.table with training data.}
-\item{p}{Positive integer. The number of features.}
+\item{n_features}{Positive integer. The number of features.}
\item{sample}{Boolean. True indicates that the method samples from the terminal node
of the tree whereas False indicates that the method takes all the observations if it is
@@ -29,35 +29,6 @@ data.table with \code{n_samples} (conditional) Gaussian samples
\description{
Sample ctree variables from a given conditional inference tree
}
-\examples{
-if (requireNamespace("MASS", quietly = TRUE) & requireNamespace("party", quietly = TRUE)) {
- m <- 10
- n <- 40
- n_samples <- 50
- mu <- rep(1, m)
- cov_mat <- cov(matrix(rnorm(n * m), n, m))
- x_train <- data.table::data.table(MASS::mvrnorm(n, mu, cov_mat))
- x_test <- MASS::mvrnorm(1, mu, cov_mat)
- x_test_dt <- data.table::setDT(as.list(x_test))
- given_ind <- c(4, 7)
- dependent_ind <- (1:dim(x_train)[2])[-given_ind]
- x <- x_train[, given_ind, with = FALSE]
- y <- x_train[, dependent_ind, with = FALSE]
- df <- data.table::data.table(cbind(y, x))
- colnames(df) <- c(paste0("Y", 1:ncol(y)), paste0("V", given_ind))
- ynam <- paste0("Y", 1:ncol(y))
- fmla <- as.formula(paste(paste(ynam, collapse = "+"), "~ ."))
- datact <- party::ctree(fmla, data = df, controls = party::ctree_control(
- minbucket = 7,
- mincriterion = 0.95
- ))
- tree <- list(tree = datact, given_ind = given_ind, dependent_ind = dependent_ind)
- shapr:::sample_ctree(
- tree = tree, n_samples = n_samples, x_test = x_test_dt, x_train = x_train,
- p = length(x_test), sample = TRUE
- )
-}
-}
\author{
Annabelle Redelmeier
}
diff --git a/man/sample_gaussian.Rd b/man/sample_gaussian.Rd
index 1b81f0842..f91312e85 100644
--- a/man/sample_gaussian.Rd
+++ b/man/sample_gaussian.Rd
@@ -1,10 +1,10 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/sampling.R
+% Please edit documentation in R/approach_gaussian.R
\name{sample_gaussian}
\alias{sample_gaussian}
\title{Sample conditional Gaussian variables}
\usage{
-sample_gaussian(index_given, n_samples, mu, cov_mat, m, x_test)
+sample_gaussian(index_given, n_samples, mu, cov_mat, m, x_explain)
}
\arguments{
\item{index_given}{Integer vector. The indices of the features to condition upon. Note that
@@ -12,7 +12,7 @@ sample_gaussian(index_given, n_samples, mu, cov_mat, m, x_test)
\item{m}{Positive integer. The total number of features.}
-\item{x_test}{Numeric matrix. Contains the features of the observation whose
+\item{x_explain}{Numeric matrix. Contains the features of the observation whose
predictions ought to be explained (test data).}
}
\value{
diff --git a/man/setup.Rd b/man/setup.Rd
new file mode 100644
index 000000000..fa75a9b42
--- /dev/null
+++ b/man/setup.Rd
@@ -0,0 +1,147 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/setup.R
+\name{setup}
+\alias{setup}
+\title{check_setup}
+\usage{
+setup(
+ x_train,
+ x_explain,
+ approach,
+ prediction_zero,
+ output_size = 1,
+ n_combinations,
+ group,
+ n_samples,
+ n_batches,
+ seed,
+ keep_samp_for_vS,
+ feature_specs,
+ type = "normal",
+ horizon = NULL,
+ y = NULL,
+ xreg = NULL,
+ train_idx = NULL,
+ explain_idx = NULL,
+ explain_y_lags = NULL,
+ explain_xreg_lags = NULL,
+ group_lags = NULL,
+ timing,
+ init_time,
+ is_python = FALSE,
+ ...
+)
+}
+\arguments{
+\item{x_train}{Matrix or data.frame/data.table.
+Contains the data used to estimate the (conditional) distributions for the features
+needed to properly estimate the conditional expectations in the Shapley formula.}
+
+\item{x_explain}{A matrix or data.frame/data.table.
+Contains the the features, whose predictions ought to be explained.}
+
+\item{approach}{Character vector of length \code{1} or \code{n_features}.
+\code{n_features} equals the total number of features in the model. All elements should,
+either be \code{"gaussian"}, \code{"copula"}, \code{"empirical"}, \code{"ctree"}, \code{"categorical"}, \code{"timeseries"}, or \code{"independence"}.
+See details for more information.}
+
+\item{prediction_zero}{Numeric.
+The prediction value for unseen data, i.e. an estimate of the expected prediction without conditioning on any
+features.
+Typically we set this value equal to the mean of the response variable in our training data, but other choices
+such as the mean of the predictions in the training data are also reasonable.}
+
+\item{output_size}{TODO: Document}
+
+\item{n_combinations}{Integer.
+If \code{group = NULL}, \code{n_combinations} represents the number of unique feature combinations to sample.
+If \code{group != NULL}, \code{n_combinations} represents the number of unique group combinations to sample.
+If \code{n_combinations = NULL}, the exact method is used and all combinations are considered.
+The maximum number of combinations equals \code{2^m}, where \code{m} is the number of features.}
+
+\item{group}{List.
+If \code{NULL} regular feature wise Shapley values are computed.
+If provided, group wise Shapley values are computed. \code{group} then has length equal to
+the number of groups. The list element contains character vectors with the features included
+in each of the different groups.}
+
+\item{n_samples}{Positive integer.
+Indicating the maximum number of samples to use in the
+Monte Carlo integration for every conditional expectation. See also details.}
+
+\item{n_batches}{Positive integer (or NULL).
+Specifies how many batches the total number of feature combinations should be split into when calculating the
+contribution function for each test observation.
+The default value is NULL which uses a reasonable trade-off between RAM allocation and computation speed,
+which depends on \code{approach} and \code{n_combinations}.
+For models with many features, increasing the number of batches reduces the RAM allocation significantly.
+This typically comes with a small increase in computation time.}
+
+\item{seed}{Positive integer.
+Specifies the seed before any randomness based code is being run.
+If \code{NULL} the seed will be inherited from the calling environment.}
+
+\item{keep_samp_for_vS}{Logical.
+Indicates whether the samples used in the Monte Carlo estimation of v_S should be returned
+(in \code{internal$output})}
+
+\item{feature_specs}{List. The output from \code{\link[=get_model_specs]{get_model_specs()}} or \code{\link[=get_data_specs]{get_data_specs()}}.
+Contains the 3 elements:
+\describe{
+\item{labels}{Character vector with the names of each feature.}
+\item{classes}{Character vector with the classes of each features.}
+\item{factor_levels}{Character vector with the levels for any categorical features.}
+}}
+
+\item{type}{Character.
+Either "normal" or "forecast" corresponding to function \code{setup()} is called from,
+correspondingly the type of explanation that should be generated.}
+
+\item{horizon}{Numeric.
+The forecast horizon to explain. Passed to the \code{predict_model} function.}
+
+\item{y}{Matrix, data.frame/data.table or a numeric vector.
+Contains the endogenous variables used to estimate the (conditional) distributions
+needed to properly estimate the conditional expectations in the Shapley formula
+including the observations to be explained.}
+
+\item{xreg}{Matrix, data.frame/data.table or a numeric vector.
+Contains the exogenous variables used to estimate the (conditional) distributions
+needed to properly estimate the conditional expectations in the Shapley formula
+including the observations to be explained.
+As exogenous variables are used contemporaneusly when producing a forecast,
+this item should contain nrow(y) + horizon rows.}
+
+\item{train_idx}{Numeric vector
+The row indices in data and reg denoting points in time to use when estimating the conditional expectations in
+the Shapley value formula.
+If \code{train_idx = NULL} (default) all indices not selected to be explained will be used.}
+
+\item{explain_idx}{Numeric vector
+The row indices in data and reg denoting points in time to explain.}
+
+\item{explain_y_lags}{Numeric vector.
+Denotes the number of lags that should be used for each variable in \code{y} when making a forecast.}
+
+\item{explain_xreg_lags}{Numeric vector.
+If \code{xreg != NULL}, denotes the number of lags that should be used for each variable in \code{xreg} when making a forecast.}
+
+\item{group_lags}{Logical.
+If \code{TRUE} all lags of each variable are grouped together and explained as a group.
+If \code{FALSE} all lags of each variable are explained individually.}
+
+\item{timing}{Logical.
+Whether the timing of the different parts of the \code{explain()} should saved in the model object.}
+
+\item{init_time}{POSIXct-object
+Output from \code{Sys.time()} called at the start of \code{explain()}. Used initialize the timing.}
+
+\item{is_python}{Logical. Indicates whether the function is called from the Python wrapper. Default is FALSE which is
+never changed when calling the function via \code{explain()} in R. The parameter is later used to disallow
+running the AICc-versions of the empirical as that requires data based optimization.}
+
+\item{...}{Further arguments passed to \code{approach}-specific functions.}
+}
+\description{
+check_setup
+}
diff --git a/man/setup_approach.Rd b/man/setup_approach.Rd
new file mode 100644
index 000000000..137a8a0e8
--- /dev/null
+++ b/man/setup_approach.Rd
@@ -0,0 +1,154 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/approach.R, R/approach_categorical.R,
+% R/approach_copula.R, R/approach_ctree.R, R/approach_empirical.R,
+% R/approach_gaussian.R, R/approach_independence.R, R/approach_timeseries.R
+\name{setup_approach}
+\alias{setup_approach}
+\alias{setup_approach.categorical}
+\alias{setup_approach.copula}
+\alias{setup_approach.ctree}
+\alias{setup_approach.empirical}
+\alias{setup_approach.gaussian}
+\alias{setup_approach.independence}
+\alias{setup_approach.timeseries}
+\title{Set up the framework chosen approach}
+\usage{
+setup_approach(internal, ...)
+
+\method{setup_approach}{categorical}(
+ internal,
+ categorical.joint_prob_dt = NULL,
+ categorical.epsilon = 0.001,
+ ...
+)
+
+\method{setup_approach}{copula}(internal, ...)
+
+\method{setup_approach}{ctree}(
+ internal,
+ ctree.mincriterion = 0.95,
+ ctree.minsplit = 20,
+ ctree.minbucket = 7,
+ ctree.sample = TRUE,
+ ...
+)
+
+\method{setup_approach}{empirical}(
+ internal,
+ empirical.type = "fixed_sigma",
+ empirical.eta = 0.95,
+ empirical.fixed_sigma = 0.1,
+ empirical.n_samples_aicc = 1000,
+ empirical.eval_max_aicc = 20,
+ empirical.start_aicc = 0.1,
+ empirical.cov_mat = NULL,
+ model = NULL,
+ predict_model = NULL,
+ ...
+)
+
+\method{setup_approach}{gaussian}(internal, gaussian.mu = NULL, gaussian.cov_mat = NULL, ...)
+
+\method{setup_approach}{independence}(internal, ...)
+
+\method{setup_approach}{timeseries}(
+ internal,
+ timeseries.fixed_sigma_vec = 2,
+ timeseries.bounds = c(NULL, NULL),
+ ...
+)
+}
+\arguments{
+\item{internal}{Not used.}
+
+\item{...}{\code{approach}-specific arguments. See below.}
+
+\item{categorical.joint_prob_dt}{Data.table. (Optional)
+Containing the joint probability distribution for each combination of feature
+values.
+\code{NULL} means it is estimated from the \code{x_train} and \code{x_explain}.}
+
+\item{categorical.epsilon}{Numeric value. (Optional)
+If \code{joint_probability_dt} is not supplied, probabilities/frequencies are
+estimated using \code{x_train}. If certain observations occur in \code{x_train} and NOT in \code{x_explain},
+then epsilon is used as the proportion of times that these observations occurs in the training data.
+In theory, this proportion should be zero, but this causes an error later in the Shapley computation.}
+
+\item{ctree.mincriterion}{Numeric scalar or vector. (default = 0.95)
+Either a scalar or vector of length equal to the number of features in the model.
+Value is equal to 1 - \eqn{\alpha} where \eqn{\alpha} is the nominal level of the conditional independence tests.
+If it is a vector, this indicates which value to use when conditioning on various numbers of features.}
+
+\item{ctree.minsplit}{Numeric scalar. (default = 20)
+Determines minimum value that the sum of the left and right daughter nodes required for a split.}
+
+\item{ctree.minbucket}{Numeric scalar. (default = 7)
+Determines the minimum sum of weights in a terminal node required for a split}
+
+\item{ctree.sample}{Boolean. (default = TRUE)
+If TRUE, then the method always samples \code{n_samples} observations from the leaf nodes (with replacement).
+If FALSE and the number of observations in the leaf node is less than \code{n_samples},
+the method will take all observations in the leaf.
+If FALSE and the number of observations in the leaf node is more than \code{n_samples},
+the method will sample \code{n_samples} observations (with replacement).
+This means that there will always be sampling in the leaf unless
+\code{sample} = FALSE AND the number of obs in the node is less than \code{n_samples}.}
+
+\item{empirical.type}{Character. (default = \code{"fixed_sigma"})
+Should be equal to either \code{"independence"},\code{"fixed_sigma"}, \code{"AICc_each_k"} \code{"AICc_full"}.
+TODO: Describe better what the methods do here.}
+
+\item{empirical.eta}{Numeric. (default = 0.95)
+Needs to be \verb{0 < eta <= 1}.
+Represents the minimum proportion of the total empirical weight that data samples should use.
+If e.g. \code{eta = .8} we will choose the \code{K} samples with the largest weight so that the sum of the weights
+accounts for 80\\% of the total weight.
+\code{eta} is the \eqn{\eta} parameter in equation (15) of Aas et al (2021).}
+
+\item{empirical.fixed_sigma}{Positive numeric scalar. (default = 0.1)
+Represents the kernel bandwidth in the distance computation used when conditioning on all different combinations.
+Only used when \code{empirical.type = "fixed_sigma"}}
+
+\item{empirical.n_samples_aicc}{Positive integer. (default = 1000)
+Number of samples to consider in AICc optimization.
+Only used for \code{empirical.type} is either \code{"AICc_each_k"} or \code{"AICc_full"}.}
+
+\item{empirical.eval_max_aicc}{Positive integer. (default = 20)
+Maximum number of iterations when optimizing the AICc.
+Only used for \code{empirical.type} is either \code{"AICc_each_k"} or \code{"AICc_full"}.}
+
+\item{empirical.start_aicc}{Numeric. (default = 0.1)
+Start value of the \code{sigma} parameter when optimizing the AICc.
+Only used for \code{empirical.type} is either \code{"AICc_each_k"} or \code{"AICc_full"}.}
+
+\item{empirical.cov_mat}{Numeric matrix. (Optional, default = NULL)
+Containing the covariance matrix of the data generating distribution used to define the Mahalanobis distance.
+\code{NULL} means it is estimated from \code{x_train}.}
+
+\item{model}{Objects.
+The model object that ought to be explained.
+See the documentation of \code{\link[=explain]{explain()}} for details.}
+
+\item{predict_model}{Function.
+The prediction function used when \code{model} is not natively supported.
+See the documentation of \code{\link[=explain]{explain()}} for details.}
+
+\item{gaussian.mu}{Numeric vector. (Optional)
+Containing the mean of the data generating distribution.
+\code{NULL} means it is estimated from the \code{x_train}.}
+
+\item{gaussian.cov_mat}{Numeric matrix. (Optional)
+Containing the covariance matrix of the data generating distribution.
+\code{NULL} means it is estimated from the \code{x_train}.}
+
+\item{timeseries.fixed_sigma_vec}{Numeric. (Default = 2)
+Represents the kernel bandwidth in the distance computation. TODO: What length should it have? 1?}
+
+\item{timeseries.bounds}{Numeric vector of length two. (Default = c(NULL, NULL))
+If one or both of these bounds are not NULL, we restrict the sampled time series to be
+between these bounds.
+This is useful if the underlying time series are scaled between 0 and 1, for example.}
+}
+\description{
+The different choices of \code{approach} takes different (optional) parameters, which are forwarded from \code{\link[=explain]{explain()}}.
+}
diff --git a/man/setup_computation.Rd b/man/setup_computation.Rd
new file mode 100644
index 000000000..f731787e5
--- /dev/null
+++ b/man/setup_computation.Rd
@@ -0,0 +1,29 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/setup_computation.R
+\name{setup_computation}
+\alias{setup_computation}
+\title{Sets up everything for the Shapley values computation in \code{\link[=explain]{explain()}}}
+\usage{
+setup_computation(internal, model, predict_model)
+}
+\arguments{
+\item{internal}{List.
+Holds all parameters, data, functions and computed objects used within \code{\link[=explain]{explain()}}
+The list contains one or more of the elements \code{parameters}, \code{data}, \code{objects}, \code{output}.}
+
+\item{model}{Objects.
+The model object that ought to be explained.
+See the documentation of \code{\link[=explain]{explain()}} for details.}
+
+\item{predict_model}{Function.
+The prediction function used when \code{model} is not natively supported.
+See the documentation of \code{\link[=explain]{explain()}} for details.}
+}
+\value{
+List \code{internal}
+It holds all parameters, data, and computed objects used within \code{\link[=explain]{explain()}}.
+The list contains one or more of the elements \code{parameters}, \code{data}, \code{objects}, \code{output}.
+}
+\description{
+Sets up everything for the Shapley values computation in \code{\link[=explain]{explain()}}
+}
diff --git a/man/shapley_weights.Rd b/man/shapley_weights.Rd
index be20a139d..109e68de3 100644
--- a/man/shapley_weights.Rd
+++ b/man/shapley_weights.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/shapley.R
+% Please edit documentation in R/setup_computation.R
\name{shapley_weights}
\alias{shapley_weights}
\title{Calculate Shapley weight}
@@ -13,7 +13,7 @@ shapley_weights(m, N, n_components, weight_zero_m = 10^6)
groups, without replacement, from a sample space consisting of \code{m} different features/feature groups.}
\item{n_components}{Positive integer. Represents the number of features/feature groups you want to sample from
-a feature space consisting of \code{m} unique features/feature groups. Note that \code{ 0 < = n_components <= m}.}
+a feature space consisting of \code{m} unique features/feature groups. Note that \verb{ 0 < = n_components <= m}.}
\item{weight_zero_m}{Positive integer. Represents the Shapley weight for two special
cases, i.e. the case where you have either \code{0} or \code{m} features/feature groups.}
diff --git a/man/shapr-package.Rd b/man/shapr-package.Rd
new file mode 100644
index 000000000..f2ecda286
--- /dev/null
+++ b/man/shapr-package.Rd
@@ -0,0 +1,39 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/shapr-package.R
+\docType{package}
+\name{shapr-package}
+\alias{shapr}
+\alias{shapr-package}
+\title{shapr: Prediction Explanation with Dependence-Aware Shapley Values}
+\description{
+Complex machine learning models are often hard to interpret. However, in many situations it is crucial to understand and explain why a model made a specific prediction. Shapley values is the only method for such prediction explanation framework with a solid theoretical foundation. Previously known methods for estimating the Shapley values do, however, assume feature independence. This package implements the method described in Aas, Jullum and Løland (2019) \href{https://arxiv.org/abs/1903.10464}{arXiv:1903.10464}, which accounts for any feature dependence, and thereby produces more accurate estimates of the true Shapley values.
+}
+\seealso{
+Useful links:
+\itemize{
+ \item \url{https://norskregnesentral.github.io/shapr/}
+ \item \url{https://github.com/NorskRegnesentral/shapr}
+ \item Report bugs at \url{https://github.com/NorskRegnesentral/shapr/issues}
+}
+
+}
+\author{
+\strong{Maintainer}: Martin Jullum \email{Martin.Jullum@nr.no} (\href{https://orcid.org/0000-0003-3908-5155}{ORCID})
+
+Authors:
+\itemize{
+ \item Nikolai Sellereite \email{nikolaisellereite@gmail.com} (\href{https://orcid.org/0000-0002-4671-0337}{ORCID})
+ \item Annabelle Redelmeier \email{Annabelle.Redelmeier@nr.no}
+ \item Jon Lachmann \email{Jon@lachmann.nu}
+}
+
+Other contributors:
+\itemize{
+ \item Anders Løland \email{Anders.Loland@nr.no} [contributor]
+ \item Jens Christian Wahl \email{Jens.Christian.Wahl@nr.no} [contributor]
+ \item Camilla Lingjærde [contributor]
+ \item Norsk Regnesentral [copyright holder, funder]
+}
+
+}
+\keyword{internal}
diff --git a/man/shapr.Rd b/man/shapr.Rd
deleted file mode 100644
index dac7775c7..000000000
--- a/man/shapr.Rd
+++ /dev/null
@@ -1,93 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/shapley.R
-\name{shapr}
-\alias{shapr}
-\title{Create an explainer object with Shapley weights for test data.}
-\usage{
-shapr(x, model, n_combinations = NULL, group = NULL)
-}
-\arguments{
-\item{x}{Numeric matrix or data.frame/data.table. Contains the data used to estimate the (conditional)
-distributions for the features needed to properly estimate the conditional expectations in the Shapley formula.}
-
-\item{model}{The model whose predictions we want to explain. Run
-\code{\link[shapr:get_supported_models]{shapr:::get_supported_models()}}
-for a table of which models \code{shapr} supports natively.}
-
-\item{n_combinations}{Integer. The number of feature combinations to sample. If \code{NULL},
-the exact method is used and all combinations are considered. The maximum number of
-combinations equals \code{2^ncol(x)}.}
-
-\item{group}{List. If \code{NULL} regular feature wise Shapley values are computed.
-If provided, group wise Shapley values are computed. \code{group} then has length equal to
-the number of groups. The list element contains character vectors with the features included
-in each of the different groups.}
-}
-\value{
-Named list that contains the following items:
-\describe{
- \item{exact}{Boolean. Equals \code{TRUE} if \code{n_combinations = NULL} or
- \code{n_combinations < 2^ncol(x)}, otherwise \code{FALSE}.}
- \item{n_features}{Positive integer. The number of columns in \code{x}}
- \item{S}{Binary matrix. The number of rows equals the number of unique combinations, and
- the number of columns equals the total number of features. I.e. let's say we have a case with
- three features. In that case we have \code{2^3 = 8} unique combinations. If the j-th
- observation for the i-th row equals \code{1} it indicates that the j-th feature is present in
- the i-th combination. Otherwise it equals \code{0}.}
- \item{W}{Matrix. This matrix is equal to the matrix \code{R_D} in Equation 7 in the reference
- of \code{link{explain}}. The Shapley value for a test observation will be equal to the matrix-vector product
- of \code{W} and the contribution vector.}
- \item{X}{data.table. Returned object from \code{\link{feature_combinations}}}
- \item{x_train}{data.table. Transformed \code{x} into a data.table.}
- \item{feature_list}{List. The \code{updated_feature_list} output from
- \code{\link[shapr:preprocess_data]{preprocess_data}}}
-}
-
-In addition to the items above, \code{model} and \code{n_combinations} are also present in the returned object.
-}
-\description{
-Create an explainer object with Shapley weights for test data.
-}
-\examples{
-if (requireNamespace("MASS", quietly = TRUE)) {
- # Load example data
- data("Boston", package = "MASS")
- df <- Boston
-
- # Example using the exact method
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
- df0 <- df[, x_var]
- model <- lm(medv ~ lstat + rm + dis + indus, data = df)
- explainer <- shapr(df0, model)
-
- print(nrow(explainer$X))
- # 16 (which equals 2^4)
-
- # Example using approximation
- y_var <- "medv"
- model <- lm(medv ~ ., data = df)
- explainer <- shapr(df, model, n_combinations = 1e3)
-
- print(nrow(explainer$X))
-
- # Example using approximation where n_combinations > 2^m
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
- model <- lm(medv ~ lstat + rm + dis + indus, data = df)
- explainer <- shapr(df0, model, n_combinations = 1e3)
-
- print(nrow(explainer$X))
- # 16 (which equals 2^4)
-
- # Example using groups
- group <- list(A=x_var[1:2], B=x_var[3:4])
-
- explainer_group <- shapr(df0, model, group = group)
- print(nrow(explainer_group$X))
- # 4 (which equals 2^(#groups))
-}
-}
-\author{
-Nikolai Sellereite
-}
diff --git a/man/test_predict_model.Rd b/man/test_predict_model.Rd
new file mode 100644
index 000000000..f428150e0
--- /dev/null
+++ b/man/test_predict_model.Rd
@@ -0,0 +1,25 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/get_predict_model.R
+\name{test_predict_model}
+\alias{test_predict_model}
+\title{Model testing function}
+\usage{
+test_predict_model(x_test, predict_model, model, internal)
+}
+\arguments{
+\item{predict_model}{Function.
+The prediction function used when \code{model} is not natively supported.
+See the documentation of \code{\link[=explain]{explain()}} for details.}
+
+\item{model}{Objects.
+The model object that ought to be explained.
+See the documentation of \code{\link[=explain]{explain()}} for details.}
+
+\item{internal}{List.
+Holds all parameters, data, functions and computed objects used within \code{\link[=explain]{explain()}}
+The list contains one or more of the elements \code{parameters}, \code{data}, \code{objects}, \code{output}.}
+}
+\description{
+Model testing function
+}
+\keyword{internal}
diff --git a/man/update_data.Rd b/man/update_data.Rd
deleted file mode 100644
index c23df278e..000000000
--- a/man/update_data.Rd
+++ /dev/null
@@ -1,41 +0,0 @@
-% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/preprocess_data.R
-\name{update_data}
-\alias{update_data}
-\title{Updates data by reference according to the updater argument.}
-\usage{
-update_data(data, updater)
-}
-\arguments{
-\item{data}{data.table. Data that ought to be updated.}
-
-\item{updater}{List. The object should be the output from
-\code{\link[shapr:check_features]{check_features}}.}
-}
-\value{
-NULL.
-}
-\description{
-\code{data} is updated, i.e. unused columns and factor levels are removed as described in
-\code{updater}. This is done by reference, i.e. updates the object being passed to data even if nothing is
-returned by the function itself.
-}
-\examples{
-# Load example data
-if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- # Split data into test- and training data
- x_train <- data.table::as.data.table(head(Boston))
- x_train[, rad := as.factor(rad)]
- data_features <- get_data_specs(x_train)
- model <- lm(medv ~ lstat + rm + rad + indus, data = x_train)
-
- model_features <- get_model_specs(model)
- updater <- check_features(model_features, data_features)
- update_data(x_train, updater)
-}
-}
-\author{
-Martin Jullum
-}
-\keyword{internal}
diff --git a/man/weight_matrix.Rd b/man/weight_matrix.Rd
index 185e5deef..734160661 100644
--- a/man/weight_matrix.Rd
+++ b/man/weight_matrix.Rd
@@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/shapley.R
+% Please edit documentation in R/setup_computation.R
\name{weight_matrix}
\alias{weight_matrix}
\title{Calculate weighted matrix}
@@ -16,7 +16,7 @@ except combination \code{1} and \code{2^m}.}
\item{is_groupwise}{Logical. Indicating whether group wise Shapley values are to be computed.}
}
\value{
-Numeric matrix. See \code{\link{weight_matrix_cpp}} for more information.
+Numeric matrix. See \code{\link[=weight_matrix_cpp]{weight_matrix_cpp()}} for more information.
}
\description{
Calculate weighted matrix
diff --git a/shapr.Rproj b/shapr.Rproj
index e7b674747..a16a99568 100644
--- a/shapr.Rproj
+++ b/shapr.Rproj
@@ -17,5 +17,6 @@ StripTrailingWhitespace: Yes
BuildType: Package
PackageUseDevtools: Yes
+PackageCleanBeforeInstall: No
PackageInstallArgs: --no-multiarch --with-keep.source --no-lock
-PackageRoxygenize: rd,collate,namespace,vignette
+PackageRoxygenize: rd,collate,namespace
diff --git a/shapr_timing.csv b/shapr_timing.csv
new file mode 100644
index 000000000..a53117d22
--- /dev/null
+++ b/shapr_timing.csv
@@ -0,0 +1,2 @@
+p,n_train,n_test,n_batches,n_cores,approach,min_time,mean_time,median_time,max_time,sys_time_start,sys_time_end,reps,max_n,max_p,rho,sigma,mu_const,beta0,sigma_eps
+4,100,2,6,2,gaussian,0.55644755,0.7457012925,0.7457012925,0.934955035,2022-01-21 11:32:11,2022-01-21 11:32:14,2,1e+05,10,0.3,1,0,1,1
diff --git a/tests/testthat/_snaps/forecast-output.md b/tests/testthat/_snaps/forecast-output.md
new file mode 100644
index 000000000..1049a2e5f
--- /dev/null
+++ b/tests/testthat/_snaps/forecast-output.md
@@ -0,0 +1,1861 @@
+# forecast_output_ar_numeric
+
+ Code
+ (out <- code)
+ Message
+ Note: Feature names extracted from the model contains NA.
+ Consistency checks between model and data is therefore disabled.
+
+ Output
+ explain_idx horizon none Temp.1 Temp.2
+ 1: 152 1 77.88 -0.3972 -1.3912
+ 2: 153 1 77.88 -6.6177 -0.1835
+ 3: 152 2 77.88 -0.3285 -1.2034
+ 4: 153 2 77.88 -6.0208 -0.3371
+ 5: 152 3 77.88 -0.2915 -1.0552
+ 6: 153 3 77.88 -5.2122 -0.2553
+
+# forecast_output_arima_numeric
+
+ Code
+ (out <- code)
+ Message
+ Note: Feature names extracted from the model contains NA.
+ Consistency checks between model and data is therefore disabled.
+
+ Output
+ explain_idx horizon none Temp.1 Temp.2 Wind.1 Wind.2 Wind.F1 Wind.F2
+ 1: 149 1 77.88 -0.9588 -5.044 1.0543 -2.8958 -2.6627 NA
+ 2: 150 1 77.88 1.1553 -3.137 -2.8802 0.7196 -1.4930 NA
+ 3: 149 2 77.88 0.1327 -5.048 0.3337 -2.8249 -2.3014 -1.1764
+ 4: 150 2 77.88 1.6007 -2.399 -2.8146 0.4646 -0.7938 0.4662
+ 5: 149 3 77.88 -1.3878 -5.014 0.7964 -1.3881 -1.9652 -0.3295
+ 6: 150 3 77.88 1.6690 -2.556 -2.3821 0.3835 -0.8644 -0.1648
+ Wind.F3
+ 1: NA
+ 2: NA
+ 3: NA
+ 4: NA
+ 5: 0.5630
+ 6: -0.7615
+
+# forecast_output_arima_numeric_no_xreg
+
+ Code
+ (out <- code)
+ Message
+ Note: Feature names extracted from the model contains NA.
+ Consistency checks between model and data is therefore disabled.
+
+ Output
+ explain_idx horizon none Temp.1 Temp.2
+ 1: 149 1 77.88 -1.7273 -7.033
+ 2: 150 1 77.88 -0.2229 -4.492
+ 3: 149 2 77.88 -1.7273 -7.033
+ 4: 150 2 77.88 -0.2229 -4.492
+ 5: 149 3 77.88 -1.7273 -7.033
+ 6: 150 3 77.88 -0.2229 -4.492
+
+# forecast_output_forecast_ARIMA_group_numeric
+
+ Code
+ (out <- code)
+ Message
+ Note: Feature names extracted from the model contains NA.
+ Consistency checks between model and data is therefore disabled.
+
+ Output
+ explain_idx horizon none Temp Wind
+ 1: 149 1 77.88 -5.3063 -5.201
+ 2: 150 1 77.88 -1.4435 -4.192
+ 3: 149 2 77.88 -3.6824 -7.202
+ 4: 150 2 77.88 -0.2568 -3.220
+ 5: 149 3 77.88 -6.5216 -2.204
+ 6: 150 3 77.88 -1.2125 -3.463
+
+# forecast_output_arima_numeric_no_lags
+
+ Code
+ (out <- code)
+ Message
+ Note: Feature names extracted from the model contains NA.
+ Consistency checks between model and data is therefore disabled.
+
+ Warning
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ data length [2] is not a sub-multiple or multiple of the number of rows [3]
+ Output
+ explain_idx horizon none Wind.F1 Wind.F2 Wind.F3
+ 1: 149 1 77.88 -9.391 NA NA
+ 2: 150 1 77.88 -4.142 NA NA
+ 3: 149 2 77.88 -4.699 -4.6989 NA
+ 4: 150 2 77.88 -2.074 -2.0745 NA
+ 5: 149 3 77.88 -3.130 -4.6234 -3.130
+ 6: 150 3 77.88 -1.381 -0.7147 -1.381
+
diff --git a/tests/testthat/_snaps/forecast-output/forecast_output_ar_numeric.rds b/tests/testthat/_snaps/forecast-output/forecast_output_ar_numeric.rds
new file mode 100644
index 000000000..aa82c500f
Binary files /dev/null and b/tests/testthat/_snaps/forecast-output/forecast_output_ar_numeric.rds differ
diff --git a/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric.rds b/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric.rds
new file mode 100644
index 000000000..1fc18b15f
Binary files /dev/null and b/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric.rds differ
diff --git a/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric_no_lags.rds b/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric_no_lags.rds
new file mode 100644
index 000000000..cba9f0c06
Binary files /dev/null and b/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric_no_lags.rds differ
diff --git a/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric_no_xreg.rds b/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric_no_xreg.rds
new file mode 100644
index 000000000..ad9be5cde
Binary files /dev/null and b/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric_no_xreg.rds differ
diff --git a/tests/testthat/_snaps/forecast-output/forecast_output_forecast_ARIMA_group_numeric.rds b/tests/testthat/_snaps/forecast-output/forecast_output_forecast_ARIMA_group_numeric.rds
new file mode 100644
index 000000000..940357268
Binary files /dev/null and b/tests/testthat/_snaps/forecast-output/forecast_output_forecast_ARIMA_group_numeric.rds differ
diff --git a/tests/testthat/_snaps/forecast-setup.md b/tests/testthat/_snaps/forecast-setup.md
new file mode 100644
index 000000000..8ae2d017f
--- /dev/null
+++ b/tests/testthat/_snaps/forecast-setup.md
@@ -0,0 +1,274 @@
+# error with custom model without providing predict_model
+
+ Code
+ model_custom_arima_temp <- model_arima_temp
+ class(model_custom_arima_temp) <- "whatever"
+ explain_forecast(model = model_custom_arima_temp, y = data[1:150, "Temp"],
+ xreg = data[, "Wind"], train_idx = 2:148, explain_idx = 149:150,
+ explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1)
+ Message
+ Note: You passed a model to explain() which is not natively supported, and did not supply a 'get_model_specs' function to explain().
+ Consistency checks between model and data is therefore disabled.
+
+ Error
+ You passed a model to explain() which is not natively supported, and did not supply the 'predict_model' function to explain().
+ See ?shapr::explain or the vignette for more information on how to run shapr with custom models.
+
+# erroneous input: `x_train/x_explain`
+
+ Code
+ y_wrong_format <- data[, c("Temp", "Wind")]
+ explain_forecast(model = model_arima_temp, y = y_wrong_format, xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2,
+ explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar,
+ n_batches = 1)
+ Error
+ `y` has 2 columns (Temp,Wind).
+ `explain_y_lags` has length 1.
+ These two should match.
+
+---
+
+ Code
+ xreg_wrong_format <- data[, c("Temp", "Wind")]
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = xreg_wrong_format,
+ train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2,
+ explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar,
+ n_batches = 1)
+ Error
+ `xreg` has 2 columns (Temp,Wind).
+ `explain_xreg_lags` has length 1.
+ These two should match.
+
+---
+
+ Code
+ xreg_no_column_names <- data[, "Wind"]
+ names(xreg_no_column_names) <- NULL
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = xreg_no_column_names,
+ train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2,
+ explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar,
+ n_batches = 1)
+ Error
+ `xreg` misses column names.
+
+# erroneous input: `model`
+
+ Code
+ explain_forecast(y = data[1:150, "Temp"], xreg = data[, "Wind"], train_idx = 2:
+ 148, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = 2,
+ horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1)
+ Error
+ argument "model" is missing, with no default
+
+# erroneous input: `prediction_zero`
+
+ Code
+ p0_wrong_length <- p0_ar[1:2]
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2,
+ explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_wrong_length,
+ n_batches = 1)
+ Error
+ `prediction_zero` (77.8823529411765, 77.8823529411765) must be numeric and match the output size of the model (3).
+
+# erroneous input: `n_combinations`
+
+ Code
+ horizon <- 3
+ explain_y_lags <- 2
+ explain_xreg_lags <- 2
+ n_combinations <- horizon + explain_y_lags + explain_xreg_lags - 1
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = explain_y_lags,
+ explain_xreg_lags = explain_xreg_lags, horizon = horizon, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1, n_combinations = n_combinations,
+ group_lags = FALSE)
+ Message
+ Note: Feature names extracted from the model contains NA.
+ Consistency checks between model and data is therefore disabled.
+
+ Error
+ `n_combinations` (6) has to be greater than the number of components to decompose the forecast onto:
+ `horizon` (3) + `explain_y_lags` (2) + sum(`explain_xreg_lags`) (2).
+
+---
+
+ Code
+ horizon <- 3
+ explain_y_lags <- 2
+ explain_xreg_lags <- 2
+ n_combinations <- 1 + 1
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = explain_y_lags,
+ explain_xreg_lags = explain_xreg_lags, horizon = horizon, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1, n_combinations = n_combinations,
+ group_lags = TRUE)
+ Message
+ Note: Feature names extracted from the model contains NA.
+ Consistency checks between model and data is therefore disabled.
+
+ Error
+ `n_combinations` (2) has to be greater than the number of components to decompose the forecast onto:
+ ncol(`xreg`) (1) + 1
+
+# erroneous input: `train_idx`
+
+ Code
+ train_idx_too_short <- 2
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = train_idx_too_short, explain_idx = 149:150,
+ explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1)
+ Error
+ `train_idx` must be a vector of positive finite integers and length > 1.
+
+---
+
+ Code
+ train_idx_not_integer <- c(3:5) + 0.1
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = train_idx_not_integer, explain_idx = 149:150,
+ explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1)
+ Error
+ `train_idx` must be a vector of positive finite integers and length > 1.
+
+---
+
+ Code
+ train_idx_out_of_range <- 1:5
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = train_idx_out_of_range, explain_idx = 149:150,
+ explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1)
+ Error
+ The train (`train_idx`) and explain (`explain_idx`) indices must fit in the lagged data.
+ The lagged data begins at index 2 and ends at index 150.
+
+# erroneous input: `explain_idx`
+
+ Code
+ explain_idx_not_integer <- c(3:5) + 0.1
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = explain_idx_not_integer,
+ explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1)
+ Error
+ `explain_idx` must be a vector of positive finite integers.
+
+---
+
+ Code
+ explain_idx_out_of_range <- 1:5
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = explain_idx_out_of_range,
+ explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1)
+ Error
+ The train (`train_idx`) and explain (`explain_idx`) indices must fit in the lagged data.
+ The lagged data begins at index 2 and ends at index 150.
+
+# erroneous input: `explain_y_lags`
+
+ Code
+ explain_y_lags_negative <- -1
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = explain_y_lags_negative,
+ explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar,
+ n_batches = 1)
+ Error
+ `explain_y_lags` must be a vector of positive finite integers.
+
+---
+
+ Code
+ explain_y_lags_not_integer <- 2.1
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = explain_y_lags_not_integer,
+ explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar,
+ n_batches = 1)
+ Error
+ `explain_y_lags` must be a vector of positive finite integers.
+
+---
+
+ Code
+ explain_y_lags_more_than_one <- c(1, 2)
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = explain_y_lags_more_than_one,
+ explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar,
+ n_batches = 1)
+ Error
+ `y` has 1 columns (Temp).
+ `explain_y_lags` has length 2.
+ These two should match.
+
+---
+
+ Code
+ explain_y_lags_zero <- 0
+ explain_forecast(model = model_arima_temp_noxreg, y = data[1:150, "Temp"],
+ train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 0, horizon = 3,
+ approach = "independence", prediction_zero = p0_ar, n_batches = 1)
+ Error
+ `explain_y_lags=0` is not allowed for models without exogeneous variables
+
+# erroneous input: `explain_x_lags`
+
+ Code
+ explain_xreg_lags_negative <- -2
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2,
+ explain_xreg_lags = explain_xreg_lags_negative, horizon = 3, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1)
+ Error
+ `explain_xreg_lags` must be a vector of positive finite integers.
+
+---
+
+ Code
+ explain_xreg_lags_not_integer <- 2.1
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2,
+ explain_xreg_lags = explain_xreg_lags_not_integer, horizon = 3, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1)
+ Error
+ `explain_xreg_lags` must be a vector of positive finite integers.
+
+---
+
+ Code
+ explain_x_lags_wrong_length <- c(1, 2)
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2,
+ explain_xreg_lags = explain_x_lags_wrong_length, horizon = 3, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1)
+ Error
+ `xreg` has 1 columns (Wind).
+ `explain_xreg_lags` has length 2.
+ These two should match.
+
+# erroneous input: `horizon`
+
+ Code
+ horizon_negative <- -2
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2,
+ explain_xreg_lags = 2, horizon = horizon_negative, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1)
+ Error
+ `horizon` must be a vector (or scalar) of positive integers.
+
+---
+
+ Code
+ horizon_not_integer <- 2.1
+ explain_forecast(model = model_arima_temp, y = data[1:150, "Temp"], xreg = data[,
+ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2,
+ explain_xreg_lags = 2, horizon = horizon_not_integer, approach = "independence",
+ prediction_zero = p0_ar, n_batches = 1)
+ Error
+ `horizon` must be a vector (or scalar) of positive integers.
+
diff --git a/tests/testthat/_snaps/output.md b/tests/testthat/_snaps/output.md
new file mode 100644
index 000000000..bdde7a3df
--- /dev/null
+++ b/tests/testthat/_snaps/output.md
@@ -0,0 +1,274 @@
+# output_lm_numeric_independence
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -4.537 8.269 17.517 -5.581 -3.066
+ 2: 42.44 2.250 -3.345 -5.232 -5.581 -1.971
+ 3: 42.44 3.708 -18.610 -1.440 -2.541 1.316
+
+# output_lm_numeric_empirical
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -13.252 15.541 12.826 -5.77179 3.259
+ 2: 42.44 2.758 -3.325 -7.992 -7.12800 1.808
+ 3: 42.44 6.805 -22.126 3.730 -0.09235 -5.885
+
+# output_lm_numeric_empirical_n_combinations
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -5.795 15.320 8.557 -7.547 2.066
+ 2: 42.44 3.266 -3.252 -7.693 -7.663 1.462
+ 3: 42.44 4.290 -24.395 6.739 -1.006 -3.197
+
+# output_lm_numeric_empirical_independence
+
+ Code
+ (out <- code)
+ Warning
+ Using empirical.type = 'independence' for approach = 'empirical' is deprecated.
+ Please use approach = 'independence' instead.
+ Message
+
+ Success with message:
+ empirical.eta force set to 1 for empirical.type = 'independence'
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -4.537 8.269 17.517 -5.581 -3.066
+ 2: 42.44 2.250 -3.345 -5.232 -5.581 -1.971
+ 3: 42.44 3.708 -18.610 -1.440 -2.541 1.316
+
+# output_lm_numeric_empirical_AICc_each
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -15.66 6.823 17.5092 0.2463 3.6847
+ 2: 42.44 10.70 -1.063 -10.6804 -13.0305 0.1983
+ 3: 42.44 14.65 -19.946 0.9675 -7.3433 -5.8946
+
+# output_lm_numeric_empirical_AICc_full
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -14.98 6.3170 17.4103 0.2876 3.5623
+ 2: 42.44 12.42 0.1482 -10.2338 -16.4096 0.1967
+ 3: 42.44 15.74 -19.7250 0.9992 -8.6950 -5.8886
+
+# output_lm_numeric_gaussian
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -8.545 7.779 14.586 0.4475 -1.6653
+ 2: 42.44 4.826 -4.295 -11.655 -1.1250 -1.6309
+ 3: 42.44 7.163 -25.491 0.368 -0.5455 0.9377
+
+# output_lm_numeric_copula
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -6.371 7.355 14.470 -0.6108 -2.241
+ 2: 42.44 4.115 -4.159 -9.980 -1.9378 -1.917
+ 3: 42.44 5.932 -25.086 1.857 -1.3624 1.090
+
+# output_lm_numeric_ctree
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -9.124 9.509 17.139 -1.4711 -3.451
+ 2: 42.44 5.342 -6.097 -8.232 -2.8129 -2.079
+ 3: 42.44 6.901 -21.079 -4.687 0.1494 1.146
+
+# output_lm_categorical_ctree
+
+ Code
+ (out <- code)
+ Output
+ none Month_factor Ozone_sub30_factor Solar.R_factor Wind_factor
+ 1: 42.44 -6.206 15.38 -6.705 -2.973
+ 2: 42.44 -5.764 -17.71 21.866 -13.219
+ 3: 42.44 7.101 -21.78 1.730 -5.413
+
+# output_lm_categorical_categorical
+
+ Code
+ (out <- code)
+ Output
+ none Month_factor Ozone_sub30_factor Solar.R_factor Wind_factor
+ 1: 42.44 13.656 -19.73 4.369 -16.659
+ 2: 42.44 -5.448 11.31 -11.445 5.078
+ 3: 42.44 -7.493 -12.27 19.672 -14.744
+
+# output_lm_categorical_independence
+
+ Code
+ (out <- code)
+ Output
+ none Month_factor Ozone_sub30_factor Solar.R_factor Wind_factor
+ 1: 42.44 -5.252 13.95 -7.041 -2.167
+ 2: 42.44 -5.252 -15.61 20.086 -14.050
+ 3: 42.44 4.833 -15.61 0.596 -8.178
+
+# output_lm_ts_timeseries
+
+ Code
+ (out <- code)
+ Output
+ none S1 S2 S3 S4
+ 1: 4.895 -0.5261 0.7831 -0.21023 -0.3885
+ 2: 4.895 -0.6310 1.6288 -0.04498 -2.9298
+
+# output_lm_numeric_comb1
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -8.580 7.999 14.3608 0.3719 -1.5505
+ 2: 42.44 5.078 -5.014 -12.0644 -0.8963 -0.9825
+ 3: 42.44 7.276 -25.448 0.3953 -0.3868 0.5959
+
+# output_lm_numeric_comb2
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -8.957 9.400 17.061 -1.4678210 -3.435
+ 2: 42.44 5.307 -5.932 -8.126 -2.9311283 -2.198
+ 3: 42.44 6.913 -20.969 -4.539 -0.0004225 1.026
+
+# output_lm_numeric_comb3
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -4.537 8.269 17.517 -5.581 -3.066
+ 2: 42.44 2.250 -3.345 -5.232 -5.581 -1.971
+ 3: 42.44 3.708 -18.610 -1.440 -2.541 1.316
+
+# output_lm_mixed_independence
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Day Month_factor
+ 1: 42.44 -4.730 7.750 17.753 -2.601 -7.588
+ 2: 42.44 2.338 -3.147 -5.310 -1.676 -7.588
+ 3: 42.44 3.857 -17.469 -1.466 1.099 3.379
+
+# output_lm_mixed_ctree
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Day Month_factor
+ 1: 42.44 -9.165 11.815 13.184 -0.4473 -4.802
+ 2: 42.44 3.652 -5.782 -6.524 -0.4349 -6.295
+ 3: 42.44 6.268 -21.441 -7.323 1.6330 10.262
+
+# output_lm_mixed_comb
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Day Month_factor
+ 1: 42.44 -9.153 11.492 13.340 -0.2291 -4.866
+ 2: 42.44 3.936 -5.765 -6.403 -0.4462 -6.704
+ 3: 42.44 6.129 -21.416 -7.208 1.5514 10.344
+
+# output_custom_lm_numeric_independence_1
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -4.537 8.269 17.517 -5.581 -3.066
+ 2: 42.44 2.250 -3.345 -5.232 -5.581 -1.971
+ 3: 42.44 3.708 -18.610 -1.440 -2.541 1.316
+
+# output_custom_lm_numeric_independence_2
+
+ Code
+ (out <- code)
+ Message
+ Note: You passed a model to explain() which is not natively supported, and did not supply a 'get_model_specs' function to explain().
+ Consistency checks between model and data is therefore disabled.
+
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -4.537 8.269 17.517 -5.581 -3.066
+ 2: 42.44 2.250 -3.345 -5.232 -5.581 -1.971
+ 3: 42.44 3.708 -18.610 -1.440 -2.541 1.316
+
+# output_custom_xgboost_mixed_dummy_ctree
+
+ Code
+ (out <- code)
+ Message
+ Note: You passed a model to explain() which is not natively supported, and did not supply a 'get_model_specs' function to explain().
+ Consistency checks between model and data is therefore disabled.
+
+ Output
+ none Solar.R Wind Temp Day Month_factor
+ 1: 42.44 -5.603 13.05 20.43 0.08508 -0.2664
+ 2: 42.44 4.645 -12.57 -16.65 1.29133 -2.1574
+ 3: 42.44 5.451 -14.01 -19.72 1.32503 6.3851
+
+# output_lm_numeric_interaction
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind
+ 1: 42.44 -13.818 10.579
+ 2: 42.44 4.642 -6.287
+ 3: 42.44 4.452 -34.602
+
+# output_lm_numeric_ctree_parallelized
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -9.124 9.509 17.139 -1.4711 -3.451
+ 2: 42.44 5.342 -6.097 -8.232 -2.8129 -2.079
+ 3: 42.44 6.901 -21.079 -4.687 0.1494 1.146
+
+# output_lm_numeric_independence_more_batches
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -4.537 8.269 17.517 -5.581 -3.066
+ 2: 42.44 2.250 -3.345 -5.232 -5.581 -1.971
+ 3: 42.44 3.708 -18.610 -1.440 -2.541 1.316
+
+# output_lm_numeric_empirical_progress
+
+ Code
+ (out <- code)
+ Output
+ none Solar.R Wind Temp Month Day
+ 1: 42.44 -13.252 15.541 12.826 -5.77179 3.259
+ 2: 42.44 2.758 -3.325 -7.992 -7.12800 1.808
+ 3: 42.44 6.805 -22.126 3.730 -0.09235 -5.885
+
diff --git a/tests/testthat/_snaps/output/output_custom_lm_numeric_independence_1.rds b/tests/testthat/_snaps/output/output_custom_lm_numeric_independence_1.rds
new file mode 100644
index 000000000..30dc540db
Binary files /dev/null and b/tests/testthat/_snaps/output/output_custom_lm_numeric_independence_1.rds differ
diff --git a/tests/testthat/_snaps/output/output_custom_lm_numeric_independence_2.rds b/tests/testthat/_snaps/output/output_custom_lm_numeric_independence_2.rds
new file mode 100644
index 000000000..30dc540db
Binary files /dev/null and b/tests/testthat/_snaps/output/output_custom_lm_numeric_independence_2.rds differ
diff --git a/tests/testthat/_snaps/output/output_custom_xgboost_mixed_dummy_ctree.rds b/tests/testthat/_snaps/output/output_custom_xgboost_mixed_dummy_ctree.rds
new file mode 100644
index 000000000..c1308a564
Binary files /dev/null and b/tests/testthat/_snaps/output/output_custom_xgboost_mixed_dummy_ctree.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_categorical_ctree.rds b/tests/testthat/_snaps/output/output_lm_categorical_ctree.rds
new file mode 100644
index 000000000..50689a9a0
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_categorical_ctree.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_categorical_independence.rds b/tests/testthat/_snaps/output/output_lm_categorical_independence.rds
new file mode 100644
index 000000000..27e1ea0de
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_categorical_independence.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_categorical_method.rds b/tests/testthat/_snaps/output/output_lm_categorical_method.rds
new file mode 100644
index 000000000..c2a60c56a
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_categorical_method.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_mixed_comb.rds b/tests/testthat/_snaps/output/output_lm_mixed_comb.rds
new file mode 100644
index 000000000..820e80c24
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_mixed_comb.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_mixed_ctree.rds b/tests/testthat/_snaps/output/output_lm_mixed_ctree.rds
new file mode 100644
index 000000000..01be36e5d
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_mixed_ctree.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_mixed_independence.rds b/tests/testthat/_snaps/output/output_lm_mixed_independence.rds
new file mode 100644
index 000000000..fab944493
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_mixed_independence.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_comb1.rds b/tests/testthat/_snaps/output/output_lm_numeric_comb1.rds
new file mode 100644
index 000000000..0797bd2e1
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_comb1.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_comb2.rds b/tests/testthat/_snaps/output/output_lm_numeric_comb2.rds
new file mode 100644
index 000000000..38e4fa7f6
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_comb2.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_comb3.rds b/tests/testthat/_snaps/output/output_lm_numeric_comb3.rds
new file mode 100644
index 000000000..2f3a2ea1e
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_comb3.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_copula.rds b/tests/testthat/_snaps/output/output_lm_numeric_copula.rds
new file mode 100644
index 000000000..27daa2dfa
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_copula.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_ctree.rds b/tests/testthat/_snaps/output/output_lm_numeric_ctree.rds
new file mode 100644
index 000000000..8c7e3d081
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_ctree.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_ctree_parallelized.rds b/tests/testthat/_snaps/output/output_lm_numeric_ctree_parallelized.rds
new file mode 100644
index 000000000..8c7e3d081
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_ctree_parallelized.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_empirical.rds b/tests/testthat/_snaps/output/output_lm_numeric_empirical.rds
new file mode 100644
index 000000000..dea78e151
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_empirical.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_empirical_AICc_each.rds b/tests/testthat/_snaps/output/output_lm_numeric_empirical_AICc_each.rds
new file mode 100644
index 000000000..dc96fc5ec
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_empirical_AICc_each.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_empirical_AICc_full.rds b/tests/testthat/_snaps/output/output_lm_numeric_empirical_AICc_full.rds
new file mode 100644
index 000000000..7e54a8045
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_empirical_AICc_full.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_empirical_independence.rds b/tests/testthat/_snaps/output/output_lm_numeric_empirical_independence.rds
new file mode 100644
index 000000000..b4091beec
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_empirical_independence.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_empirical_n_combinations.rds b/tests/testthat/_snaps/output/output_lm_numeric_empirical_n_combinations.rds
new file mode 100644
index 000000000..f9601b8bc
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_empirical_n_combinations.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_empirical_progress.rds b/tests/testthat/_snaps/output/output_lm_numeric_empirical_progress.rds
new file mode 100644
index 000000000..385643d71
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_empirical_progress.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_gaussian.rds b/tests/testthat/_snaps/output/output_lm_numeric_gaussian.rds
new file mode 100644
index 000000000..69c966f54
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_gaussian.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_independence.rds b/tests/testthat/_snaps/output/output_lm_numeric_independence.rds
new file mode 100644
index 000000000..921ccfbe4
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_independence.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_independence_n_batches_10.rds b/tests/testthat/_snaps/output/output_lm_numeric_independence_n_batches_10.rds
new file mode 100644
index 000000000..340c78165
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_independence_n_batches_10.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_numeric_interaction.rds b/tests/testthat/_snaps/output/output_lm_numeric_interaction.rds
new file mode 100644
index 000000000..943c3e067
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_numeric_interaction.rds differ
diff --git a/tests/testthat/_snaps/output/output_lm_timeseries_method.rds b/tests/testthat/_snaps/output/output_lm_timeseries_method.rds
new file mode 100644
index 000000000..03a302eb8
Binary files /dev/null and b/tests/testthat/_snaps/output/output_lm_timeseries_method.rds differ
diff --git a/tests/testthat/_snaps/plot/bar-plot-default.svg b/tests/testthat/_snaps/plot/bar-plot-default.svg
new file mode 100644
index 000000000..cc5467f60
--- /dev/null
+++ b/tests/testthat/_snaps/plot/bar-plot-default.svg
@@ -0,0 +1,222 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+42.44
+-2.60
+-4.73
+-7.59
+ 7.75
+17.75
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 42.44
+ 1.10
+ -1.47
+ 3.38
+ 3.86
+-17.47
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+42.44
+-1.68
+ 2.34
+-3.15
+-5.31
+-7.59
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+id: 3, pred = 31.84
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+id: 1, pred = 53.03
+
+
+
+
+
+
+
+
+
+
+id: 2, pred = 27.06
+
+
+
+
+
+
+
+-20
+0
+20
+40
+
+
+
+
+
+
+
+-10
+0
+10
+20
+30
+40
+
+
+
+
+
+
+
+-10
+0
+10
+20
+30
+40
+
+Day = 9
+Solar.R = 230
+Wind = 10.9
+Temp = 75
+Month_factor = 9
+None
+
+
+
+
+
+
+
+Day = 5
+Solar.R = 95
+Month_factor = 9
+Wind = 7.4
+Temp = 87
+None
+
+
+
+
+
+
+
+Day = 21
+Temp = 77
+Month_factor = 8
+Solar.R = 259
+Wind = 15.5
+None
+
+
+
+
+
+
+Feature contribution
+Feature
+
+
+
+Increases
+Decreases
+Shapley value prediction explanation
+
+
diff --git a/tests/testthat/_snaps/plot/bar-plot-digits-5.svg b/tests/testthat/_snaps/plot/bar-plot-digits-5.svg
new file mode 100644
index 000000000..52f8d79c0
--- /dev/null
+++ b/tests/testthat/_snaps/plot/bar-plot-digits-5.svg
@@ -0,0 +1,222 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+42.4444
+-2.6010
+-4.7299
+-7.5881
+ 7.7495
+17.7533
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 42.4444
+ 1.0987
+ -1.4661
+ 3.3792
+ 3.8567
+-17.4686
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+42.4444
+-1.6761
+ 2.3384
+-3.1472
+-5.3100
+-7.5881
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+id: 3, pred = 31.8443
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+id: 1, pred = 53.0282
+
+
+
+
+
+
+
+
+
+
+id: 2, pred = 27.0614
+
+
+
+
+
+
+
+-20
+0
+20
+40
+
+
+
+
+
+
+
+-10
+0
+10
+20
+30
+40
+
+
+
+
+
+
+
+-10
+0
+10
+20
+30
+40
+
+Day = 9
+Solar.R = 230
+Wind = 10.9
+Temp = 75
+Month_factor = 9
+None
+
+
+
+
+
+
+
+Day = 5
+Solar.R = 95
+Month_factor = 9
+Wind = 7.4
+Temp = 87
+None
+
+
+
+
+
+
+
+Day = 21
+Temp = 77
+Month_factor = 8
+Solar.R = 259
+Wind = 15.5
+None
+
+
+
+
+
+
+Feature contribution
+Feature
+
+
+
+Increases
+Decreases
+Shapley value prediction explanation
+
+
diff --git a/tests/testthat/_snaps/plot/bar-plot-index-x-explain-1.svg b/tests/testthat/_snaps/plot/bar-plot-index-x-explain-1.svg
new file mode 100644
index 000000000..2a5703d48
--- /dev/null
+++ b/tests/testthat/_snaps/plot/bar-plot-index-x-explain-1.svg
@@ -0,0 +1,90 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+42.44
+-2.60
+-4.73
+-7.59
+ 7.75
+17.75
+
+
+
+
+
+
+
+
+
+
+id: 1, pred = 53.03
+
+
+
+
+
+
+
+
+
+-10
+0
+10
+20
+30
+40
+
+Day = 5
+Solar.R = 95
+Month_factor = 9
+Wind = 7.4
+Temp = 87
+None
+
+
+
+
+
+
+Feature contribution
+Feature
+
+
+
+Increases
+Decreases
+Shapley value prediction explanation
+
+
diff --git a/tests/testthat/_snaps/plot/bar-plot-new-colors.svg b/tests/testthat/_snaps/plot/bar-plot-new-colors.svg
new file mode 100644
index 000000000..e874968cd
--- /dev/null
+++ b/tests/testthat/_snaps/plot/bar-plot-new-colors.svg
@@ -0,0 +1,222 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+42.44
+-2.60
+-4.73
+-7.59
+ 7.75
+17.75
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 42.44
+ 1.10
+ -1.47
+ 3.38
+ 3.86
+-17.47
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+42.44
+-1.68
+ 2.34
+-3.15
+-5.31
+-7.59
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+id: 3, pred = 31.84
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+id: 1, pred = 53.03
+
+
+
+
+
+
+
+
+
+
+id: 2, pred = 27.06
+
+
+
+
+
+
+
+-20
+0
+20
+40
+
+
+
+
+
+
+
+-10
+0
+10
+20
+30
+40
+
+
+
+
+
+
+
+-10
+0
+10
+20
+30
+40
+
+Day = 9
+Solar.R = 230
+Wind = 10.9
+Temp = 75
+Month_factor = 9
+None
+
+
+
+
+
+
+
+Day = 5
+Solar.R = 95
+Month_factor = 9
+Wind = 7.4
+Temp = 87
+None
+
+
+
+
+
+
+
+Day = 21
+Temp = 77
+Month_factor = 8
+Solar.R = 259
+Wind = 15.5
+None
+
+
+
+
+
+
+Feature contribution
+Feature
+
+
+
+Increases
+Decreases
+Shapley value prediction explanation
+
+
diff --git a/tests/testthat/_snaps/plot/bar-plot-no-phi0.svg b/tests/testthat/_snaps/plot/bar-plot-no-phi0.svg
new file mode 100644
index 000000000..1df65f2d6
--- /dev/null
+++ b/tests/testthat/_snaps/plot/bar-plot-no-phi0.svg
@@ -0,0 +1,200 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+-2.60
+-4.73
+-7.59
+ 7.75
+17.75
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 1.10
+ -1.47
+ 3.38
+ 3.86
+-17.47
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+-1.68
+ 2.34
+-3.15
+-5.31
+-7.59
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+id: 3, pred = 31.84
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+id: 1, pred = 53.03
+
+
+
+
+
+
+
+
+
+
+id: 2, pred = 27.06
+
+
+
+
+
+
+
+-15
+-10
+-5
+0
+
+
+
+0
+10
+
+
+
+
+
+
+-7.5
+-5.0
+-2.5
+0.0
+2.5
+
+Day = 9
+Solar.R = 230
+Wind = 10.9
+Temp = 75
+Month_factor = 9
+
+
+
+
+
+
+Day = 5
+Solar.R = 95
+Month_factor = 9
+Wind = 7.4
+Temp = 87
+
+
+
+
+
+
+Day = 21
+Temp = 77
+Month_factor = 8
+Solar.R = 259
+Wind = 15.5
+
+
+
+
+
+Feature contribution
+Feature
+
+
+
+Increases
+Decreases
+Shapley value prediction explanation
+
+
diff --git a/tests/testthat/_snaps/plot/bar-plot-order-original.svg b/tests/testthat/_snaps/plot/bar-plot-order-original.svg
new file mode 100644
index 000000000..09928441b
--- /dev/null
+++ b/tests/testthat/_snaps/plot/bar-plot-order-original.svg
@@ -0,0 +1,222 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+42.44
+-7.59
+-2.60
+17.75
+ 7.75
+-4.73
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 42.44
+ 3.38
+ 1.10
+ -1.47
+-17.47
+ 3.86
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+42.44
+-7.59
+-1.68
+-5.31
+-3.15
+ 2.34
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+id: 3, pred = 31.84
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+id: 1, pred = 53.03
+
+
+
+
+
+
+
+
+
+
+id: 2, pred = 27.06
+
+
+
+
+
+
+
+-20
+0
+20
+40
+
+
+
+
+
+
+
+-10
+0
+10
+20
+30
+40
+
+
+
+
+
+
+
+-10
+0
+10
+20
+30
+40
+
+Month_factor = 9
+Day = 9
+Temp = 75
+Wind = 10.9
+Solar.R = 230
+None
+
+
+
+
+
+
+
+Month_factor = 9
+Day = 5
+Temp = 87
+Wind = 7.4
+Solar.R = 95
+None
+
+
+
+
+
+
+
+Month_factor = 8
+Day = 21
+Temp = 77
+Wind = 15.5
+Solar.R = 259
+None
+
+
+
+
+
+
+Feature contribution
+Feature
+
+
+
+Increases
+Decreases
+Shapley value prediction explanation
+
+
diff --git a/tests/testthat/_snaps/plot/bar-plot-top-3-features.svg b/tests/testthat/_snaps/plot/bar-plot-top-3-features.svg
new file mode 100644
index 000000000..ecdc27a21
--- /dev/null
+++ b/tests/testthat/_snaps/plot/bar-plot-top-3-features.svg
@@ -0,0 +1,210 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+42.44
+-7.33
+-7.59
+ 7.75
+17.75
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 42.444
+ -0.367
+ 3.379
+ 3.857
+-17.469
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+42.444
+ 0.662
+-3.147
+-5.310
+-7.588
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+id: 3, pred = 31.84
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+id: 1, pred = 53.03
+
+
+
+
+
+
+
+
+
+
+id: 2, pred = 27.06
+
+
+
+
+
+
+
+-20
+0
+20
+40
+
+
+
+
+
+
+
+-10
+0
+10
+20
+30
+40
+
+
+
+
+
+
+
+-10
+0
+10
+20
+30
+40
+
+2 other features
+Wind = 10.9
+Temp = 75
+Month_factor = 9
+None
+
+
+
+
+
+
+2 other features
+Month_factor = 9
+Wind = 7.4
+Temp = 87
+None
+
+
+
+
+
+
+2 other features
+Month_factor = 8
+Solar.R = 259
+Wind = 15.5
+None
+
+
+
+
+
+Feature contribution
+Feature
+
+
+
+Increases
+Decreases
+Shapley value prediction explanation
+
+
diff --git a/tests/testthat/_snaps/plot/beeswarm-plot-default.svg b/tests/testthat/_snaps/plot/beeswarm-plot-default.svg
new file mode 100644
index 000000000..c54b05a1f
--- /dev/null
+++ b/tests/testthat/_snaps/plot/beeswarm-plot-default.svg
@@ -0,0 +1,83 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Solar.R
+Wind
+Temp
+Day
+Month_factor = 8
+Month_factor = 9
+
+
+
+
+
+
+
+
+
+
+-10
+0
+10
+Shapley value
+
+
+Low
+High
+Feature
+ value
+beeswarm_plot_default
+
+
diff --git a/tests/testthat/_snaps/plot/beeswarm-plot-index-x-explain-1-2.svg b/tests/testthat/_snaps/plot/beeswarm-plot-index-x-explain-1-2.svg
new file mode 100644
index 000000000..f5b92d4df
--- /dev/null
+++ b/tests/testthat/_snaps/plot/beeswarm-plot-index-x-explain-1-2.svg
@@ -0,0 +1,73 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Solar.R
+Wind
+Temp
+Day
+Month_factor = 9
+
+
+
+
+
+
+
+
+0
+10
+Shapley value
+
+
+Low
+High
+Feature
+ value
+beeswarm_plot_index_x_explain_1_2
+
+
diff --git a/tests/testthat/_snaps/plot/beeswarm-plot-new-colors.svg b/tests/testthat/_snaps/plot/beeswarm-plot-new-colors.svg
new file mode 100644
index 000000000..bc197609b
--- /dev/null
+++ b/tests/testthat/_snaps/plot/beeswarm-plot-new-colors.svg
@@ -0,0 +1,83 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Solar.R
+Wind
+Temp
+Day
+Month_factor = 8
+Month_factor = 9
+
+
+
+
+
+
+
+
+
+
+-10
+0
+10
+Shapley value
+
+
+Low
+High
+Feature
+ value
+beeswarm_plot_new_colors
+
+
diff --git a/tests/testthat/_snaps/plot/scatter-plot-default.svg b/tests/testthat/_snaps/plot/scatter-plot-default.svg
new file mode 100644
index 000000000..3073c58d0
--- /dev/null
+++ b/tests/testthat/_snaps/plot/scatter-plot-default.svg
@@ -0,0 +1,298 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Temp
+
+
+
+
+
+
+
+
+
+
+Wind
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Day
+
+
+
+
+
+
+
+
+
+
+Month_factor
+
+
+
+
+
+
+
+
+
+
+Solar.R
+
+
+
+
+
+
+
+76
+80
+84
+88
+
+
+
+
+
+6
+9
+12
+15
+
+
+
+
+
+5
+10
+15
+20
+
+
+
+
+
+
+8
+9
+
+
+
+
+
+100
+150
+200
+250
+
+-5.0
+-2.5
+0.0
+2.5
+
+
+
+
+
+-8
+-6
+-4
+-2
+0
+2
+
+
+
+
+
+
+
+-10
+0
+
+
+
+-2
+-1
+0
+1
+
+
+
+
+
+-5
+0
+5
+10
+15
+
+
+
+
+
+Feature values
+Shapley values
+scatter_plot_default
+
+
diff --git a/tests/testthat/_snaps/plot/scatter-plot-index-x-explain-1-2.svg b/tests/testthat/_snaps/plot/scatter-plot-index-x-explain-1-2.svg
new file mode 100644
index 000000000..6f646e2ee
--- /dev/null
+++ b/tests/testthat/_snaps/plot/scatter-plot-index-x-explain-1-2.svg
@@ -0,0 +1,291 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Temp
+
+
+
+
+
+
+
+
+
+
+Wind
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Day
+
+
+
+
+
+
+
+
+
+
+Month_factor
+
+
+
+
+
+
+
+
+
+
+Solar.R
+
+
+
+
+
+
+75
+80
+85
+
+
+
+
+
+
+7
+8
+9
+10
+11
+
+
+
+
+
+
+5
+6
+7
+8
+9
+
+
+
+
+
+
+9
+
+
+
+
+
+100
+150
+200
+
+-5.0
+-2.5
+0.0
+2.5
+
+
+
+
+
+-7.575
+-7.550
+-7.525
+-7.500
+
+
+
+
+
+-3
+0
+3
+6
+
+
+
+
+
+-2.6
+-2.4
+-2.2
+-2.0
+-1.8
+
+
+
+
+
+
+-5
+0
+5
+10
+15
+
+
+
+
+
+Feature values
+Shapley values
+scatter_plot_index_x_explain_1_2
+
+
diff --git a/tests/testthat/_snaps/plot/scatter-plot-new-color.svg b/tests/testthat/_snaps/plot/scatter-plot-new-color.svg
new file mode 100644
index 000000000..c400bdaf3
--- /dev/null
+++ b/tests/testthat/_snaps/plot/scatter-plot-new-color.svg
@@ -0,0 +1,298 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Temp
+
+
+
+
+
+
+
+
+
+
+Wind
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Day
+
+
+
+
+
+
+
+
+
+
+Month_factor
+
+
+
+
+
+
+
+
+
+
+Solar.R
+
+
+
+
+
+
+
+76
+80
+84
+88
+
+
+
+
+
+6
+9
+12
+15
+
+
+
+
+
+5
+10
+15
+20
+
+
+
+
+
+
+8
+9
+
+
+
+
+
+100
+150
+200
+250
+
+-5.0
+-2.5
+0.0
+2.5
+
+
+
+
+
+-8
+-6
+-4
+-2
+0
+2
+
+
+
+
+
+
+
+-10
+0
+
+
+
+-2
+-1
+0
+1
+
+
+
+
+
+-5
+0
+5
+10
+15
+
+
+
+
+
+Feature values
+Shapley values
+scatter_plot_new_color
+
+
diff --git a/tests/testthat/_snaps/plot/scatter-plot-no-hist.svg b/tests/testthat/_snaps/plot/scatter-plot-no-hist.svg
new file mode 100644
index 000000000..8b0b7f586
--- /dev/null
+++ b/tests/testthat/_snaps/plot/scatter-plot-no-hist.svg
@@ -0,0 +1,298 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Temp
+
+
+
+
+
+
+
+
+
+
+Wind
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Day
+
+
+
+
+
+
+
+
+
+
+Month_factor
+
+
+
+
+
+
+
+
+
+
+Solar.R
+
+
+
+
+
+
+
+76
+80
+84
+88
+
+
+
+
+
+6
+9
+12
+15
+
+
+
+
+
+5
+10
+15
+20
+
+
+
+
+
+
+8
+9
+
+
+
+
+
+100
+150
+200
+250
+
+-5.0
+-2.5
+0.0
+2.5
+
+
+
+
+
+-8
+-6
+-4
+-2
+0
+2
+
+
+
+
+
+
+
+-10
+0
+
+
+
+-2
+-1
+0
+1
+
+
+
+
+
+-5
+0
+5
+10
+15
+
+
+
+
+
+Feature values
+Shapley values
+scatter_plot_no_hist
+
+
diff --git a/tests/testthat/_snaps/plot/scatter-plot-one-feature.svg b/tests/testthat/_snaps/plot/scatter-plot-one-feature.svg
new file mode 100644
index 000000000..83b30db62
--- /dev/null
+++ b/tests/testthat/_snaps/plot/scatter-plot-one-feature.svg
@@ -0,0 +1,80 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Temp
+
+
+
+
+
+
+
+76
+80
+84
+88
+
+-5
+0
+5
+10
+15
+
+
+
+
+
+Feature values
+Shapley values
+scatter_plot_one_feature
+
+
diff --git a/tests/testthat/_snaps/plot/waterfall-plot-default.svg b/tests/testthat/_snaps/plot/waterfall-plot-default.svg
new file mode 100644
index 000000000..4eae7724a
--- /dev/null
+++ b/tests/testthat/_snaps/plot/waterfall-plot-default.svg
@@ -0,0 +1,223 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+-2.60
+-4.73
+-7.59
+ 7.75
+17.75
+
+
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+53.03
+
+φ
+0
+=
+42.44
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 1.10
+ -1.47
+ 3.38
+ 3.86
+-17.47
+
+
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+31.84
+
+φ
+0
+=
+42.44
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+-1.68
+ 2.34
+-3.15
+-5.31
+-7.59
+
+
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+27.06
+
+φ
+0
+=
+42.44
+
+id: 3, pred = 31.84
+
+id: 1, pred = 53.03
+
+id: 2, pred = 27.06
+
+
+
+
+
+35
+40
+45
+50
+
+
+
+
+
+
+30
+35
+40
+45
+50
+
+
+
+
+30
+35
+40
+
+Day = 9
+Solar.R = 230
+Wind = 10.9
+Temp = 75
+Month_factor = 9
+
+
+
+
+
+
+Day = 5
+Solar.R = 95
+Month_factor = 9
+Wind = 7.4
+Temp = 87
+
+
+
+
+
+
+Day = 21
+Temp = 77
+Month_factor = 8
+Solar.R = 259
+Wind = 15.5
+
+
+
+
+
+Prediction
+Feature
+
+
+
+Increases
+Decreases
+Shapley value prediction explanation
+
+
diff --git a/tests/testthat/_snaps/plot/waterfall-plot-digits-5.svg b/tests/testthat/_snaps/plot/waterfall-plot-digits-5.svg
new file mode 100644
index 000000000..1ffa90137
--- /dev/null
+++ b/tests/testthat/_snaps/plot/waterfall-plot-digits-5.svg
@@ -0,0 +1,223 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+-2.6010
+-4.7299
+-7.5881
+ 7.7495
+17.7533
+
+
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+53.028
+
+φ
+0
+=
+42.444
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 1.0987
+ -1.4661
+ 3.3792
+ 3.8567
+-17.4686
+
+
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+31.844
+
+φ
+0
+=
+42.444
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+-1.6761
+ 2.3384
+-3.1472
+-5.3100
+-7.5881
+
+
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+27.061
+
+φ
+0
+=
+42.444
+
+id: 3, pred = 31.8443
+
+id: 1, pred = 53.0282
+
+id: 2, pred = 27.0614
+
+
+
+
+
+35
+40
+45
+50
+
+
+
+
+
+
+30
+35
+40
+45
+50
+
+
+
+
+30
+35
+40
+
+Day = 9
+Solar.R = 230
+Wind = 10.9
+Temp = 75
+Month_factor = 9
+
+
+
+
+
+
+Day = 5
+Solar.R = 95
+Month_factor = 9
+Wind = 7.4
+Temp = 87
+
+
+
+
+
+
+Day = 21
+Temp = 77
+Month_factor = 8
+Solar.R = 259
+Wind = 15.5
+
+
+
+
+
+Prediction
+Feature
+
+
+
+Increases
+Decreases
+Shapley value prediction explanation
+
+
diff --git a/tests/testthat/_snaps/plot/waterfall-plot-index-x-explain-1.svg b/tests/testthat/_snaps/plot/waterfall-plot-index-x-explain-1.svg
new file mode 100644
index 000000000..4b2d76a58
--- /dev/null
+++ b/tests/testthat/_snaps/plot/waterfall-plot-index-x-explain-1.svg
@@ -0,0 +1,97 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+-2.60
+-4.73
+-7.59
+ 7.75
+17.75
+
+
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+53.03
+
+φ
+0
+=
+42.44
+
+id: 1, pred = 53.03
+
+
+
+
+
+
+30
+35
+40
+45
+50
+
+Day = 5
+Solar.R = 95
+Month_factor = 9
+Wind = 7.4
+Temp = 87
+
+
+
+
+
+Prediction
+Feature
+
+
+
+Increases
+Decreases
+Shapley value prediction explanation
+
+
diff --git a/tests/testthat/_snaps/plot/waterfall-plot-new-colors.svg b/tests/testthat/_snaps/plot/waterfall-plot-new-colors.svg
new file mode 100644
index 000000000..64d9ed614
--- /dev/null
+++ b/tests/testthat/_snaps/plot/waterfall-plot-new-colors.svg
@@ -0,0 +1,223 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+-2.60
+-4.73
+-7.59
+ 7.75
+17.75
+
+
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+53.03
+
+φ
+0
+=
+42.44
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 1.10
+ -1.47
+ 3.38
+ 3.86
+-17.47
+
+
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+31.84
+
+φ
+0
+=
+42.44
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+-1.68
+ 2.34
+-3.15
+-5.31
+-7.59
+
+
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+27.06
+
+φ
+0
+=
+42.44
+
+id: 3, pred = 31.84
+
+id: 1, pred = 53.03
+
+id: 2, pred = 27.06
+
+
+
+
+
+35
+40
+45
+50
+
+
+
+
+
+
+30
+35
+40
+45
+50
+
+
+
+
+30
+35
+40
+
+Day = 9
+Solar.R = 230
+Wind = 10.9
+Temp = 75
+Month_factor = 9
+
+
+
+
+
+
+Day = 5
+Solar.R = 95
+Month_factor = 9
+Wind = 7.4
+Temp = 87
+
+
+
+
+
+
+Day = 21
+Temp = 77
+Month_factor = 8
+Solar.R = 259
+Wind = 15.5
+
+
+
+
+
+Prediction
+Feature
+
+
+
+Increases
+Decreases
+Shapley value prediction explanation
+
+
diff --git a/tests/testthat/_snaps/plot/waterfall-plot-top-3-features.svg b/tests/testthat/_snaps/plot/waterfall-plot-top-3-features.svg
new file mode 100644
index 000000000..b12dc5f4f
--- /dev/null
+++ b/tests/testthat/_snaps/plot/waterfall-plot-top-3-features.svg
@@ -0,0 +1,199 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+-7.33
+-7.59
+ 7.75
+17.75
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+53.03
+
+φ
+0
+=
+42.44
+
+
+
+
+
+
+
+
+
+
+
+
+
+ -0.367
+ 3.379
+ 3.857
+-17.469
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+31.84
+
+φ
+0
+=
+42.44
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 0.662
+-3.147
+-5.310
+-7.588
+
+
+
+
+
+
+
+
+f
+(
+x
+)
+=
+27.06
+
+φ
+0
+=
+42.44
+
+id: 3, pred = 31.84
+
+id: 1, pred = 53.03
+
+id: 2, pred = 27.06
+
+
+
+
+
+35
+40
+45
+50
+
+
+
+
+
+
+30
+35
+40
+45
+50
+
+
+
+
+30
+35
+40
+
+2 other features
+Wind = 10.9
+Temp = 75
+Month_factor = 9
+
+
+
+
+
+2 other features
+Month_factor = 9
+Wind = 7.4
+Temp = 87
+
+
+
+
+
+2 other features
+Month_factor = 8
+Solar.R = 259
+Wind = 15.5
+
+
+
+
+Prediction
+Feature
+
+
+
+Increases
+Decreases
+Shapley value prediction explanation
+
+
diff --git a/tests/testthat/_snaps/setup.md b/tests/testthat/_snaps/setup.md
new file mode 100644
index 000000000..3ede34f5e
--- /dev/null
+++ b/tests/testthat/_snaps/setup.md
@@ -0,0 +1,755 @@
+# error with custom model without providing predict_model
+
+ Code
+ model_custom_lm_mixed <- model_lm_mixed
+ class(model_custom_lm_mixed) <- "whatever"
+ explain(model = model_custom_lm_mixed, x_train = x_train_mixed, x_explain = x_explain_mixed,
+ approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE)
+ Message
+ Note: You passed a model to explain() which is not natively supported, and did not supply a 'get_model_specs' function to explain().
+ Consistency checks between model and data is therefore disabled.
+
+ Error
+ You passed a model to explain() which is not natively supported, and did not supply the 'predict_model' function to explain().
+ See ?shapr::explain or the vignette for more information on how to run shapr with custom models.
+
+# messages with missing detail in get_model_specs
+
+ Code
+ explain(model = model_custom_lm_mixed, x_train = x_train_mixed, x_explain = x_explain_mixed,
+ approach = "independence", prediction_zero = p0, predict_model = custom_predict_model,
+ get_model_specs = NA, n_batches = 1, timing = FALSE)
+ Message
+ Note: You passed a model to explain() which is not natively supported, and did not supply a 'get_model_specs' function to explain().
+ Consistency checks between model and data is therefore disabled.
+
+ Output
+ none Solar.R Wind Temp Day Month_factor
+ 1: 42.44 -4.730 7.750 17.753 -2.601 -7.588
+ 2: 42.44 2.338 -3.147 -5.310 -1.676 -7.588
+ 3: 42.44 3.857 -17.469 -1.466 1.099 3.379
+
+---
+
+ Code
+ custom_get_model_specs_no_lab <- (function(x) {
+ feature_specs <- list(labels = NA, classes = NA, factor_levels = NA)
+ })
+ explain(model = model_custom_lm_mixed, x_train = x_train_mixed, x_explain = x_explain_mixed,
+ approach = "independence", prediction_zero = p0, predict_model = custom_predict_model,
+ get_model_specs = custom_get_model_specs_no_lab, n_batches = 1, timing = FALSE)
+ Message
+ Note: Feature names extracted from the model contains NA.
+ Consistency checks between model and data is therefore disabled.
+
+ Output
+ none Solar.R Wind Temp Day Month_factor
+ 1: 42.44 -4.730 7.750 17.753 -2.601 -7.588
+ 2: 42.44 2.338 -3.147 -5.310 -1.676 -7.588
+ 3: 42.44 3.857 -17.469 -1.466 1.099 3.379
+
+---
+
+ Code
+ custom_gms_no_classes <- (function(x) {
+ feature_specs <- list(labels = labels(x$terms), classes = NA, factor_levels = NA)
+ })
+ explain(model = model_custom_lm_mixed, x_train = x_train_mixed, x_explain = x_explain_mixed,
+ approach = "independence", prediction_zero = p0, predict_model = custom_predict_model,
+ get_model_specs = custom_gms_no_classes, n_batches = 1, timing = FALSE)
+ Message
+ Note: Feature classes extracted from the model contains NA.
+ Assuming feature classes from the data are correct.
+
+ Output
+ none Solar.R Wind Temp Day Month_factor
+ 1: 42.44 -4.730 7.750 17.753 -2.601 -7.588
+ 2: 42.44 2.338 -3.147 -5.310 -1.676 -7.588
+ 3: 42.44 3.857 -17.469 -1.466 1.099 3.379
+
+---
+
+ Code
+ custom_gms_no_factor_levels <- (function(x) {
+ feature_specs <- list(labels = labels(x$terms), classes = attr(x$terms,
+ "dataClasses")[-1], factor_levels = NA)
+ })
+ explain(model = model_custom_lm_mixed, x_train = x_train_mixed, x_explain = x_explain_mixed,
+ approach = "independence", prediction_zero = p0, predict_model = custom_predict_model,
+ get_model_specs = custom_gms_no_factor_levels, n_batches = 1, timing = FALSE)
+ Message
+ Note: Feature factor levels extracted from the model contains NA.
+ Assuming feature factor levels from the data are correct.
+
+ Output
+ none Solar.R Wind Temp Day Month_factor
+ 1: 42.44 -4.730 7.750 17.753 -2.601 -7.588
+ 2: 42.44 2.338 -3.147 -5.310 -1.676 -7.588
+ 3: 42.44 3.857 -17.469 -1.466 1.099 3.379
+
+# erroneous input: `x_train/x_explain`
+
+ Code
+ x_train_wrong_format <- c(a = 1, b = 2)
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_wrong_format,
+ approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE)
+ Error
+ x_train should be a matrix or a data.frame/data.table.
+
+---
+
+ Code
+ x_explain_wrong_format <- c(a = 1, b = 2)
+ explain(model = model_lm_numeric, x_explain = x_explain_wrong_format, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE)
+ Error
+ x_explain should be a matrix or a data.frame/data.table.
+
+---
+
+ Code
+ x_train_wrong_format <- c(a = 1, b = 2)
+ x_explain_wrong_format <- c(a = 3, b = 4)
+ explain(model = model_lm_numeric, x_explain = x_explain_wrong_format, x_train = x_train_wrong_format,
+ approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE)
+ Error
+ x_train should be a matrix or a data.frame/data.table.
+ x_explain should be a matrix or a data.frame/data.table.
+
+---
+
+ Code
+ x_train_no_column_names <- as.data.frame(x_train_numeric)
+ names(x_train_no_column_names) <- NULL
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_no_column_names,
+ approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE)
+ Error
+ x_train misses column names.
+
+---
+
+ Code
+ x_explain_no_column_names <- as.data.frame(x_explain_numeric)
+ names(x_explain_no_column_names) <- NULL
+ explain(model = model_lm_numeric, x_explain = x_explain_no_column_names,
+ x_train = x_train_numeric, approach = "independence", prediction_zero = p0,
+ n_batches = 1, timing = FALSE)
+ Error
+ x_explain misses column names.
+
+---
+
+ Code
+ x_train_no_column_names <- as.data.frame(x_train_numeric)
+ x_explain_no_column_names <- as.data.frame(x_explain_numeric)
+ names(x_explain_no_column_names) <- NULL
+ explain(model = model_lm_numeric, x_explain = x_explain_no_column_names,
+ x_train = x_train_no_column_names, approach = "independence",
+ prediction_zero = p0, n_batches = 1, timing = FALSE)
+ Error
+ x_explain misses column names.
+
+# erroneous input: `model`
+
+ Code
+ explain(x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence",
+ prediction_zero = p0, n_batches = 1, timing = FALSE)
+ Error
+ argument "model" is missing, with no default
+
+# erroneous input: `approach`
+
+ Code
+ approach_non_character <- 1
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = approach_non_character, prediction_zero = p0, n_batches = 1,
+ timing = FALSE)
+ Error
+ `approach` must be one of the following:
+ categorical, copula, ctree, empirical, gaussian, independence, timeseries
+ or a vector of length equal to the number of features ( 5 ) with only the above strings.
+
+---
+
+ Code
+ approach_incorrect_length <- c("empirical", "gaussian")
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = approach_incorrect_length, prediction_zero = p0, n_batches = 1,
+ timing = FALSE)
+ Error
+ `approach` must be one of the following:
+ categorical, copula, ctree, empirical, gaussian, independence, timeseries
+ or a vector of length equal to the number of features ( 5 ) with only the above strings.
+
+---
+
+ Code
+ approach_incorrect_character <- "bla"
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = approach_incorrect_character, prediction_zero = p0, n_batches = 1,
+ timing = FALSE)
+ Error
+ `approach` must be one of the following:
+ categorical, copula, ctree, empirical, gaussian, independence, timeseries
+ or a vector of length equal to the number of features ( 5 ) with only the above strings.
+
+# erroneous input: `prediction_zero`
+
+ Code
+ p0_non_numeric_1 <- "bla"
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0_non_numeric_1, n_batches = 1,
+ timing = FALSE)
+ Error
+ `prediction_zero` (bla) must be numeric and match the output size of the model (1).
+
+---
+
+ Code
+ p0_non_numeric_2 <- NULL
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0_non_numeric_2, n_batches = 1,
+ timing = FALSE)
+ Error
+ `prediction_zero` () must be numeric and match the output size of the model (1).
+
+---
+
+ Code
+ p0_too_long <- c(1, 2)
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0_too_long, n_batches = 1,
+ timing = FALSE)
+ Error
+ `prediction_zero` (1, 2) must be numeric and match the output size of the model (1).
+
+---
+
+ Code
+ p0_is_NA <- as.numeric(NA)
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0_is_NA, n_batches = 1, timing = FALSE)
+ Error
+ `prediction_zero` (NA) must be numeric and match the output size of the model (1).
+
+# erroneous input: `n_combinations`
+
+ Code
+ n_combinations_non_numeric_1 <- "bla"
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_combinations = n_combinations_non_numeric_1,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_combinations` must be NULL or a single positive integer.
+
+---
+
+ Code
+ n_combinations_non_numeric_2 <- TRUE
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_combinations = n_combinations_non_numeric_2,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_combinations` must be NULL or a single positive integer.
+
+---
+
+ Code
+ n_combinations_non_integer <- 10.5
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_combinations = n_combinations_non_integer,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_combinations` must be NULL or a single positive integer.
+
+---
+
+ Code
+ n_combinations_too_long <- c(1, 2)
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_combinations = n_combinations_too_long,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_combinations` must be NULL or a single positive integer.
+
+---
+
+ Code
+ n_combinations_is_NA <- as.numeric(NA)
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_combinations = n_combinations_is_NA,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_combinations` must be NULL or a single positive integer.
+
+---
+
+ Code
+ n_combinations_non_positive <- 0
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_combinations = n_combinations_non_positive,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_combinations` must be NULL or a single positive integer.
+
+---
+
+ Code
+ n_combinations <- ncol(x_explain_numeric) - 1
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ prediction_zero = p0, approach = "gaussian", n_combinations = n_combinations,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_combinations` has to be greater than the number of features.
+
+---
+
+ Code
+ groups <- list(A = c("Solar.R", "Wind"), B = c("Temp", "Month"), C = "Day")
+ n_combinations <- length(groups) - 1
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ prediction_zero = p0, approach = "gaussian", group = groups, n_combinations = n_combinations,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_combinations` has to be greater than the number of groups.
+
+# erroneous input: `group`
+
+ Code
+ group_non_list <- "bla"
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, group = group_non_list,
+ n_batches = 1, timing = FALSE)
+ Error
+ `group` must be NULL or a list
+
+---
+
+ Code
+ group_with_non_characters <- list(A = 1, B = 2)
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, group = group_with_non_characters,
+ n_batches = 1, timing = FALSE)
+ Error
+ All components of group should be a character.
+
+---
+
+ Code
+ group_with_non_data_features <- list(A = c("Solar.R", "Wind",
+ "not_a_data_feature"), B = c("Temp", "Month", "Day"))
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, group = group_with_non_data_features,
+ n_batches = 1, timing = FALSE)
+ Error
+ The group feature(s) not_a_data_feature are not
+ among the features in the data: Solar.R, Wind, Temp, Month, Day. Delete from group.
+
+---
+
+ Code
+ group_missing_data_features <- list(A = c("Solar.R"), B = c("Temp", "Month",
+ "Day"))
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, group = group_missing_data_features,
+ n_batches = 1, timing = FALSE)
+ Error
+ The data feature(s) Wind do not
+ belong to one of the groups. Add to a group.
+
+---
+
+ Code
+ group_dup_data_features <- list(A = c("Solar.R", "Solar.R", "Wind"), B = c(
+ "Temp", "Month", "Day"))
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, group = group_dup_data_features,
+ n_batches = 1, timing = FALSE)
+ Error
+ Feature(s) Solar.R are found in more than one group or multiple times per group.
+ Make sure each feature is only represented in one group, and only once.
+
+---
+
+ Code
+ single_group <- list(A = c("Solar.R", "Wind", "Temp", "Month", "Day"))
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, group = single_group,
+ n_batches = 1, timing = FALSE)
+ Error
+ You have specified only a single group named A, containing the features: Solar.R, Wind, Temp, Month, Day.
+ The predictions must be decomposed in at least two groups to be meaningful.
+
+# erroneous input: `n_samples`
+
+ Code
+ n_samples_non_numeric_1 <- "bla"
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_samples = n_samples_non_numeric_1,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_samples` must be a single positive integer.
+
+---
+
+ Code
+ n_samples_non_numeric_2 <- TRUE
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_samples = n_samples_non_numeric_2,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_samples` must be a single positive integer.
+
+---
+
+ Code
+ n_samples_non_integer <- 10.5
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_samples = n_samples_non_integer,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_samples` must be a single positive integer.
+
+---
+
+ Code
+ n_samples_too_long <- c(1, 2)
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_samples = n_samples_too_long,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_samples` must be a single positive integer.
+
+---
+
+ Code
+ n_samples_is_NA <- as.numeric(NA)
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_samples = n_samples_is_NA,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_samples` must be a single positive integer.
+
+---
+
+ Code
+ n_samples_non_positive <- 0
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_samples = n_samples_non_positive,
+ n_batches = 1, timing = FALSE)
+ Error
+ `n_samples` must be a single positive integer.
+
+# erroneous input: `n_batches`
+
+ Code
+ n_batches_non_numeric_1 <- "bla"
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_batches = n_batches_non_numeric_1,
+ timing = FALSE)
+ Error
+ `n_batches` must be NULL or a single positive integer.
+
+---
+
+ Code
+ n_batches_non_numeric_2 <- TRUE
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_batches = n_batches_non_numeric_2,
+ timing = FALSE)
+ Error
+ `n_batches` must be NULL or a single positive integer.
+
+---
+
+ Code
+ n_batches_non_integer <- 10.5
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_batches = n_batches_non_integer,
+ timing = FALSE)
+ Error
+ `n_batches` must be NULL or a single positive integer.
+
+---
+
+ Code
+ n_batches_too_long <- c(1, 2)
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_batches = n_batches_too_long,
+ timing = FALSE)
+ Error
+ `n_batches` must be NULL or a single positive integer.
+
+---
+
+ Code
+ n_batches_is_NA <- as.numeric(NA)
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_batches = n_batches_is_NA,
+ timing = FALSE)
+ Error
+ `n_batches` must be NULL or a single positive integer.
+
+---
+
+ Code
+ n_batches_non_positive <- 0
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_batches = n_batches_non_positive,
+ timing = FALSE)
+ Error
+ `n_batches` must be NULL or a single positive integer.
+
+---
+
+ Code
+ n_combinations <- 10
+ n_batches_too_large <- 11
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_combinations = n_combinations,
+ n_batches = n_batches_too_large, timing = FALSE)
+ Error
+ `n_batches` (11) must be smaller than the number feature combinations/`n_combinations` (10)
+
+---
+
+ Code
+ n_batches_too_large_2 <- 32
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, n_batches = n_batches_too_large_2,
+ timing = FALSE)
+ Error
+ `n_batches` (32) must be smaller than the number feature combinations/`n_combinations` (32)
+
+# erroneous input: `seed`
+
+ Code
+ seed_not_integer_interpretable <- "bla"
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, seed = seed_not_integer_interpretable,
+ n_batches = 1, timing = FALSE)
+ Warning
+ NAs introduced by coercion
+ Error
+ supplied seed is not a valid integer
+
+# erroneous input: `keep_samp_for_vS`
+
+ Code
+ keep_samp_for_vS_non_logical_1 <- "bla"
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, keep_samp_for_vS = keep_samp_for_vS_non_logical_1,
+ n_batches = 1, timing = FALSE)
+ Error
+ `keep_samp_for_vS` must be single logical.
+
+---
+
+ Code
+ keep_samp_for_vS_non_logical_2 <- NULL
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, keep_samp_for_vS = keep_samp_for_vS_non_logical_2,
+ n_batches = 1, timing = FALSE)
+ Error
+ `keep_samp_for_vS` must be single logical.
+
+---
+
+ Code
+ keep_samp_for_vS_too_long <- c(TRUE, FALSE)
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, keep_samp_for_vS = keep_samp_for_vS_too_long,
+ n_batches = 1, timing = FALSE)
+ Error
+ `keep_samp_for_vS` must be single logical.
+
+# erroneous input: `predict_model`
+
+ Code
+ predict_model_nonfunction <- "bla"
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, predict_model = predict_model_nonfunction,
+ n_batches = 1, timing = FALSE)
+ Error
+ `predict_model` must be NULL or a function.
+
+---
+
+ Code
+ predict_model_non_num_output <- (function(model, x) {
+ "bla"
+ })
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, predict_model = predict_model_non_num_output,
+ n_batches = 1, timing = FALSE)
+ Error
+ The predict_model function of class `lm` does not return a numeric output of the desired length
+ for single output models or a data.table of the correct
+ dimensions for a multiple output model.
+ See the 'Advanced usage' section of the vignette:
+ vignette('understanding_shapr', package = 'shapr')
+
+ for more information on running shapr with custom models.
+
+---
+
+ Code
+ predict_model_wrong_output_len <- (function(model, x) {
+ rep(1, nrow(x) + 1)
+ })
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, predict_model = predict_model_wrong_output_len,
+ n_batches = 1, timing = FALSE)
+ Error
+ The predict_model function of class `lm` does not return a numeric output of the desired length
+ for single output models or a data.table of the correct
+ dimensions for a multiple output model.
+ See the 'Advanced usage' section of the vignette:
+ vignette('understanding_shapr', package = 'shapr')
+
+ for more information on running shapr with custom models.
+
+---
+
+ Code
+ predict_model_invalid_argument <- (function(model) {
+ rep(1, nrow(x))
+ })
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, predict_model = predict_model_invalid_argument,
+ n_batches = 1, timing = FALSE)
+ Error
+ The predict_model function of class `lm` is invalid.
+ See the 'Advanced usage' section of the vignette:
+ vignette('understanding_shapr', package = 'shapr')
+ for more information on running shapr with custom models.
+ A basic function test threw the following error:
+ Error in predict_model(model, x_test): unused argument (x_test)
+
+---
+
+ Code
+ predict_model_error <- (function(model, x) {
+ 1 + "bla"
+ })
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, predict_model = predict_model_error,
+ n_batches = 1, timing = FALSE)
+ Error
+ The predict_model function of class `lm` is invalid.
+ See the 'Advanced usage' section of the vignette:
+ vignette('understanding_shapr', package = 'shapr')
+ for more information on running shapr with custom models.
+ A basic function test threw the following error:
+ Error in 1 + "bla": non-numeric argument to binary operator
+
+# erroneous input: `get_model_specs`
+
+ Code
+ get_model_specs_nonfunction <- "bla"
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, get_model_specs = get_model_specs_nonfunction,
+ n_batches = 1, timing = FALSE)
+ Error
+ `get_model_specs` must be NULL, NA or a function.
+
+---
+
+ Code
+ get_ms_output_not_list <- (function(x) {
+ "bla"
+ })
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, get_model_specs = get_ms_output_not_list,
+ n_batches = 1, timing = FALSE)
+ Error
+ The `get_model_specs` function of class `lm` does not return a list of length 3 with elements "labels","classes","factor_levels".
+ See the 'Advanced usage' section of the vignette:
+ vignette('understanding_shapr', package = 'shapr')
+ for more information on running shapr with custom models and the required output format of get_model_specs.
+
+---
+
+ Code
+ get_ms_output_too_long <- (function(x) {
+ list(1, 2, 3, 4)
+ })
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, get_model_specs = get_ms_output_too_long,
+ n_batches = 1, timing = FALSE)
+ Error
+ The `get_model_specs` function of class `lm` does not return a list of length 3 with elements "labels","classes","factor_levels".
+ See the 'Advanced usage' section of the vignette:
+ vignette('understanding_shapr', package = 'shapr')
+ for more information on running shapr with custom models and the required output format of get_model_specs.
+
+---
+
+ Code
+ get_ms_output_wrong_names <- (function(x) {
+ list(labels = 1, classes = 2, not_a_name = 3)
+ })
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, get_model_specs = get_ms_output_wrong_names,
+ n_batches = 1, timing = FALSE)
+ Error
+ The `get_model_specs` function of class `lm` does not return a list of length 3 with elements "labels","classes","factor_levels".
+ See the 'Advanced usage' section of the vignette:
+ vignette('understanding_shapr', package = 'shapr')
+ for more information on running shapr with custom models and the required output format of get_model_specs.
+
+---
+
+ Code
+ get_model_specs_error <- (function(x) {
+ 1 + "bla"
+ })
+ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric,
+ approach = "independence", prediction_zero = p0, get_model_specs = get_model_specs_error,
+ n_batches = 1, timing = FALSE)
+ Error
+ The get_model_specs function of class `lm` is invalid.
+ See the 'Advanced usage' section of the vignette:
+ vignette('understanding_shapr', package = 'shapr')
+ for more information on running shapr with custom models.
+ Note that `get_model_specs` is not required (can be set to NULL)
+ unless you require consistency checks between model and data.
+ A basic function test threw the following error:
+ Error in 1 + "bla": non-numeric argument to binary operator
+
+# incompatible input: `data/approach`
+
+ Code
+ non_factor_approach_1 <- "gaussian"
+ explain(model = model_lm_mixed, x_explain = x_explain_mixed, x_train = x_explain_mixed,
+ approach = non_factor_approach_1, prediction_zero = p0, n_batches = 1,
+ timing = FALSE)
+ Error
+ The following feature(s) are factor(s): Month_factor.
+ approach = 'gaussian' does not support factor features.
+ Please change approach to one of 'independence' (not recommended), 'ctree', 'categorical'.
+
+---
+
+ Code
+ non_factor_approach_2 <- "empirical"
+ explain(model = model_lm_mixed, x_explain = x_explain_mixed, x_train = x_explain_mixed,
+ approach = non_factor_approach_2, prediction_zero = p0, n_batches = 1,
+ timing = FALSE)
+ Error
+ The following feature(s) are factor(s): Month_factor.
+ approach = 'empirical' does not support factor features.
+ Please change approach to one of 'independence' (not recommended), 'ctree', 'categorical'.
+
+---
+
+ Code
+ non_factor_approach_3 <- "copula"
+ explain(model = model_lm_mixed, x_explain = x_explain_mixed, x_train = x_explain_mixed,
+ approach = non_factor_approach_3, prediction_zero = p0, n_batches = 1,
+ timing = FALSE)
+ Error
+ The following feature(s) are factor(s): Month_factor.
+ approach = 'copula' does not support factor features.
+ Please change approach to one of 'independence' (not recommended), 'ctree', 'categorical'.
+
diff --git a/tests/testthat/helper-ar-arima.R b/tests/testthat/helper-ar-arima.R
new file mode 100644
index 000000000..47944e87b
--- /dev/null
+++ b/tests/testthat/helper-ar-arima.R
@@ -0,0 +1,17 @@
+options(digits = 5) # To avoid round off errors when printing output on different systems
+
+
+
+data <- data.table::as.data.table(airquality)
+
+model_ar_temp <- ar(data$Temp, order = 2)
+model_ar_temp$n.ahead <- 3
+
+p0_ar <- rep(mean(data$Temp), 3)
+
+model_arima_temp <- arima(data$Temp[1:150], c(2, 1, 0), xreg = data$Wind[1:150])
+
+model_arima_temp_noxreg <- arima(data$Temp[1:150], c(2, 1, 0))
+
+# When loading this here we avoid the "Registered S3 method overwritten" when calling forecast
+model_forecast_ARIMA_temp <- forecast::Arima(data$Temp[1:150], order = c(2, 1, 0), xreg = data$Wind[1:150])
diff --git a/tests/testthat/helper-lm.R b/tests/testthat/helper-lm.R
new file mode 100644
index 000000000..8b886cdbf
--- /dev/null
+++ b/tests/testthat/helper-lm.R
@@ -0,0 +1,47 @@
+options(digits = 5) # To avoid round off errors when printing output on different systems
+
+set.seed(12345)
+
+data <- data.table::as.data.table(airquality)
+data[, Month_factor := as.factor(Month)]
+data[, Ozone_sub30 := (Ozone < 30) * 1]
+data[, Ozone_sub30_factor := as.factor(Ozone_sub30)]
+data[, Solar.R_factor := as.factor(cut(Solar.R, 10))]
+data[, Wind_factor := as.factor(round(Wind))]
+
+data_complete <- data[complete.cases(airquality), ]
+data_complete <- data_complete[sample(seq_len(.N))] # Sh
+
+y_var_numeric <- "Ozone"
+y_var_binary <- "Ozone_sub30"
+y_var_binaryfactor <- "Ozone_sub30_factor"
+
+x_var_numeric <- c("Solar.R", "Wind", "Temp", "Month", "Day")
+x_var_mixed <- c("Solar.R", "Wind", "Temp", "Day", "Month_factor")
+x_var_categorical <- c("Month_factor", "Ozone_sub30_factor", "Solar.R_factor", "Wind_factor")
+
+data_train <- head(data_complete, -3)
+data_explain <- tail(data_complete, 3)
+
+x_train_numeric <- data_train[, ..x_var_numeric]
+x_train_mixed <- data_train[, ..x_var_mixed]
+x_train_categorical <- data_train[, ..x_var_categorical]
+
+x_explain_numeric <- data_explain[, ..x_var_numeric]
+x_explain_mixed <- data_explain[, ..x_var_mixed]
+x_explain_categorical <- data_explain[, ..x_var_categorical]
+
+lm_formula_numeric <- as.formula(paste0(y_var_numeric, " ~ ", paste0(x_var_numeric, collapse = " + ")))
+lm_formula_mixed <- as.formula(paste0(y_var_numeric, " ~ ", paste0(x_var_mixed, collapse = " + ")))
+lm_formula_interaction <- Ozone ~ Solar.R * Wind
+# lm_formula_numeric_col_order <- as.formula(paste0(y_var_numeric, " ~ ",
+# paste0(sort(x_var_numeric), collapse = " + ")))
+lm_formula_categorical <- as.formula(paste0(y_var_numeric, " ~ ", paste0(x_var_categorical, collapse = " + ")))
+
+model_lm_numeric <- lm(lm_formula_numeric, data = data_complete)
+model_lm_categorical <- lm(lm_formula_categorical, data = data_complete)
+model_lm_numeric_col_order <- lm(lm_formula_numeric, data = rev(data_complete))
+model_lm_mixed <- lm(lm_formula_mixed, data = data_complete)
+model_lm_interaction <- lm(lm_formula_interaction, data = data_complete)
+
+p0 <- data_train[, mean(get(y_var_numeric))]
diff --git a/tests/testthat/helper-ts.R b/tests/testthat/helper-ts.R
new file mode 100644
index 000000000..0ce92e9fa
--- /dev/null
+++ b/tests/testthat/helper-ts.R
@@ -0,0 +1,40 @@
+options(digits = 5) # To avoid round off errors when printing output on different systems
+
+set.seed(1234)
+
+data_ts <- data.frame(matrix(NA, ncol = 41, nrow = 4))
+for (n in 1:100) {
+ set.seed(n)
+ e <- rnorm(42, mean = 0, sd = 1)
+
+ m_1 <- 0
+ for (i in 2:length(e)) {
+ m_1[i] <- 1 + 0.8 * m_1[i - 1] + e[i]
+ }
+ data_ts[n, ] <- m_1[-1]
+}
+data_ts <- data.table::as.data.table(data_ts)
+
+x_var_ts <- paste0("X", 1:40)
+y_var_ts <- "X41"
+
+ind_x_explain <- 1:2
+data_ts_train <- data_ts[-ind_x_explain]
+
+# Creating a predictive model (for illustration just predicting the next point in the time series with a linear model)
+lm_ts_formula <- as.formula(X41 ~ .)
+model_lm_ts <- lm(lm_ts_formula, data_ts_train)
+
+x_explain_ts <- data_ts[ind_x_explain, ..x_var_ts]
+x_train_ts <- data_ts[-ind_x_explain, ..x_var_ts]
+
+# Spitting the time series into 4 segments
+group_ts <- list(
+ S1 = paste0("X", 1:10),
+ S2 = paste0("X", 11:20),
+ S3 = paste0("X", 21:30),
+ S4 = paste0("X", 31:40)
+)
+
+
+p0_ts <- mean(unlist(data_ts_train[, ..y_var_ts]))
diff --git a/tests/testthat/manual_test_scripts/test_custom_models.R b/tests/testthat/manual_test_scripts/test_custom_models.R
deleted file mode 100644
index 248e29843..000000000
--- a/tests/testthat/manual_test_scripts/test_custom_models.R
+++ /dev/null
@@ -1,117 +0,0 @@
-# Test custom models
-
-# Doing all testing from shapr
-# Because new functions have to be created (to use gbm with shapr), we cannot use a classic testthat set up because
-# shapr will not see the functions created inside of the test environment. Therefore we have to test these functions
-# a bit differently (and more manual) than other tests.
-
-library(testthat)
-library(shapr)
-library(gbm)
-library(MASS)
-
-# Data -----------
-data("Boston", package = "MASS")
-y_var <- "medv"
-x_train <- tail(Boston, -6)
-y_train <- tail(Boston[, y_var], -6)
-y_train_binary <- as.factor(tail((Boston[, y_var] > 20) * 1, -6))
-
-# convert to factors for testing purposes
-x_train$rad <- factor(round(x_train$rad))
-x_train$chas <- factor(round(x_train$chas))
-
-train_df <- cbind(x_train, y_train, y_train_binary)
-
-
-x_var_numeric <- c("lstat", "rm", "dis", "indus")
-x_var_factor <- c("lstat", "rm", "dis", "indus", "rad", "chas")
-
-train_df_used_numeric <- x_train[, x_var_numeric]
-train_df_used_factor <- x_train[, x_var_factor]
-
-formula_numeric <- as.formula(paste0("y_train ~ ", paste0(x_var_numeric, collapse = "+")))
-formula_factor <- as.formula(paste0("y_train ~ ", paste0(x_var_factor, collapse = "+")))
-
-# Custom model with only numeric features
-model_custom <- gbm::gbm(formula_numeric, data = train_df, distribution = "gaussian")
-expect_error(shapr(train_df_used_numeric, model_custom)) # Required model objects defined
-get_model_specs.gbm <- function(x) {
- feature_list <- list()
- feature_list$labels <- labels(x$Terms)
- m <- length(feature_list$labels)
- feature_list$classes <- attr(x$Terms, "dataClasses")[-1]
- feature_list$factor_levels <- setNames(vector("list", m), feature_list$labels)
- feature_list$factor_levels[feature_list$classes == "factor"] <- NA # the model object don't contain factor levels info
- return(feature_list)
-}
-expect_error(shapr(train_df_used_numeric, model_custom)) # predict_model objects not defined
-
-predict_model.gbm <- function(x, newdata) {
- if (!requireNamespace("gbm", quietly = TRUE)) {
- stop("The gbm package is required for predicting train models")
- }
- model_type <- ifelse(
- x$distribution$name %in% c("bernoulli", "adaboost"),
- "classification",
- "regression"
- )
- if (model_type == "classification") {
- predict(x, as.data.frame(newdata), type = "response", n.trees = x$n.trees)
- } else {
- predict(x, as.data.frame(newdata), n.trees = x$n.trees)
- }
-}
-
-expect_silent(shapr(train_df_used_numeric, model_custom)) # Both defined, so pass silently
-
-rm(get_model_specs.gbm)
-
-expect_message(shapr(train_df_used_numeric, model_custom)) # Only predict_model defined, so warning
-rm(predict_model.gbm)
-
-
-# Custom model with factors
-model_custom <- gbm::gbm(formula_factor, data = train_df, distribution = "gaussian")
-expect_error(shapr(train_df_used_factor, model_custom)) # Required model objects defined
-get_model_specs.gbm <- function(x) {
- feature_list <- list()
- feature_list$labels <- labels(x$Terms)
- m <- length(feature_list$labels)
- feature_list$classes <- attr(x$Terms, "dataClasses")[-1]
- feature_list$factor_levels <- setNames(vector("list", m), feature_list$labels)
- feature_list$factor_levels[feature_list$classes == "factor"] <- NA # model object doesn't contain factor level info
- return(feature_list)
-}
-expect_error(shapr(train_df_used_factor, model_custom)) # predict_model objects not defined
-
-predict_model.gbm <- function(x, newdata) {
- if (!requireNamespace("gbm", quietly = TRUE)) {
- stop("The gbm package is required for predicting train models")
- }
- model_type <- ifelse(
- x$distribution$name %in% c("bernoulli", "adaboost"),
- "classification",
- "regression"
- )
- if (model_type == "classification") {
- predict(x, as.data.frame(newdata), type = "response", n.trees = x$n.trees)
- } else {
- predict(x, as.data.frame(newdata), n.trees = x$n.trees)
- }
-}
-expect_message(shapr(train_df_used_factor, model_custom)) # Both defined, so pass with message as factor_level is NA
-
-rm(get_model_specs.gbm)
-
-expect_message(shapr(train_df_used_factor, model_custom)) # Only predict_model defined, so warning message returned
-
-rm(predict_model.gbm)
-
-predict_model.gbm <- function(x, newdata) NULL
-
-# Erroneous predict_model defined, so throw error + messages
-expect_message(expect_error(shapr(train_df_used_factor, model_custom)))
-
-
-rm(predict_model.gbm)
diff --git a/tests/testthat/model_objects/lm_model_object.rds b/tests/testthat/model_objects/lm_model_object.rds
deleted file mode 100644
index 07053d343..000000000
Binary files a/tests/testthat/model_objects/lm_model_object.rds and /dev/null differ
diff --git a/tests/testthat/test-a-shapley.R b/tests/testthat/test-a-shapley.R
deleted file mode 100644
index eccfe4547..000000000
--- a/tests/testthat/test-a-shapley.R
+++ /dev/null
@@ -1,271 +0,0 @@
-context("test-shapley.R")
-
-suppressWarnings(RNGversion(vstr = "3.5.0"))
-
-test_that("Basic test functions in shapley.R", {
-
- # Load data -----------
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- x_train <- tail(Boston[, x_var], 50)
-
- # Load premade lm model. Path needs to be relative to testthat directory in the package
- model <- readRDS("model_objects/lm_model_object.rds")
-
- # Prepare the data for explanation
- explainer <- shapr(x_train, model)
-
- expect_known_value(explainer,
- file = "test_objects/shapley_explainer_obj.rds",
- update = F
- )
- }
-})
-
-
-test_that("Testing data input to shapr in shapley.R", {
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
-
- y_var <- "medv"
- x_train <- tail(Boston, -6)
- y_train <- tail(Boston[, y_var], -6)
- y_train_binary <- as.factor(tail((Boston[, y_var] > 20) * 1, -6))
-
- # convert to factors for testing purposes
- x_train$rad <- factor(round(x_train$rad))
- x_train$chas <- factor(round(x_train$chas))
-
- train_df <- cbind(x_train, y_train, y_train_binary)
-
-
- x_var_numeric <- c("lstat", "rm", "dis", "indus")
- x_var_factor <- c("lstat", "rm", "dis", "indus", "rad", "chas")
-
- train_df_used_numeric <- x_train[, x_var_numeric]
- train_df_used_factor <- x_train[, x_var_factor]
-
- formula_numeric <- as.formula(paste0("y_train ~ ", paste0(x_var_numeric, collapse = "+")))
- formula_factor <- as.formula(paste0("y_train ~ ", paste0(x_var_factor, collapse = "+")))
-
- formula_binary_numeric <- as.formula(paste0("y_train_binary ~ ", paste0(x_var_numeric, collapse = "+")))
- formula_binary_factor <- as.formula(paste0("y_train_binary ~ ", paste0(x_var_factor, collapse = "+")))
-
- dummylist <- make_dummies(traindata = x_train[, x_var_factor], testdata = x_train[, x_var_factor])
-
- # List of models to run silently
- l_numeric <- list(
- stats::lm(formula_numeric, data = train_df),
- stats::glm(formula_numeric, data = train_df)
- )
-
- if (requireNamespace("mgcv", quietly = TRUE)) {
- l_numeric[[length(l_numeric) + 1]] <- mgcv::gam(formula_numeric, data = train_df)
- }
-
- l_factor <- list(
- stats::lm(formula_factor, data = train_df),
- stats::glm(formula_factor, data = train_df)
- )
-
- if (requireNamespace("mgcv", quietly = TRUE)) {
- l_factor[[length(l_factor) + 1]] <- mgcv::gam(formula_factor, data = train_df)
- }
-
- if (requireNamespace("xgboost", quietly = TRUE)) {
- l_factor[[length(l_factor) + 1]] <- xgboost::xgboost(
- data = dummylist$train_dummies,
- label = y_train,
- nrounds = 3, verbose = FALSE
- )
- l_factor[[length(l_factor)]]$feature_list <- dummylist$feature_list
- }
-
-
- for (i in seq_along(l_numeric)) {
- expect_silent(shapr(train_df_used_numeric, l_numeric[[i]])) # No modification
- expect_message(shapr(train_df, l_numeric[[i]])) # Features dropped
- }
-
- for (i in seq_along(l_factor)) {
- expect_silent(shapr(train_df_used_factor, l_factor[[i]])) # No modification
- expect_message(shapr(train_df, l_factor[[i]])) # Features dropped
- }
-
-
- # Testing errors on incompatible model and data
- # Missing features
- model <- stats::lm(formula_factor, data = train_df)
- data_error <- train_df[, -3]
- expect_error(shapr(data_error, model))
-
- # Duplicated column names
- data_error <- train_df_used_factor
- data_error <- cbind(data_error, lstat = 1)
- expect_error(shapr(data_error, model))
-
- # Empty column names in data
- data_error <- train_df
- colnames(data_error) <- NULL
- expect_error(shapr(data_error, model))
-
- # Empty column names in model (ok if found in data -- and we trust it)
- if (requireNamespace("xgboost", quietly = TRUE)) {
- data_with_colnames <- data_without_colnames <- as.matrix(train_df_used_numeric)
- colnames(data_without_colnames) <- NULL
-
- model_xgb <- xgboost::xgboost(
- data = data_without_colnames, label = y_train,
- nrounds = 3, verbose = FALSE
- )
- expect_message(shapr(data_with_colnames, model_xgb))
- }
-
- # Data feature with incorrect class
- data_error <- train_df_used_factor
- data_error$lstat <- as.logical(data_error$lstat > 15)
- expect_error(shapr(data_error, model))
-
- # non-matching factor levels
- data_error <- head(train_df_used_factor)
- data_error$rad <- droplevels(data_error$rad)
- expect_error(shapr(data_error, model))
- }
-})
-
-test_that("Basic test functions for grouping in shapley.R", {
-
- # Load data -----------
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- x_train <- tail(Boston[, x_var], 50)
-
- # Load premade lm model. Path needs to be relative to testthat directory in the package
- model <- readRDS("model_objects/lm_model_object.rds")
-
- group1_num <- list(
- c(1, 3),
- c(2, 4)
- )
-
- group1 <- lapply(group1_num, function(x) {
- x_var[x]
- })
-
-
- group2_num <- list(
- c(1),
- c(2),
- c(3),
- c(4)
- )
-
- group2 <- lapply(group2_num, function(x) {
- x_var[x]
- })
-
- # Prepare the data for explanation
- explainer1 <- shapr(x_train, model, group = group1)
- explainer2 <- shapr(x_train, model, group = group2)
-
- set.seed(123)
- explainer1_2 <- shapr(x_train, model, group = group1, n_combinations = 5)
- set.seed(1234)
- explainer2_2 <- shapr(x_train, model, group = group2, n_combinations = 5)
-
- expect_known_value(explainer1,
- file = "test_objects/shapley_explainer_group1_obj.rds",
- update = F
- )
- expect_known_value(explainer2,
- file = "test_objects/shapley_explainer_group2_obj.rds",
- update = F
- )
- expect_known_value(explainer1_2,
- file = "test_objects/shapley_explainer_group1_2_obj.rds",
- update = F
- )
- expect_known_value(explainer2_2,
- file = "test_objects/shapley_explainer_group2_2_obj.rds",
- update = F
- )
-
- }
-})
-
-
-test_that("Testing data input to shapr for grouping in shapley.R", {
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
-
- x_var <- c("lstat", "rm", "dis", "indus")
- not_x_var <- "crim"
-
- x_train <- as.matrix(tail(Boston[, x_var], -6))
- xy_train <- tail(Boston, -6)
- group_num <- list(
- c(1, 3),
- c(2, 4)
- )
-
- group <- lapply(group_num, function(x) {
- x_var[x]
- })
- names(group) <- c("A", "B")
-
- group_no_names <- lapply(group_num, function(x) {
- x_var[x]
- })
-
- group_error_1 <- list(
- c(x_var[1:2], not_x_var),
- x_var[3:4]
- )
-
- group_error_2 <- list(
- x_var[1],
- x_var[3:4]
- )
-
- group_error_3 <- list(
- x_var[c(1, 2)],
- x_var[c(1, 3, 4)]
- )
-
- group_error_4 <- list(
- x_var[c(1, 2)],
- x_var[c(1, 3, 4)]
- )
-
-
- # Fitting models
- formula <- as.formula(paste0("medv ~ ", paste0(x_var, collapse = "+")))
- model <- stats::lm(formula = formula, data = xy_train)
-
-
- # Expect silent
- expect_silent(shapr(x = x_train, model = model, group = group))
-
- # Expect message for missing names
- expect_message(shapr(x = x_train, model = model, group = group_no_names))
-
-
- # Expect error when group is not a list
- expect_error(shapr(x_train, model, group = x_var))
-
-
- # Expect error that group does not include names of features
- expect_error(shapr(x = x_train, model = model, group = group_num))
-
- # Expect error when x_train/model does not use a feature mentioned in the group
- expect_error(shapr(x_train, model, group = group_error_1))
-
- # Expect error when group does not contain a feature used by the model
- expect_error(shapr(x_train, model, group = group_error_2))
-
- # Expect error when group does duplicated features
- expect_error(shapr(x_train, model, group = group_error_3))
- }
-})
diff --git a/tests/testthat/test-explanation.R b/tests/testthat/test-explanation.R
deleted file mode 100644
index de74a3b7d..000000000
--- a/tests/testthat/test-explanation.R
+++ /dev/null
@@ -1,716 +0,0 @@
-context("test-explanation.R")
-
-# For using same Random numer generator as CircelCI (R version 3.5.x)
-suppressWarnings(RNGversion(vstr = "3.5.0"))
-
-test_that("Test get_list_approaches", {
- m <- 4
- n_features <- c(0, 1, 1, 1, 2, 2, 2, 3)
- approach <- c("gaussian", "copula", "copula")
- l <- get_list_approaches(n_features, approach)
-
- expect_true(is.list(l))
- expect_equal(names(l), c("gaussian", "copula"))
- expect_equal(l$gaussian, 1:4)
- expect_equal(l$copula, 5:8)
-})
-
-test_that("Test functions in explanation.R", {
-
- # Load data -----------
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
-
- y_train <- tail(Boston[, y_var], 50)
- x_test <- as.matrix(head(Boston[, x_var], 2))
-
- # Prepare the data for explanation. Path needs to be relative to testthat directory in the package
- explainer <- readRDS(file = "test_objects/shapley_explainer_obj.rds")
- p0 <- mean(y_train)
-
- # Test way to insert test data (shapr=4.0)
- expect_silent(explain(x_test, explainer, approach = "gaussian", prediction_zero = p0))
- expect_silent(explain(head(x_test), explainer, approach = "gaussian", prediction_zero = p0))
- expect_silent(explain(x_test[, 1:4], explainer, approach = "gaussian", prediction_zero = p0))
- expect_silent(explain(x_test[1:2, ], explainer, approach = "gaussian", prediction_zero = p0))
-
-
- # Creating list with lots of different explainer objects
- ex_list <- list()
-
- # Ex 1: Explain predictions (gaussian)
- ex_list[[1]] <- explain(x_test, explainer, approach = "gaussian", prediction_zero = p0)
-
- # Ex 2: Explain predictions (copula)
- ex_list[[2]] <- explain(x_test, explainer, approach = "copula", prediction_zero = p0)
-
- # Ex 3: Explain predictions (empirical, independence):
- ex_list[[3]] <- explain(x_test, explainer, approach = "independence", prediction_zero = p0)
-
- # Ex 4: Explain predictions (empirical, fixed sigma)
- ex_list[[4]] <- explain(x_test, explainer, approach = "empirical", prediction_zero = p0, type = "fixed_sigma")
-
- # Ex 5: Explain predictions (empirical, AICc)
- ex_list[[5]] <- explain(x_test, explainer, approach = "empirical", prediction_zero = p0, type = "AICc_each_k")
-
- # Ex 6: Explain predictions (empirical, AICc full)
- ex_list[[6]] <- explain(x_test, explainer, approach = "empirical", prediction_zero = p0, type = "AICc_full")
-
- # Ex 7: Explain combined - empirical and gaussian
- ex_list[[7]] <- explain(x_test, explainer, approach = c("empirical", rep("gaussian", 3)), prediction_zero = p0)
-
- # Ex 8: Explain combined II - all gaussian
- ex_list[[8]] <- explain(x_test, explainer, approach = c(rep("gaussian", 4)), prediction_zero = p0)
-
- # Ex 9: Explain combined III - all copula
- ex_list[[9]] <- explain(x_test, explainer, approach = rep("copula", 4), prediction_zero = p0)
-
- # Ex 10: gaussian and copula XX (works with seed)
- approach <- c(rep("gaussian", 2), rep("copula", 2))
- ex_list[[10]] <- explain(x_test, explainer, approach = approach, prediction_zero = p0)
-
- # Ex 11: empirical and gaussian
- approach <- c(rep("empirical", 2), rep("gaussian", 2))
- ex_list[[11]] <- explain(x_test, explainer, approach = approach, prediction_zero = p0)
-
- # Ex 12: empirical and copula
- approach <- c(rep("empirical", 2), rep("copula", 2))
- ex_list[[12]] <- explain(x_test, explainer, approach = approach, prediction_zero = p0)
-
- # Ex 13: copula and empirical XX (works now)
- approach <- c(rep("copula", 2), rep("empirical", 2))
- ex_list[[13]] <- explain(x_test, explainer, approach = approach, prediction_zero = p0)
-
- # Ex 14: gaussian and copula XX (works with seed)
- approach <- c(rep("gaussian", 1), rep("copula", 3))
- ex_list[[14]] <- explain(x_test, explainer, approach = approach, prediction_zero = p0)
-
- # Ex 15: empirical and copula
- approach <- c(rep("empirical", 1), rep("copula", 3))
- ex_list[[15]] <- explain(x_test, explainer, approach = approach, prediction_zero = p0)
-
- # Ex 16: gaussian and empirical XX (works now)
- approach <- c(rep("gaussian", 1), rep("empirical", 3))
- ex_list[[16]] <- explain(x_test, explainer, approach = approach, prediction_zero = p0)
-
- # Ex 17: gaussian and empirical XX (works now!)
- approach <- c(rep("gaussian", 2), rep("empirical", 2))
- ex_list[[17]] <- explain(x_test, explainer, approach = approach, prediction_zero = p0)
-
- # Ex 18: Explain combined II - all empirical
- approach <- c(rep("empirical", 4))
- ex_list[[18]] <- explain(x_test, explainer, approach = approach, prediction_zero = p0)
-
-
- if (requireNamespace("party", quietly = TRUE)) {
-
- # Ex 19: Explain predictions (ctree, sample = FALSE, default parameters)
- ex_list[[19]] <- explain(x_test, explainer, approach = "ctree", prediction_zero = p0, sample = FALSE)
-
- # Ex 20: Explain predictions (ctree, sample = TRUE, default parameters)
- ex_list[[20]] <- explain(x_test, explainer, approach = "ctree", prediction_zero = p0, sample = TRUE)
-
- # Ex 21: Explain predictions (ctree, sample = FALSE, other ctree parameters)
- ex_list[[21]] <- explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = FALSE,
- mincriterion = 0.9, minsplit = 20, minbucket = 25
- )
-
- # Ex 22: Explain predictions (ctree, sample = TRUE, other ctree parameters)
- ex_list[[22]] <- explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = TRUE,
- mincriterion = 0.9, minsplit = 20, minbucket = 25
- )
-
- # Ex 23: Explain combined - ctree and gaussian, sample = FALSE
- ex_list[[23]] <- explain(x_test, explainer,
- approach = c("ctree", rep("gaussian", 3)),
- prediction_zero = p0, sample = FALSE
- )
-
- # Ex 24: Explain combined II - ctree and gaussian, sample = FALSE
- ex_list[[24]] <- explain(x_test, explainer,
- approach = c(rep("ctree", 2), rep("gaussian", 2)),
- prediction_zero = p0, sample = FALSE
- )
-
- # Ex 25: Explain combined III - ctree and gaussian, sample = FALSE
- ex_list[[25]] <- explain(x_test, explainer,
- approach = c(rep("ctree", 3), rep("gaussian", 1)),
- prediction_zero = p0, sample = FALSE
- )
-
- # Ex 26: Explain combined IV - ctree all, sample = FALSE
- ex_list[[26]] <- explain(x_test, explainer,
- approach = c(rep("ctree", 4)),
- prediction_zero = p0, sample = FALSE
- )
-
- # Ex 27: Explain combined - ctree and empirical, sample = FALSE
- ex_list[[27]] <- explain(x_test, explainer,
- approach = c("ctree", rep("empirical", 3)),
- prediction_zero = p0, sample = FALSE
- )
-
- # Ex 28: Explain combined II - ctree and empirical, sample = FALSE
- ex_list[[28]] <- explain(x_test, explainer,
- approach = c(rep("ctree", 2), rep("empirical", 2)),
- prediction_zero = p0, sample = FALSE
- )
-
- # Ex 29: Explain combined III - ctree and empirical, sample = FALSE
- ex_list[[29]] <- explain(x_test, explainer,
- approach = c(rep("ctree", 3), rep("empirical", 1)),
- prediction_zero = p0, sample = FALSE
- )
-
- # Ex 30: Explain combined - ctree and gaussian, sample = TRUE
- ex_list[[30]] <- explain(x_test, explainer,
- approach = c("ctree", rep("gaussian", 3)),
- prediction_zero = p0, sample = TRUE
- )
-
- # Ex 31: Explain combined II - ctree and gaussian, sample = TRUE
- ex_list[[31]] <- explain(x_test, explainer,
- approach = c(rep("ctree", 2), rep("gaussian", 2)),
- prediction_zero = p0, sample = TRUE
- )
-
- # Ex 32: Explain combined III - ctree and gaussian, sample = TRUE
- ex_list[[32]] <- explain(x_test, explainer,
- approach = c(rep("ctree", 3), rep("gaussian", 1)),
- prediction_zero = p0, sample = TRUE
- )
-
- # Ex 33: Explain combined IV - ctree all, sample = TRUE
- ex_list[[33]] <- explain(x_test, explainer,
- approach = c(rep("ctree", 4)),
- prediction_zero = p0, sample = TRUE
- )
-
- # Ex 34: Explain combined - ctree and empirical, sample = TRUE
- ex_list[[34]] <- explain(x_test, explainer,
- approach = c("ctree", rep("empirical", 3)),
- prediction_zero = p0, sample = TRUE
- )
-
- # Ex 35: Explain combined II - ctree and empirical, sample = TRUE
- ex_list[[35]] <- explain(x_test, explainer,
- approach = c(rep("ctree", 2), rep("empirical", 2)),
- prediction_zero = p0, sample = TRUE
- )
-
- # Ex 36: Explain combined III - ctree and empirical, sample = TRUE
- ex_list[[36]] <- explain(x_test, explainer,
- approach = c(rep("ctree", 3), rep("empirical", 1)),
- prediction_zero = p0, sample = TRUE
- )
-
- # Ex 37: Explain different ctree mincriterion for different number of dependent variables, sample = TRUE
- ex_list[[37]] <- explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = TRUE,
- mincriterion = c(0.05, 0.05, 0.95, 0.95)
- )
-
- # Ex 38: Explain different ctree mincriterion for different number of dependent variables, sample = TRUE
- ex_list[[38]] <- explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = TRUE,
- mincriterion = rep(0.95, 4)
- )
-
- # Ex 39: Test that ctree with mincriterion equal to same probability four times gives the same as only passing one
- # probability to mincriterion
- expect_equal(
- (explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = TRUE,
- mincriterion = rep(0.95, 4)
- ))$dt,
- (explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = TRUE,
- mincriterion = 0.95
- ))$dt
- )
-
-
- # Ex 40: Test that ctree with the same mincriterion repeated four times is the same as passing mincriterion once
- expect_equal(
- (explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = FALSE,
- mincriterion = c(rep(0.95, 2), rep(0.95, 2))
- ))$dt,
- (explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = FALSE,
- mincriterion = 0.95
- ))$dt
- )
-
- # Checking that explanations with different paralellizations gives the same result (only unix systems!)
-
- if (.Platform$OS.type == "unix") {
- explain_base_nosample <- explain(x_test, explainer, approach = "ctree", prediction_zero = p0, sample = FALSE)
-
- multicore <- 2
-
- expect_equal(
- explain_base_nosample,
- explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = FALSE,
- mc_cores = multicore
- )
- )
-
- expect_equal(
- explain_base_nosample,
- explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = FALSE,
- mc_cores_create_ctree = 1, mc_cores_sample_ctree = multicore
- )
- )
-
- expect_equal(
- explain_base_nosample,
- explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = FALSE,
- mc_cores_create_ctree = multicore, mc_cores_sample_ctree = 1
- )
- )
-
- explain_base_sample <- explain(x_test, explainer, approach = "ctree", prediction_zero = p0, sample = TRUE)
-
- # Consistent results when only paralellizing create_ctree, and not sample_ctree
- expect_equal(
- explain_base_sample,
- explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = TRUE,
- mc_cores_create_ctree = multicore, mc_cores_sample_ctree = 1
- )
- )
-
- # Consistent results when ran twice with same seed
- expect_equal(
- explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = TRUE,
- mc_cores = multicore
- ),
- explain(x_test, explainer,
- approach = "ctree", prediction_zero = p0, sample = TRUE,
- mc_cores = multicore
- )
- )
- }
- # Checking that all explain objects produce the same as before
- expect_known_value(ex_list,
- file = "test_objects/explanation_explain_obj_list.rds",
- update = FALSE
- )
- } else {
- # Tests using only the first 17 elements of explanation_explain_obj_list.rds
- expect_known_value(ex_list,
- file = "test_objects/explanation_explain_obj_list_no_ctree.rds",
- update = FALSE
- )
- }
-
-
- ### Additional test to test that only the produced shapley values are the same as before
- fixed_explain_obj_list <- readRDS("test_objects/explanation_explain_obj_list_fixed.rds")
- for (i in 1:length(ex_list)) {
- expect_equal(ex_list[[i]]$dt, fixed_explain_obj_list[[i]]$dt)
- }
-
-
- # Checks that an error is returned
- expect_error(
- explain(1, explainer, approach = "gaussian", prediction_zero = p0)
- )
- expect_error(
- explain(list(), explainer, approach = "gaussian", prediction_zero = p0)
- )
- expect_error(
- explain(x_test, explainer, approach = "Gaussian", prediction_zero = p0)
- )
- expect_error(
- explain(x_test, explainer, approach = rep("gaussian", ncol(x_test) + 1), prediction_zero = p0)
- )
-
- # Check that the same results are obtained if you pass the covariance matrix or whether it is computed internally
- # Gaussian approach
- explained_gaus_cov <- explain(x_test, explainer, approach = "gaussian",
- prediction_zero = p0, cov_mat = cov(explainer$x_train))
- explained_gaus_no_cov <- explain(x_test, explainer, approach = "gaussian",
- prediction_zero = p0)
-
- # Empirical approach
- explained_emp_cov <- explain(x_test, explainer, approach = "empirical",
- prediction_zero = p0, cov_mat = cov(explainer$x_train))
- explained_emp_no_cov <- explain(x_test, explainer, approach = "empirical",
- prediction_zero = p0)
-
- expect_equal(explained_gaus_cov, explained_gaus_no_cov)
- expect_equal(explained_emp_cov, explained_emp_no_cov)
-
- }
-})
-
-test_that("Testing data input to explain in explanation.R", {
-
- # Setup for training data and explainer object
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
-
- # Training data
- x_train <- as.matrix(tail(Boston[, x_var], -6))
- y_train <- tail(Boston[, y_var], -6)
- xy_train_full_df <- tail(Boston[, ], -6)
-
- # Test data
- x_test <- as.matrix(head(Boston[, x_var], 6))
- x_test_full <- as.matrix(head(Boston[, ], 6))
- x_test_reordered <- as.matrix(head(Boston[, rev(x_var)], 6))
- xy_test_full_df <- head(Boston[, ], 6)
- xy_test_missing_lstat_df <- xy_test_full_df[, !(colnames(xy_test_full_df) == "lstat")]
- xy_test_full_df_no_colnames <- xy_test_full_df
- colnames(xy_test_full_df_no_colnames) <- NULL
-
- formula <- as.formula(paste0("medv ~ ", paste0(x_var, collapse = "+")))
- p0 <- mean(y_train)
-
- # Test data
- all_test_data <- list(
- x_test,
- x_test_reordered,
- x_test_full
- )
-
- # Linear model
- list_models <- list(
- lm(
- formula = formula,
- data = xy_train_full_df
- )
- )
-
- all_explainers <- list(
- shapr(x_train, list_models[[1]])
- )
-
- # explainer 1
- # Expect message due to no label/factor checking
- list_explanation <- list()
- list_explanation[[1]] <- expect_silent(
- explain(
- all_test_data[[1]],
- all_explainers[[1]],
- approach = "empirical",
- prediction_zero = p0,
- n_samples = 1e2
- )
- )
- # Expect message due to no label/factor checking
- list_explanation[[2]] <- expect_silent(
- explain(
- all_test_data[[2]],
- all_explainers[[1]],
- approach = "empirical",
- prediction_zero = p0,
- n_samples = 1e2
- )
- )
- # Expect message due to removal of data
- list_explanation[[3]] <- expect_message(
- explain(
- all_test_data[[3]],
- all_explainers[[1]],
- approach = "empirical",
- prediction_zero = p0,
- n_samples = 1e2
- )
- )
- for (i in 2:length(list_explanation)) {
- expect_equal(list_explanation[[i - 1]], list_explanation[[i]])
- }
-
-
- if (requireNamespace("xgboost", quietly = TRUE)) {
- list_models[[length(list_models) + 1]] <- xgboost::xgboost(
- data = x_train,
- label = y_train,
- nround = 5,
- verbose = FALSE
- )
-
- all_explainers[[length(all_explainers) + 1]] <- shapr(x_train, list_models[[length(list_models)]])
-
- # explainer 2
- # Expect silent
- list_explanation <- list()
- list_explanation[[1]] <- expect_silent(
- explain(
- all_test_data[[1]],
- all_explainers[[length(all_explainers)]],
- approach = "empirical",
- prediction_zero = p0,
- n_samples = 1e2
- )
- )
- # Expect silent
- list_explanation[[2]] <- expect_silent(
- explain(
- all_test_data[[2]],
- all_explainers[[length(all_explainers)]],
- approach = "empirical",
- prediction_zero = p0,
- n_samples = 1e2
- )
- )
- # Expect message due to removal of data
- list_explanation[[3]] <- expect_message(
- explain(
- all_test_data[[3]],
- all_explainers[[length(all_explainers)]],
- approach = "empirical",
- prediction_zero = p0,
- n_samples = 1e2
- )
- )
- for (i in 2:length(list_explanation)) {
- expect_equal(list_explanation[[i - 1]], list_explanation[[i]])
- }
- }
-
-
- if (requireNamespace("ranger", quietly = TRUE)) {
- list_models[[length(list_models) + 1]] <- ranger::ranger(
- formula = formula,
- data = xy_train_full_df,
- num.trees = 50
- )
-
- all_explainers[[length(all_explainers) + 1]] <- shapr(x_train, list_models[[length(list_models)]])
-
- # explainer 3
- # Expect silent
- list_explanation <- list()
- list_explanation[[1]] <- expect_silent(
- explain(
- all_test_data[[1]],
- all_explainers[[length(all_explainers)]],
- approach = "empirical",
- prediction_zero = p0,
- n_samples = 1e2
- )
- )
- # Expect silent
- list_explanation[[2]] <- expect_silent(
- explain(
- all_test_data[[2]],
- all_explainers[[length(all_explainers)]],
- approach = "empirical",
- prediction_zero = p0,
- n_samples = 1e2
- )
- )
- # Expect message due removal of data
- list_explanation[[3]] <- expect_message(
- explain(
- all_test_data[[3]],
- all_explainers[[length(all_explainers)]],
- approach = "empirical",
- prediction_zero = p0,
- n_samples = 1e2
- )
- )
- for (i in 2:length(list_explanation)) {
- expect_equal(list_explanation[[i - 1]], list_explanation[[i]])
- }
- }
-
- for (i in seq_along(all_explainers)) {
-
- # Expect error when test data misses used variable
- expect_error(
- explain(
- xy_test_missing_lstat_df,
- all_explainers[[i]],
- approach = "empirical",
- prediction_zero = p0,
- n_samples = 1e2
- )
- )
-
- # Expect error when test data misses column names
- expect_error(
- explain(
- xy_test_full_df_no_colnames,
- all_explainers[[i]],
- approach = "empirical",
- prediction_zero = p0,
- n_samples = 1e2
- )
- )
- }
- }
-})
-
-
-test_that("Testing that differnet data ordering gives same explanations", {
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
-
- # Training data
- x_train <- as.matrix(tail(Boston[, x_var], -6))
- y_train <- tail(Boston[, y_var], -6)
- xy_train_full_df <- tail(Boston, -6)
-
- # Test data
- x_test <- as.matrix(head(Boston[, x_var], 6))
-
- formula <- as.formula(paste0("medv ~ ", paste0(x_var, collapse = "+")))
- p0 <- mean(y_train)
-
- model <- lm(formula = formula, data = xy_train_full_df)
-
- explainer_1 <- shapr(x_train[, 1:4], model = model)
- explainer_2 <- shapr(x_train[, 4:1], model = model)
-
- explained_1_1 <- explain(x = x_test[, 1:4], explainer = explainer_1, approach = "empirical", prediction_zero = p0)
- explained_1_2 <- explain(x = x_test[, 4:1], explainer = explainer_1, approach = "empirical", prediction_zero = p0)
- explained_2_1 <- explain(x = x_test[, 1:4], explainer = explainer_2, approach = "empirical", prediction_zero = p0)
- explained_2_2 <- explain(x = x_test[, 4:1], explainer = explainer_2, approach = "empirical", prediction_zero = p0)
-
- expect_identical(explained_1_1, explained_1_2)
- expect_identical(explained_1_1, explained_2_1)
- expect_identical(explained_1_1, explained_2_2)
- }
-})
-
-
-test_that("Test functions related to groups in explanation.R", {
-
- # Load data -----------
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
-
- y_train <- tail(Boston[, y_var], 50)
- x_test <- as.matrix(head(Boston[, x_var], 2))
-
- # Prepare the data for explanation. Path needs to be relative to testthat directory in the package
- explainer0 <- readRDS(file = "test_objects/shapley_explainer_obj.rds")
- explainer1 <- readRDS(file = "test_objects/shapley_explainer_group1_obj.rds")
- explainer2 <- readRDS(file = "test_objects/shapley_explainer_group2_obj.rds")
-
- # Creating list with lots of different explainer objects
- p0 <- mean(y_train)
-
- ex_list <- list()
-
- # Ex 1: Explain predictions (gaussian)
- ex_list[[1]] <- explain(x_test, explainer1, approach = "gaussian", prediction_zero = p0)
-
- # Ex 2: Explain predictions (empirical)
- ex_list[[2]] <- explain(x_test, explainer1, approach = "empirical", prediction_zero = p0)
-
- # Ex 3: Explain predictions (copula)
- ex_list[[3]] <- explain(x_test, explainer1, approach = "copula", prediction_zero = p0)
-
- # Ex 4: Explain predictions (gaussian, empirical)
- ex_list[[4]] <- explain(x_test, explainer1, approach = c(
- "gaussian", "empirical", "gaussian",
- "empirical"
- ), prediction_zero = p0)
-
- # Ex 5: Explain predictions (copula)
- ex_list[[5]] <- explain(x_test, explainer2, approach = "gaussian", prediction_zero = p0)
-
- # Checking that all explain objects produce the same as before
- expect_known_value(ex_list, file = "test_objects/explanation_explain_group_obj_list.rds")
-
- ### Additional test that only the produced shapley values are the same as before
- fixed_explain_obj_list <- readRDS("test_objects/explanation_explain_group_obj_list.rds")
- for (i in 1:length(ex_list)) {
- expect_equal(ex_list[[i]]$dt, fixed_explain_obj_list[[i]]$dt)
- }
-
- # Here we check if not grouping (explanation0) and grouping with one feature per group (explanation2)
- # gives the same answer
- explanation0 <- explain(x_test, explainer0, approach = "empirical", prediction_zero = p0)
- explanation2 <- explain(x_test, explainer2, approach = "empirical", prediction_zero = p0)
- names(explanation2$dt)[-1] <- unlist(explainer2$group)
- expect_equal(explanation0$dt, explanation2$dt)
- }
-})
-
-
-test_that("test functions related to running explain in batch", {
-
- explainer <- list()
-
- n_comb <- 20
- n_batches <- 1
- explainer$S <- matrix(1, nrow = n_comb, ncol = 5)
- S_batch <- create_S_batch(explainer, n_batches = n_batches)
- n_batches <- 1
- expect_length(S_batch, n_batches)
-
- n_batches <- 5
- S_batch <- create_S_batch(explainer, n_batches = n_batches)
- expect_length(S_batch, 5)
- expect_equal(unlist(S_batch, use.names = FALSE), 1:n_comb)
-
-
- S_batch <- create_S_batch(explainer, n_batches = n_batches, index_S = 1:10)
- expect_equal(unlist(S_batch, use.names = FALSE), 1:10)
-
-})
-
-
-test_that("prepare_and_predict", {
-
- if (requireNamespace("MASS", quietly = TRUE)) {
-
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
-
- y_train <- tail(Boston[, y_var], 50)
- x_test <- as.matrix(head(Boston[, x_var], 2))
-
- # Prepare the data for explanation. Path needs to be relative to testthat directory in the package
- explainer <- readRDS(file = "test_objects/shapley_explainer_obj.rds")
-
- p0 <- mean(y_train)
- explainer$x_test <- as.matrix(preprocess_data(x_test, explainer$feature_list)$x_dt)
- explainer$approach <- "independence"
- explainer$n_samples <- 100
-
- res <- prepare_and_predict(explainer, n_batches = 1, p0)
-
- expect_true(is.list(res))
- expect_s3_class(res, "shapr")
- expect_equal(names(res), c("dt", "model", "p", "x_test", "is_groupwise"))
-
-
- # return the contribution matrix
- res <- prepare_and_predict(explainer, n_batches = 1, p0, only_return_contrib_dt = TRUE)
- expect_s3_class(res, "data.table")
-
- }
-})
-
-test_that("errors with non valid n_batches", {
-
- explainer <- list()
- explainer$S <- matrix(1, nrow = 10, ncol = 2)
- x_test <- data.table()
- expect_error(explain(x_test, explainer, n_batches = 0))
- expect_error(explain(x_test, explainer, n_batches = 11))
-
-})
diff --git a/tests/testthat/test-features.R b/tests/testthat/test-features.R
deleted file mode 100644
index 667c06964..000000000
--- a/tests/testthat/test-features.R
+++ /dev/null
@@ -1,372 +0,0 @@
-context("test-features.R")
-
-test_that("Test feature_combinations", {
-
- # Example 1 -----------
- m <- 3
- exact <- TRUE
- w <- 10^6
- x1 <- feature_combinations(m = m, exact = exact, weight_zero_m = w)
- x2 <- feature_exact(m, w)
-
- # Example 2 -----------
- m <- 10
- exact <- FALSE
- n_combinations <- 50
- w <- 10^6
- set.seed(1)
- y1 <- feature_combinations(
- m = m,
- exact = exact,
- n_combinations = n_combinations,
- weight_zero_m = w
- )
-
- set.seed(1)
- y2 <- feature_not_exact(
- m = m,
- n_combinations = n_combinations,
- weight_zero_m = w
- )
- y2[, p := NULL]
-
- # Example 3 -----------
- m <- 3
- exact <- FALSE
- n_combinations <- 1e4
- w <- 10^6
- set.seed(1)
- y3 <- feature_combinations(
- m = m,
- exact = exact,
- n_combinations = n_combinations,
- weight_zero_m = w
- )
-
- # Test results -----------
- expect_equal(x1, x2)
- expect_equal(y1, y2)
- expect_equal(nrow(y3), 2^3)
- expect_error(feature_combinations(100))
- expect_error(feature_combinations(100, n_combinations = NULL))
-})
-
-test_that("Test feature_exact", {
-
- # Example -----------
- m <- 3
- weight_zero_m <- 10^6
- x <- feature_exact(m, weight_zero_m)
-
- # Define results -----------
- cnms <- c("id_combination", "features", "n_features", "N", "shapley_weight")
- classes <- c("integer", "list", "integer", "integer", "double")
- lfeatures <- list(
- integer(0),
- 1L,
- 2L,
- 3L,
- c(1L, 2L),
- c(1L, 3L),
- c(2L, 3L),
- c(1L, 2L, 3L)
- )
- n_components <- c(0, rep(1, 3), rep(2, 3), 3)
- n <- c(1, rep(3, 6), 1)
-
- # Tests -----------
- expect_true(data.table::is.data.table(x))
- expect_equal(names(x), cnms)
- expect_equal(unname(sapply(x, typeof)), classes)
- expect_equal(x[["id_combination"]], seq(nrow(x)))
- expect_equal(x[["features"]], lfeatures)
- expect_equal(x[["n_features"]], n_components)
- expect_equal(x[["N"]], n)
-})
-
-test_that("Test feature_not_exact", {
-
- # Example -----------
- m <- 10
- exact <- FALSE
- n_combinations <- 50
- w <- 10^6
- set.seed(1)
- x <- feature_not_exact(
- m = m,
- n_combinations = n_combinations,
- weight_zero_m = w
- )
- set.seed(1)
-
- cnms <- c("id_combination", "features", "n_features", "N", "shapley_weight", "p")
- classes <- c("integer", "list", "integer", "integer", "integer", "double")
- n <- sapply(seq(m - 1), choose, n = m)
- w_all <- shapley_weights(m = m, N = n, n_components = seq(m - 1)) * n
- w_default <- w_all / sum(w_all)
-
- # Test results -----------
- expect_true(data.table::is.data.table(x))
- expect_equal(names(x), cnms)
- expect_equal(unname(sapply(x, typeof)), classes)
- expect_true(nrow(x) <= n_combinations + 2)
- expect_equal(x[["id_combination"]], seq(nrow(x)))
- for (i in x[, .I]) {
- f <- x[["features"]][[i]]
- if (length(f) == 0) {
- expect_equal(x[["n_features"]][[i]], 0)
- expect_equal(x[["N"]][[i]], 1)
- expect_equal(x[["shapley_weight"]][[i]], w)
- expect_equal(x[["p"]][[i]], NA_real_)
- } else if (length(f) == m) {
- expect_equal(f, seq(m))
- expect_equal(x[["n_features"]][[i]], m)
- expect_equal(x[["N"]][[i]], 1)
- expect_equal(x[["shapley_weight"]][[i]], w)
- expect_equal(x[["p"]][[i]], NA_real_)
- } else {
- k <- length(f)
- expect_equal(f, sort(f))
- expect_equal(x[["n_features"]][[i]], k)
- expect_equal(x[["N"]][[i]], choose(m, k))
- expect_equal(x[["p"]][[i]], w_default[x[["n_features"]][[i]]])
- expect_equal(between(x[["shapley_weight"]][[i]], 1L, n_combinations), TRUE)
- }
- }
-})
-
-test_that("Test helper_feature", {
-
- # Example -----------
- m <- 5
- feature_sample <- list(
- integer(0),
- 1:2,
- 3:5,
- 1:2,
- 1:5
- )
- x <- helper_feature(m, feature_sample)
-
- # Define results -----------
- x2 <- c(1, 2, 1, 2, 1)
- x3 <- c(FALSE, FALSE, FALSE, TRUE, FALSE)
-
- # Test results -----------
- cnms <- c("sample_frequence", "is_duplicate")
- classes <- c("integer", "logical")
- expect_true(data.table::is.data.table(x))
- expect_equal(names(x), cnms)
- expect_equal(nrow(x), length(feature_sample))
- expect_equal(classes, unname(sapply(x, typeof)))
- expect_equal(x[["sample_frequence"]], x2)
- expect_equal(x[["is_duplicate"]], x3)
-})
-
-
-test_that("Test make_dummies", {
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
-
- x_train <- as.data.frame(Boston[401:411, x_var])
- y_train <- Boston[401:408, y_var]
- x_test <- as.data.frame(Boston[1:4, x_var])
-
- # convert to factors for illustrational purpose
- x_train$rm <- factor(round(x_train$rm))
- x_test$rm <- factor(round(x_test$rm), levels = levels(x_train$rm))
-
- factor_feat <- sapply(x_train, is.factor)
- nb_factor_feat <- sum(factor_feat)
-
- dummylist <- make_dummies(traindata = x_train, testdata = x_train)
-
- # Tests
- expect_type(dummylist, "list")
-
- expect_equal(length(dummylist$feature_list$contrasts_list), nb_factor_feat)
-
- expect_equal(length(dummylist$feature_list$labels), ncol(x_train))
-
- expect_equal(sum(dummylist$feature_list$classes == "factor"), nb_factor_feat)
-
- expect_equal(ncol(dummylist$feature_list$contrasts_list$rm), length(levels(x_train$rm)))
-
- # 1) What if train has more features than test but features in test are contained in train
- x_train1 <- cbind(x_train, 1)
- x_test1 <- x_test
- expect_error(make_dummies(traindata = x_train1, testdata = x_test1))
-
- # 2) What if train has different feature types than test
- x_train2 <- x_train
- x_test2 <- x_test
- x_test2$rm <- as.numeric(x_test2$rm)
- expect_error(make_dummies(traindata = x_train2, testdata = x_test2))
-
- # 3) What if test has more features than train but features in train are contained in test
- x_train3 <- x_train
- x_test3 <- cbind(x_test, 1)
- expect_error(make_dummies(traindata = x_train3, testdata = x_test3))
-
- # 4) What if train and test only have numerical features
- x_train4 <- x_train
- x_train4$rm <- as.numeric(x_train4$rm)
- x_test4 <- x_test
- x_test4$rm <- as.numeric(x_test4$rm)
- expect_type(make_dummies(traindata = x_train4, testdata = x_test4), "list")
-
- # 5) What if train and test only have categorical features
- x_train5 <- x_train
- x_train5 <- x_train5[, "rm", drop = FALSE]
- x_test5 <- x_test
- x_test5 <- x_test5[, "rm", drop = FALSE]
- expect_type(make_dummies(traindata = x_train5, testdata = x_test5), "list")
-
- # 6) What if test has the same levels as train but random ordering of levels
- x_train6 <- x_train
- x_train6$rm <- factor(x_train6$rm, levels = 4:9)
- x_test6 <- x_test
- x_test6$rm <- factor(x_test6$rm, levels = c(8, 9, 7, 4, 5, 6))
- expect_type(make_dummies(traindata = x_train6, testdata = x_test6), "list")
-
- # 7) What if test has different levels than train
- x_train7 <- x_train
- x_train7$rm <- factor(x_train7$rm, levels = 4:9)
- x_test7 <- x_test
- x_test7$rm <- factor(x_test7$rm, levels = 6:8)
- expect_error(make_dummies(traindata = x_train7, testdata = x_test7))
-
- # 8) What if train and test have different feature names
- x_train8 <- x_train
- x_test8 <- x_test
- names(x_test8) <- c("lstat2", "rm2", "dis2", "indus2")
- expect_error(make_dummies(traindata = x_train8, testdata = x_test8))
-
- # 9) What if one variables has an empty name
- x_train9 <- x_train
- colnames(x_train9) <- c("", "rm", "dis", "indus")
- x_test9 <- x_test
- colnames(x_test9) <- c("", "rm", "dis", "indus")
- expect_error(make_dummies(traindata = x_train9, testdata = x_test9))
-
- # 10) What if traindata has a column that repeats
- x_train10 <- cbind(x_train, lstat = x_train$lstat)
- x_test10 <- cbind(x_test, lstat = x_test$lstat)
- expect_error(make_dummies(traindata = x_train10, testdata = x_test10))
-
- # 11) What if traindata has no column names
- x_train11 <- x_train
- colnames(x_train11) <- NULL
- x_test11 <- x_test
- colnames(x_test11) <- NULL
- expect_error(make_dummies(traindata = x_train11, testdata = x_test11))
-
- # 12 Test that traindata_new and testdata_new will be the same as the original
- # x_train and x_test. The only time this is different is if the levels of train
- # and test are different. See below.
- dummylist12 <- make_dummies(traindata = x_train, testdata = x_test)
- #
- expect_true(all(data.frame(dummylist12$traindata_new) == x_train))
- expect_true(all(levels(dummylist12$traindata_new$rm) == levels(x_train$rm)))
- expect_true(all(data.frame(dummylist12$testdata_new) == x_test))
- expect_true(all(levels(dummylist12$testdata_new$rm) == levels(x_test$rm)))
-
-
- # 13 Different levels same as check # 12
- #
- x_train13 <- x_train
- x_train13$rm <- factor(x_train13$rm, levels = 4:9)
- x_test13 <- x_test
- x_test13$rm <- factor(x_test13$rm, levels = c(8, 9, 7, 4, 5, 6))
- dummylist13 <- make_dummies(traindata = x_train13, testdata = x_test13)
- #
- expect_true(all(data.frame(dummylist13$traindata_new) == x_train13))
- expect_true(all(levels(dummylist13$traindata_new$rm) == levels(x_train13$rm)))
- expect_true(all(data.frame(dummylist13$testdata_new) == x_test13))
- # Important !!!!
- expect_false(all(levels(dummylist13$testdata_new$rm) == levels(x_test13$rm)))
- }
-})
-
-test_that("Test apply_dummies", {
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
-
- x_train <- as.data.frame(Boston[401:411, x_var])
- y_train <- Boston[401:408, y_var]
- x_test <- as.data.frame(Boston[1:4, x_var])
-
- # convert to factors for illustrational purpose
- x_train$rm <- factor(round(x_train$rm))
- x_test$rm <- factor(round(x_test$rm), levels = levels(x_train$rm))
-
- numeric_feat <- !sapply(x_train, is.factor)
- nb_numeric_feat <- sum(numeric_feat)
-
- dummylist <- make_dummies(traindata = x_train, testdata = x_test)
-
- x_test_dummies <- apply_dummies(feature_list = dummylist$feature_list, testdata = x_test)
-
- # Tests
- expect_type(x_test_dummies, "double")
-
- expect_equal(
- ncol(x_test_dummies),
- nb_numeric_feat + ncol(dummylist$feature_list$contrasts_list$rm)
- )
-
- # Test that make_dummies() and apply_dummies() gives the same output
- # for a given traindata and testdata
- expect_true(all(dummylist$test_dummies == x_test_dummies))
-
- # 1) What if you re-arrange the columns in x_train
- x_test1 <- x_test[, c(2, 3, 1, 4)]
- diff_column_placements <- apply_dummies(dummylist$feature_list, testdata = x_test1)
- expect_equal(colnames(diff_column_placements), colnames(x_test_dummies))
-
- # 2) What if you put in less features then the original traindata
- x_test2 <- x_test[, c(2, 1)]
- expect_error(apply_dummies(dummylist$feature_list, testdata = x_test2))
-
- # 3) What if you change the feature types of testdata
- x_test3 <- sapply(x_test, as.numeric)
- expect_error(apply_dummies(dummylist$feature_list, testdata = x_test3))
-
- # 4) What if you add a feature
- x_test4 <- cbind(x_train[, c(1, 2)], new_var = x_train[, 2], x_train[, c(3, 4)])
- expect_error(apply_dummies(dummylist$feature_list, testdata = x_test4))
-
- # 6) What if test has the same levels as train but random ordering of levels
- x_test6 <- x_test
- x_test6$rm <- factor(x_test6$rm, levels = c(8, 9, 7, 4, 5, 6))
- expect_error(apply_dummies(dummylist$feature_list, testdata = x_test6))
-
- # 7) What if test has different levels than train
- x_test7 <- x_test
- x_test7$rm <- factor(x_test7$rm, levels = 6:8)
- expect_error(apply_dummies(dummylist$feature_list, testdata = x_test7))
-
- # 8) What if train and test have different feature names
- x_test8 <- x_test
- names(x_test8) <- c("lstat2", "rm2", "dis2", "indus2")
- expect_error(apply_dummies(dummylist$feature_list, testdata = x_test8))
-
- # 9) What if one variables has an empty name
- x_test9 <- x_test
- colnames(x_test9) <- c("", "rm", "dis", "indus")
- expect_error(apply_dummies(dummylist$feature_list, testdata = x_test9))
-
- # 10) What if traindata has a column that repeats
- x_test10 <- cbind(x_test, lstat = x_test$lstat)
- expect_error(apply_dummies(dummylist$feature_list, testdata = x_test10))
-
- # 11) What if testdata has no column names
- x_test11 <- x_test
- colnames(x_test11) <- NULL
- expect_error(apply_dummies(dummylist$feature_list, testdata = x_test11))
- }
-})
diff --git a/tests/testthat/test-forecast-output.R b/tests/testthat/test-forecast-output.R
new file mode 100644
index 000000000..c2bcc000b
--- /dev/null
+++ b/tests/testthat/test-forecast-output.R
@@ -0,0 +1,236 @@
+test_that("forecast_output_ar_numeric", {
+ expect_snapshot_rds(
+ explain_forecast(
+ model = model_ar_temp,
+ y = data[, "Temp"],
+ train_idx = 2:151,
+ explain_idx = 152:153,
+ explain_y_lags = 2,
+ horizon = 3,
+ approach = "empirical",
+ prediction_zero = p0_ar,
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "forecast_output_ar_numeric"
+ )
+})
+
+test_that("forecast_output_arima_numeric", {
+ expect_snapshot_rds(
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "empirical",
+ prediction_zero = p0_ar,
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "forecast_output_arima_numeric"
+ )
+})
+
+test_that("forecast_output_arima_numeric_no_xreg", {
+ expect_snapshot_rds(
+ explain_forecast(
+ model = model_arima_temp_noxreg,
+ y = data[1:150, "Temp"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ horizon = 3,
+ approach = "empirical",
+ prediction_zero = p0_ar,
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "forecast_output_arima_numeric_no_xreg"
+ )
+})
+
+test_that("forecast_output_forecast_ARIMA_group_numeric", {
+ expect_snapshot_rds(
+ explain_forecast(
+ model = model_forecast_ARIMA_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "empirical",
+ prediction_zero = p0_ar,
+ group_lags = TRUE,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "forecast_output_forecast_ARIMA_group_numeric"
+ )
+})
+
+
+test_that("ARIMA gives the same output with different horizons", {
+ h3 <- explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "empirical",
+ prediction_zero = p0_ar[1:3],
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE, n_combinations = 50
+ )
+
+
+ h2 <- explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 2,
+ approach = "empirical",
+ prediction_zero = p0_ar[1:2],
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE, n_combinations = 50
+ )
+
+ h1 <- explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 1,
+ approach = "empirical",
+ prediction_zero = p0_ar[1],
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE, n_combinations = 50
+ )
+
+ cols_horizon1 <- h2$internal$objects$cols_per_horizon[[1]]
+ expect_equal(
+ h2$shapley_values[horizon == 1, ..cols_horizon1],
+ h1$shapley_values[horizon == 1, ..cols_horizon1]
+ )
+
+ expect_equal(
+ h3$shapley_values[horizon == 1, ..cols_horizon1],
+ h1$shapley_values[horizon == 1, ..cols_horizon1]
+ )
+
+ cols_horizon2 <- h2$internal$objects$cols_per_horizon[[2]]
+ expect_equal(
+ h3$shapley_values[horizon == 2, ..cols_horizon2],
+ h2$shapley_values[horizon == 2, ..cols_horizon2]
+ )
+})
+
+test_that("ARIMA gives the same output with different horizons with grouping", {
+ h3 <- explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "empirical",
+ prediction_zero = p0_ar[1:3],
+ group_lags = TRUE,
+ n_batches = 1,
+ timing = FALSE, n_combinations = 50
+ )
+
+
+ h2 <- explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 2,
+ approach = "empirical",
+ prediction_zero = p0_ar[1:2],
+ group_lags = TRUE,
+ n_batches = 1,
+ timing = FALSE, n_combinations = 50
+ )
+
+ h1 <- explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 1,
+ approach = "empirical",
+ prediction_zero = p0_ar[1],
+ group_lags = TRUE,
+ n_batches = 1,
+ timing = FALSE, n_combinations = 50
+ )
+
+ expect_equal(
+ h2$shapley_values[horizon == 1],
+ h1$shapley_values[horizon == 1]
+ )
+
+ expect_equal(
+ h3$shapley_values[horizon == 1],
+ h1$shapley_values[horizon == 1]
+ )
+
+ expect_equal(
+ h3$shapley_values[horizon == 2],
+ h2$shapley_values[horizon == 2]
+ )
+})
+
+test_that("forecast_output_arima_numeric_no_lags", {
+ # TODO: Need to check out this output. It gives lots of warnings, which indicates something might be wrong.
+ expect_snapshot_rds(
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 0,
+ explain_xreg_lags = 0,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "forecast_output_arima_numeric_no_lags"
+ )
+})
diff --git a/tests/testthat/test-forecast-setup.R b/tests/testthat/test-forecast-setup.R
new file mode 100644
index 000000000..70a49eafb
--- /dev/null
+++ b/tests/testthat/test-forecast-setup.R
@@ -0,0 +1,563 @@
+test_that("error with custom model without providing predict_model", {
+ set.seed(123)
+
+
+ expect_snapshot(
+ {
+ # Custom model with no predict_model
+ model_custom_arima_temp <- model_arima_temp
+ class(model_custom_arima_temp) <- "whatever"
+
+ explain_forecast(
+ model = model_custom_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+})
+
+
+test_that("erroneous input: `x_train/x_explain`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # not vector or one-column data.table/matrix
+ y_wrong_format <- data[, c("Temp", "Wind")]
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = y_wrong_format,
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # not correct dimension
+ xreg_wrong_format <- data[, c("Temp", "Wind")]
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = xreg_wrong_format,
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # missing column names x_train
+ xreg_no_column_names <- data[, "Wind"]
+ names(xreg_no_column_names) <- NULL
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = xreg_no_column_names,
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `model`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # no model passed
+ explain_forecast(
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+})
+
+
+test_that("erroneous input: `prediction_zero`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # incorrect length
+ p0_wrong_length <- p0_ar[1:2]
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_wrong_length,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `n_combinations`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # Too low n_combinations (smaller than # features)
+ horizon <- 3
+ explain_y_lags <- 2
+ explain_xreg_lags <- 2
+
+ n_combinations <- horizon + explain_y_lags + explain_xreg_lags - 1
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = explain_y_lags,
+ explain_xreg_lags = explain_xreg_lags,
+ horizon = horizon,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1,
+ n_combinations = n_combinations,
+ group_lags = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+
+ expect_snapshot(
+ {
+ # Too low n_combinations (smaller than # groups)
+ horizon <- 3
+ explain_y_lags <- 2
+ explain_xreg_lags <- 2
+
+ n_combinations <- 1 + 1
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = explain_y_lags,
+ explain_xreg_lags = explain_xreg_lags,
+ horizon = horizon,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1,
+ n_combinations = n_combinations,
+ group_lags = TRUE
+ )
+ },
+ error = TRUE
+ )
+})
+
+
+test_that("erroneous input: `train_idx`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # train_idx too short length
+ train_idx_too_short <- 2
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = train_idx_too_short,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+
+
+ expect_snapshot(
+ {
+ # train_idx not containing integers
+ train_idx_not_integer <- c(3:5) + 0.1
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = train_idx_not_integer,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # train_idx being out of range
+ train_idx_out_of_range <- 1:5
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = train_idx_out_of_range,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `explain_idx`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # explain_idx not containing integers
+ explain_idx_not_integer <- c(3:5) + 0.1
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = explain_idx_not_integer,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # explain_idx being out of range
+ explain_idx_out_of_range <- 1:5
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = explain_idx_out_of_range,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `explain_y_lags`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # explain_y_lags not positive
+ explain_y_lags_negative <- -1
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = explain_y_lags_negative,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # explain_y_lags not integer valued
+ explain_y_lags_not_integer <- 2.1
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = explain_y_lags_not_integer,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # explain_y_lags more than single integer
+ explain_y_lags_more_than_one <- c(1, 2)
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = explain_y_lags_more_than_one,
+ explain_xreg_lags = 2,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+
+
+ expect_snapshot(
+ {
+ # explain_y_lags is zero for model without xreg
+ explain_y_lags_zero <- 0
+
+ explain_forecast(
+ model = model_arima_temp_noxreg,
+ y = data[1:150, "Temp"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 0,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+})
+
+
+test_that("erroneous input: `explain_x_lags`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # explain_xreg_lags not positive
+ explain_xreg_lags_negative <- -2
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = explain_xreg_lags_negative,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # explain_xreg_lags not integer valued
+ explain_xreg_lags_not_integer <- 2.1
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = explain_xreg_lags_not_integer,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # explain_x_lags wrong length
+ explain_x_lags_wrong_length <- c(1, 2) # only 1 xreg variable defined
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = explain_x_lags_wrong_length,
+ horizon = 3,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `horizon`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # horizon not positive
+ horizon_negative <- -2
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = horizon_negative,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # horizon not integer valued
+ horizon_not_integer <- 2.1
+
+ explain_forecast(
+ model = model_arima_temp,
+ y = data[1:150, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:148,
+ explain_idx = 149:150,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = horizon_not_integer,
+ approach = "independence",
+ prediction_zero = p0_ar,
+ n_batches = 1
+ )
+ },
+ error = TRUE
+ )
+})
+
+
+test_that("Forecast data setup produces expected results", {
+ mock_y <- matrix(1:100, 100, dimnames = list(NULL, "Y1"))
+ mock_xreg <- matrix(101:205, 105, dimnames = list(NULL, "X1"))
+
+ formatted_data <- get_data_forecast(
+ mock_y,
+ mock_xreg,
+ train_idx = 2:99,
+ explain_idx = 100,
+ explain_y_lags = 2,
+ explain_xreg_lags = 2,
+ horizon = 5
+ )
+
+ # Y1 lag 1, Y2 lag 2, X1 lag 1, X1 lag 2, X1 f1, f2, ... f5.
+ x_explain <- c(100, 99, 200, 199, 201, 202, 203, 204, 205)
+ expect_equal(x_explain, as.numeric(formatted_data$x_explain))
+
+ # The data is just linearly increasing, idx 99 should be idx 100 - 1 at each value.
+ expect_equal(x_explain - 1, as.numeric(formatted_data$x_train[98, ]))
+})
diff --git a/tests/testthat/test-models.R b/tests/testthat/test-models.R
deleted file mode 100644
index e6fbf231f..000000000
--- a/tests/testthat/test-models.R
+++ /dev/null
@@ -1,492 +0,0 @@
-context("test-models.R")
-
-test_that("Test predict_model (regression)", {
-
- # Data -----------
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
- x_train <- tail(Boston[, x_var], -6)
- y_train <- tail(Boston[, y_var], -6)
- x_test <- head(Boston[, x_var], 6)
- str_formula <- "y_train ~ lstat + rm + dis + indus"
- train_df <- cbind(y_train, x_train)
-
- # List of models
- l <- list(
- stats::lm(str_formula, data = train_df),
- stats::glm(str_formula, data = train_df)
- )
-
- if (requireNamespace("ranger", quietly = TRUE)) {
- l[[length(l) + 1]] <- ranger::ranger(str_formula, data = train_df)
- }
- if (requireNamespace("xgboost", quietly = TRUE)) {
- l[[length(l) + 1]] <- xgboost::xgboost(data = as.matrix(x_train), label = y_train, nrounds = 3, verbose = FALSE)
- }
- if (requireNamespace("mgcv", quietly = TRUE)) {
- l[[length(l) + 1]] <- mgcv::gam(as.formula(str_formula), data = train_df)
- }
-
- # Tests
- for (i in seq_along(l)) {
-
- # Input equals data.frame
- expect_true(
- is.vector(predict_model(l[[i]], x_test))
- )
- expect_true(
- is.atomic(predict_model(l[[i]], x_test))
- )
- expect_true(
- is.double(predict_model(l[[i]], x_test))
- )
- expect_true(
- length(predict_model(l[[i]], x_test)) == nrow(x_test)
- )
-
- # Input equals matrix
- expect_true(
- is.double(predict_model(l[[i]], as.matrix(x_test)))
- )
- expect_true(
- is.atomic(predict_model(l[[i]], as.matrix(x_test)))
- )
- expect_true(
- is.vector(predict_model(l[[i]], as.matrix(x_test)))
- )
- expect_true(
- length(predict_model(l[[i]], as.matrix(x_test))) == nrow(x_test)
- )
- }
- }
-})
-
-test_that("Test predict_model (binary classification)", {
-
- # Data -----------
-
- if (requireNamespace("datasets", quietly = TRUE)) {
- data("iris", package = "datasets")
- x_var <- c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
- y_var <- "Species"
- iris$Species <- as.character(iris$Species)
- iris <- iris[which(iris$Species != "virginica"), ]
- iris$Species <- as.factor(iris$Species)
- x_train <- tail(iris[, x_var], -6)
- y_train <- tail(iris[, y_var], -6)
- x_test <- head(iris[, x_var], 6)
- str_formula <- "y_train ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width"
- train_df <- cbind(y_train, x_train)
-
- # List of models
- l <- list(
- suppressWarnings(stats::glm(str_formula, data = train_df, family = "binomial"))
- )
-
- if (requireNamespace("mgcv", quietly = TRUE)) {
- l[[length(l) + 1]] <- suppressWarnings(mgcv::gam(as.formula(str_formula), data = train_df, family = "binomial"))
- }
- if (requireNamespace("ranger", quietly = TRUE)) {
- l[[length(l) + 1]] <- ranger::ranger(str_formula, data = train_df, probability = TRUE)
- }
- if (requireNamespace("xgboost", quietly = TRUE)) {
- l[[length(l) + 1]] <- xgboost::xgboost(
- data = as.matrix(x_train),
- label = as.integer(y_train) - 1,
- nrounds = 2,
- verbose = FALSE,
- objective = "binary:logistic",
- eval_metric = "error"
- )
- }
-
- # Tests
- for (i in seq_along(l)) {
-
- # Input equals data.frame
- expect_true(
- is.vector(predict_model(l[[i]], x_test))
- )
- expect_true(
- is.atomic(predict_model(l[[i]], x_test))
- )
- expect_true(
- is.double(predict_model(l[[i]], x_test))
- )
- expect_true(
- length(predict_model(l[[i]], x_test)) == nrow(x_test)
- )
- expect_true(
- all(data.table::between(predict_model(l[[i]], x_test), 0, 1))
- )
-
- # Input equals matrix
- expect_true(
- is.double(predict_model(l[[i]], as.matrix(x_test)))
- )
- expect_true(
- is.atomic(predict_model(l[[i]], as.matrix(x_test)))
- )
- expect_true(
- is.vector(predict_model(l[[i]], as.matrix(x_test)))
- )
- expect_true(
- length(predict_model(l[[i]], as.matrix(x_test))) == nrow(x_test)
- )
- expect_true(
- all(data.table::between(predict_model(l[[i]], as.matrix(x_test)), 0, 1))
- )
-
- # Check that output is equal
- expect_equal(
- predict_model(l[[i]], x_test), predict_model(l[[i]], as.matrix(x_test))
- )
- }
-
- # Errors
- l <- list()
-
- if (requireNamespace("ranger", quietly = TRUE)) {
- l[[length(l) + 1]] <- ranger::ranger(str_formula, data = train_df)
- }
- if (requireNamespace("xgboost", quietly = TRUE)) {
- l[[length(l) + 1]] <- xgboost::xgboost(
- data = as.matrix(x_train),
- label = as.integer(y_train) - 1,
- nrounds = 2,
- verbose = FALSE,
- objective = "reg:logistic"
- )
- }
-
- # Tests
- for (i in seq_along(l)) {
-
- # Input equals data.frame
- expect_error(
- get_model_specs(l[[i]])
- )
-
- # Input equals matrix
- expect_error(
- get_model_specs(l[[i]])
- )
- }
- }
-})
-
-test_that("Test predict_model (multi-classification)", {
-
- # Data -----------
- if (requireNamespace("datasets", quietly = TRUE)) {
- data("iris", package = "datasets")
- x_var <- c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
- y_var <- "Species"
- x_train <- tail(iris[, x_var], -6)
- y_train <- tail(iris[, y_var], -6)
- x_test <- head(iris[, x_var], 6)
- str_formula <- "y_train ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width"
- train_df <- cbind(y_train, x_train)
-
- # List of models
- l <- list()
-
- if (requireNamespace("ranger", quietly = TRUE)) {
- l[[length(l) + 1]] <- ranger::ranger(
- str_formula,
- data = train_df
- )
- l[[length(l) + 1]] <- ranger::ranger(
- str_formula,
- data = train_df,
- probability = TRUE
- )
- }
- if (requireNamespace("xgboost", quietly = TRUE)) {
- l[[length(l) + 1]] <- xgboost::xgboost(
- as.matrix(x_train),
- label = as.integer(y_train) - 1,
- nrounds = 2,
- verbose = FALSE,
- objective = "multi:softprob",
- eval_metric = "merror",
- num_class = 3
- )
- l[[length(l) + 1]] <- xgboost::xgboost(
- as.matrix(x_train),
- label = as.integer(y_train) - 1,
- nrounds = 2,
- verbose = FALSE,
- objective = "multi:softmax",
- eval_metric = "merror",
- num_class = 3
- )
- }
-
-
- # Tests
- for (i in seq_along(l)) {
-
- # Input equals data.frame
- expect_error(
- get_model_specs(l[[i]], x_test)
- )
-
- # Input equals matrix
- expect_error(
- get_model_specs(l[[i]], as.matrix(x_test))
- )
- }
- }
-})
-
-test_that("Test check_features + update_data", {
-
- # Data -----------
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- y_var <- "medv"
- x_train <- tail(Boston, -6)
- y_train <- tail(Boston[, y_var], -6)
- y_train_binary <- as.factor(tail((Boston[, y_var] > 20) * 1, -6))
-
- # convert to factors for testing purposes
- x_train$rad <- factor(round(x_train$rad))
- x_train$chas <- factor(round(x_train$chas))
-
- train_df <- cbind(x_train, y_train, y_train_binary)
-
- x_var_numeric <- c("lstat", "rm", "dis", "indus")
- x_var_factor <- c("lstat", "rm", "dis", "indus", "rad", "chas")
-
- formula_numeric <- as.formula(paste0("y_train ~ ", paste0(x_var_numeric, collapse = "+")))
- formula_factor <- as.formula(paste0("y_train ~ ", paste0(x_var_factor, collapse = "+")))
-
- formula_binary_numeric <- as.formula(paste0("y_train_binary ~ ", paste0(x_var_numeric, collapse = "+")))
- formula_binary_factor <- as.formula(paste0("y_train_binary ~ ", paste0(x_var_factor, collapse = "+")))
-
- dummylist <- make_dummies(traindata = x_train[, x_var_factor], testdata = x_train[, x_var_factor])
-
- # List of models to run silently
- l_silent <- list(
- stats::lm(formula_numeric, data = train_df),
- stats::lm(formula_factor, data = train_df),
- stats::glm(formula_numeric, data = train_df),
- stats::glm(formula_factor, data = train_df),
- stats::glm(formula_binary_numeric, data = train_df, family = "binomial"),
- stats::glm(formula_binary_factor, data = train_df, family = "binomial")
- )
- l_message <- list()
-
-
- if (requireNamespace("mgcv", quietly = TRUE)) {
- l_silent[[length(l_silent) + 1]] <- mgcv::gam(formula_numeric, data = train_df)
- l_silent[[length(l_silent) + 1]] <- mgcv::gam(formula_factor, data = train_df)
- l_silent[[length(l_silent) + 1]] <- mgcv::gam(formula_binary_numeric, data = train_df, family = "binomial")
- l_silent[[length(l_silent) + 1]] <- mgcv::gam(formula_binary_factor, data = train_df, family = "binomial")
- }
-
- if (requireNamespace("xgboost", quietly = TRUE)) {
- l_silent[[length(l_silent) + 1]] <- xgboost::xgboost(
- data = dummylist$train_dummies, label = y_train,
- nrounds = 3, verbose = FALSE
- )
- l_silent[[length(l_silent)]]$feature_list <- dummylist$feature_list
-
- l_silent[[length(l_silent) + 1]] <- xgboost::xgboost(
- data = dummylist$train_dummies,
- label = as.integer(y_train_binary) - 1,
- nrounds = 3,
- verbose = FALSE,
- objective = "binary:logistic",
- eval_metric = "error"
- )
- l_silent[[length(l_silent)]]$feature_list <- dummylist$feature_list
-
- l_message[[length(l_message) + 1]] <- xgboost::xgboost(
- data = as.matrix(x_train[, x_var_numeric]),
- label = y_train, nrounds = 3, verbose = FALSE
- )
- }
-
- if (requireNamespace("ranger", quietly = TRUE)) {
- l_message[[length(l_message) + 1]] <- ranger::ranger(formula_numeric, data = train_df)
- l_message[[length(l_message) + 1]] <- ranger::ranger(formula_factor, data = train_df)
- l_message[[length(l_message) + 1]] <- ranger::ranger(formula_binary_numeric, data = train_df, probability = TRUE)
- l_message[[length(l_message) + 1]] <- ranger::ranger(formula_binary_factor, data = train_df, probability = TRUE)
- }
-
- data_features <- get_data_specs(train_df)
- for (i in seq_along(l_silent)) {
- model_features <- get_model_specs(l_silent[[i]])
- expect_silent(check_features(model_features, data_features))
- }
-
- for (i in seq_along(l_message)) {
- model_features <- get_model_specs(l_message[[i]])
- expect_message(check_features(model_features, data_features))
- }
-
-
- # Checking all stops in check_features
- data_features_ok <- get_data_specs(train_df)
-
- # Non-matching labels
- data_features_error <- get_data_specs(train_df)
- data_features_error$labels <- NULL
- expect_error(check_features(data_features_ok, data_features_error))
- expect_message(check_features(data_features_error, data_features_ok, use_1_as_truth = T))
- expect_error(check_features(data_features_error, data_features_ok, use_1_as_truth = F))
-
-
- # Missing features
- data_features_error <- get_data_specs(train_df[, -3])
- expect_error(check_features(data_features_ok, data_features_error))
- expect_error(check_features(data_features_error, data_features_ok, use_1_as_truth = F))
-
- # Duplicated column names
- data_features_error <- get_data_specs(cbind(crim = train_df[, 1], train_df))
- expect_error(check_features(data_features_error, data_features_error))
-
- # Empty column names
- train_df_0 <- train_df
- names(train_df_0)[1] <- ""
- data_features_error <- get_data_specs(train_df_0)
- expect_error(check_features(data_features_error, data_features_error))
-
- # feature class is NA
- data_features_error <- data_features_ok
- data_features_error$classes <- rep(NA, length(data_features_error$classes))
- expect_message(check_features(data_features_error, data_features_ok))
-
- # feature classes are different
- data_features_error <- data_features_ok
- data_features_error$classes <- rev(data_features_error$classes)
- names(data_features_error$classes) <- names(data_features_ok$classes)
- expect_error(check_features(data_features_ok, data_features_error))
-
- # invalid feature class
- data_features_error <- data_features_ok
- data_features_error$classes[1] <- "logical"
- expect_error(check_features(data_features_error, data_features_error))
-
- # non-matching factor levels
- data_features_error <- data_features_ok
- data_features_error$factor_levels$chas <- c(data_features_error$factor_levels$chas, "2")
- expect_error(check_features(data_features_ok, data_features_error))
-
- #### Now turning to update_data tests ####
-
- model_features_ok <- get_model_specs(l_silent[[2]])
-
- # Checking null output and message to remove features
- train_dt <- as.data.table(train_df)
- data_to_update <- copy(train_dt)
- expect_message(expect_null(update_data(data_to_update, model_features_ok)))
-
- # Checking that features are indeed removed
- expect_equal(names(data_to_update), model_features_ok$labels)
-
- # Second call with same input should do nothing
- expect_silent(expect_null(update_data(data_to_update, model_features_ok)))
-
- # Checking null output and message to shuffle factor levels
- data_to_update_2 <- head(copy(train_dt), 20)
- data_to_update_2$rad <- droplevels(data_to_update_2$rad)
- org_levels_rad <- levels(data_to_update_2$rad)
-
- expect_message(expect_null(update_data(data_to_update_2, model_features_ok)))
-
- # Checking that levels are indeed updated
- expect_true(length(org_levels_rad) < length(levels(data_to_update_2$rad)))
- expect_equal(model_features_ok$factor_levels$rad, levels(data_to_update_2$rad))
- }
-})
-
-test_that("Test missing colnames", {
-
- # Data -----------
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
- x_train <- as.matrix(tail(Boston[, x_var], -6))
- y_train <- tail(Boston[, y_var], -6)
- x_test <- as.matrix(head(Boston[, x_var]))
-
- x_train_nonames <- x_train
- colnames(x_train_nonames) <- NULL
- x_test_nonames <- x_test
- colnames(x_test_nonames) <- NULL
-
- if (requireNamespace("xgboost", quietly = TRUE)) {
- model <- xgboost::xgboost(
- data = x_train, label = y_train, nrounds = 3, verbose = FALSE
- )
-
- model_nonames <- xgboost::xgboost(
- data = x_train_nonames, label = y_train, nrounds = 3, verbose = FALSE
- )
-
- # missing colnames in model
- expect_error(shapr(model_nonames, x_train))
-
- # missing colnames in training data
- expect_error(shapr(model, x_train_nonames))
-
- # missing colnames in both model and training data
- expect_error(shapr(model_nonames, x_train_nonames))
-
- # missing colnames in test data
- explain <- shapr(x_train, model)
- p <- mean(y_train)
- expect_error(
- explain(
- x_test_nonames,
- approach = "empirical",
- explainer = explainer,
- prediction_zero = p
- )
- )
- }
- }
-})
-
-test_that("Test get_supported_models", {
- org_models <- get_supported_models()
-
- # Adding to .GlobalEnv
- get_model_specs.test <<- function() 1
-
- new_models <- get_supported_models()
-
- # Removin form .GlobalEnv
- rm("get_model_specs.test",pos = ".GlobalEnv")
-
- expect_false("test" %in% org_models$model_class)
- expect_true("test" %in% new_models$model_class)
-})
-
-test_that("Test get_model_specs", {
-
- # Data -----------
- if (requireNamespace("MASS", quietly = TRUE) & requireNamespace("gbm", quietly = TRUE)) {
- data("Boston", package = "MASS")
- y_var <- "medv"
- x_train <- tail(Boston, -6)
- y_train <- tail(Boston[, y_var], -6)
-
- train_df <- cbind(x_train, y_train)
- x_var_numeric <- c("lstat", "rm", "dis", "indus")
- formula_numeric <- as.formula(paste0("y_train ~ ", paste0(x_var_numeric, collapse = "+")))
-
- # Unsupported model
- model_unsupported <- gbm::gbm(formula_numeric, distribution = "gaussian", data = train_df)
- expect_error(get_model_specs(model_unsupported))
-
- # This is further tested for custom models in the script tests/manual_test_scripts/test_custom_models.R
- # run expect_silent(source("tests/testthat/manual_test_scripts/test_custom_models.R")) manually to run those tests
- }
-})
diff --git a/tests/testthat/test-observations.R b/tests/testthat/test-observations.R
deleted file mode 100644
index 60fc04208..000000000
--- a/tests/testthat/test-observations.R
+++ /dev/null
@@ -1,122 +0,0 @@
-context("test-observations.R")
-
-test_that("Test observation_impute", {
- if (requireNamespace("MASS", quietly = TRUE)) {
- # Examples
- n <- 20
- m <- 2
- sigma <- cov(matrix(MASS::mvrnorm(m * n, 0, 1), nrow = n))
- x_train <- as.matrix(MASS::mvrnorm(n, mu = rep(0, m), Sigma = sigma), ncol = m)
- x_test <- t(as.matrix(MASS::mvrnorm(1, mu = rep(0, m), sigma)))
- colnames(x_train) <- colnames(x_test) <- paste0("X", seq(m))
- S <- matrix(c(1, 0, 0, 1), nrow = m)
- W_kernel <- matrix(rnorm(n * ncol(S), mean = 1 / n, sd = 1 / n^2), nrow = n)
- r <- observation_impute(W_kernel, S, x_train, x_test)
-
- # Test the default argument n_samples
- expect_equal(
- observation_impute(W_kernel, S, x_train, x_test, n_samples = 1e3),
- observation_impute(W_kernel, S, x_train, x_test)
- )
-
- # Test the default argument w_threshold
- expect_equal(
- observation_impute(W_kernel, S, x_train, x_test, w_threshold = .7),
- observation_impute(W_kernel, S, x_train, x_test)
- )
-
- # Test that w_threshold reduces number of rows
- expect_true(
- nrow(observation_impute(W_kernel, S, x_train, x_test, w_threshold = .7)) >
- nrow(observation_impute(W_kernel, S, x_train, x_test, w_threshold = 0.5))
- )
-
- # Test that n_samples reduces number of rows
- expect_true(
- nrow(observation_impute(W_kernel, S, x_train, x_test)) >
- nrow(observation_impute(W_kernel, S, x_train, x_test, n_samples = 10))
- )
-
- # Tests error
- expect_error(observation_impute(1, S, x_train, x_test))
- expect_error(observation_impute(W_kernel, 1, x_train, x_test))
- expect_error(observation_impute(W_kernel, tail(S, -1), x_train, x_test))
- expect_error(observation_impute(tail(W_kernel, -1), S, x_train, x_test))
-
- # Test single result
- cnms <- c(colnames(x_train), "id_combination", "w")
- expect_true(data.table::is.data.table(r))
- expect_true(ncol(r) == m + 2)
- expect_true(all(colnames(r) == cnms))
- expect_true(all(unlist(lapply(r, is.numeric))))
- expect_true(is.integer(r$id_combination))
- }
-})
-
-
-test_that("Check correct index_feature usage in prepare_data", {
-
- data("Boston", package = "MASS")
- x_var <- c("lstat", "rm", "dis", "indus")
- y_var <- "medv"
-
- y_train <- tail(Boston[, y_var], 50)
- x <- as.matrix(head(Boston[, x_var], 2))
- n_samples <- 100
- index_features <- 4:7
- w_threshold = 0.95
- type = "fixed_sigma"
- fixed_sigma_vec = 0.1
- n_samples_aicc = 1000
- eval_max_aicc = 20
- start_aicc = 0.1
- mincriterion = 0.95
- minsplit = 20
- minbucket = 7
- sample = TRUE
-
- explainer <- readRDS(file = "test_objects/shapley_explainer_obj.rds")
- explainer$x_test <- as.matrix(preprocess_data(x, explainer$feature_list)$x_dt)
- explainer$n_samples <- n_samples
-
- explainer$approach <- "independence"
- dt <- prepare_data(explainer, index_features = index_features)
- expect_identical(sort(dt[,unique(id_combination)]),index_features)
-
- explainer$type <- type
- explainer$fixed_sigma_vec <- fixed_sigma_vec
- explainer$n_samples_aicc <- n_samples_aicc
- explainer$eval_max_aicc <- eval_max_aicc
- explainer$start_aicc <- start_aicc
- explainer$w_threshold <- w_threshold
- explainer$cov_mat <- stats::cov(explainer$x_train)
-
- explainer$approach <- "empirical"
- dt <- prepare_data(explainer, index_features = index_features)
- expect_identical(sort(dt[,unique(id_combination)]),index_features)
-
- explainer$mu <- unname(colMeans(explainer$x_train))
- explainer$approach <- "gaussian"
- dt <- prepare_data(explainer, index_features = index_features)
- expect_identical(sort(dt[,unique(id_combination)]),index_features)
-
- explainer$x_test_gaussian <- explainer$x_test # Shortcut
- explainer$approach <- "copula"
- dt <- prepare_data(explainer, index_features = index_features)
- expect_identical(sort(dt[,unique(id_combination)]),index_features)
-
- explainer$x_test_gaussian <- explainer$x_test # Shortcut
- explainer$approach <- "copula"
- dt <- prepare_data(explainer, index_features = index_features)
- expect_identical(sort(dt[,unique(id_combination)]),index_features)
-
- explainer$mincriterion <- mincriterion
- explainer$minsplit <- minsplit
- explainer$minbucket <- minbucket
- explainer$sample <- sample
- explainer$approach <- "ctree"
- explainer$x_test <- preprocess_data(x, explainer$feature_list)$x_dt
- dt <- prepare_data(explainer, index_features = index_features)
- expect_identical(sort(dt[,unique(id_combination)]),index_features)
-
-})
diff --git a/tests/testthat/test-output.R b/tests/testthat/test-output.R
new file mode 100644
index 000000000..5118564a6
--- /dev/null
+++ b/tests/testthat/test-output.R
@@ -0,0 +1,498 @@
+# lm_numeric with different approaches
+
+test_that("output_lm_numeric_independence", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_independence"
+ )
+})
+
+test_that("output_lm_numeric_empirical", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_empirical"
+ )
+})
+
+test_that("output_lm_numeric_empirical_n_combinations", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_combinations = 20,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_empirical_n_combinations"
+ )
+})
+
+test_that("output_lm_numeric_empirical_independence", {
+ set.seed(123)
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "empirical",
+ prediction_zero = p0,
+ empirical.type = "independence",
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_empirical_independence"
+ )
+})
+
+test_that("output_lm_numeric_empirical_AICc_each", {
+ set.seed(123)
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_combinations = 8,
+ empirical.type = "AICc_each_k",
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_empirical_AICc_each"
+ )
+})
+
+test_that("output_lm_numeric_empirical_AICc_full", {
+ set.seed(123)
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_combinations = 8,
+ empirical.type = "AICc_full",
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_empirical_AICc_full"
+ )
+})
+
+test_that("output_lm_numeric_gaussian", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "gaussian",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_gaussian"
+ )
+})
+
+test_that("output_lm_numeric_copula", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "copula",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_copula"
+ )
+})
+
+test_that("output_lm_numeric_ctree", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "ctree",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_ctree"
+ )
+})
+
+test_that("output_lm_categorical_ctree", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_categorical,
+ x_explain = x_explain_categorical,
+ x_train = x_train_categorical,
+ approach = "ctree",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_categorical_ctree"
+ )
+})
+
+test_that("output_lm_categorical_categorical", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_categorical,
+ x_explain = x_explain_categorical,
+ x_train = x_train_categorical,
+ approach = "categorical",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_categorical_method"
+ )
+})
+
+test_that("output_lm_categorical_independence", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_categorical,
+ x_explain = x_explain_categorical,
+ x_train = x_train_categorical,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_categorical_independence"
+ )
+})
+
+test_that("output_lm_ts_timeseries", {
+ expect_snapshot_rds(
+ explanation_timeseries <- explain(
+ model = model_lm_ts,
+ x_explain = x_explain_ts,
+ x_train = x_train_ts,
+ approach = "timeseries",
+ prediction_zero = p0_ts,
+ group = group_ts,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_timeseries_method"
+ )
+})
+
+test_that("output_lm_numeric_comb1", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = c("gaussian", "empirical", "ctree", "independence", "empirical"),
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_comb1"
+ )
+})
+
+test_that("output_lm_numeric_comb2", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = c("ctree", "copula", "independence", "copula", "empirical"),
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_comb2"
+ )
+})
+
+test_that("output_lm_numeric_comb3", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = c("independence", "empirical", "gaussian", "empirical", "gaussian"),
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_comb3"
+ )
+})
+
+
+# lm_mixed with different approaches
+
+test_that("output_lm_mixed_independence", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_mixed,
+ x_explain = x_explain_mixed,
+ x_train = x_train_mixed,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_mixed_independence"
+ )
+})
+
+test_that("output_lm_mixed_ctree", {
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_mixed,
+ x_explain = x_explain_mixed,
+ x_train = x_train_mixed,
+ approach = "ctree",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_mixed_ctree"
+ )
+})
+
+test_that("output_lm_mixed_comb", {
+ set.seed(123)
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_mixed,
+ x_explain = x_explain_mixed,
+ x_train = x_train_mixed,
+ approach = c("ctree", "independence", "ctree", "independence", "independence"),
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_mixed_comb"
+ )
+})
+
+
+
+### Custom model by passing predict_model
+test_that("output_custom_lm_numeric_independence_1", {
+ set.seed(123)
+ custom_pred_func <- function(x, newdata) {
+ beta <- coef(x)
+ X <- cbind(1, newdata)
+ return(as.vector(beta %*% t(X)))
+ }
+
+ model_custom_lm_numeric <- model_lm_numeric
+
+ expect_snapshot_rds(
+ explain(
+ model = model_custom_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ predict_model = custom_pred_func,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_custom_lm_numeric_independence_1"
+ )
+})
+
+test_that("output_custom_lm_numeric_independence_2", {
+ set.seed(123)
+ custom_pred_func <- function(x, newdata) {
+ beta <- coef(x)
+ X <- cbind(1, newdata)
+ return(as.vector(beta %*% t(X)))
+ }
+
+ model_custom_lm_numeric <- model_lm_numeric
+ class(model_custom_lm_numeric) <- "whatever"
+
+
+ expect_snapshot_rds(
+ (custom <- explain(
+ model = model_custom_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ predict_model = custom_pred_func,
+ n_batches = 1,
+ timing = FALSE
+ )),
+ "output_custom_lm_numeric_independence_2"
+ )
+
+ native <- explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+
+ # Check that the printed Shapley values are identical
+ expect_equal(
+ custom$shapley_values,
+ native$shapley_values
+ )
+})
+
+test_that("output_custom_xgboost_mixed_dummy_ctree", {
+ if (requireNamespace("xgboost", quietly = TRUE)) {
+ x_train_mixed_dummy <- model.matrix(~ . + 0, x_train_mixed)
+ x_explain_mixed_dummy <- model.matrix(~ . + 0, x_explain_mixed)
+
+ y_train <- data_train[, get(y_var_numeric)]
+
+ # Fitting a basic xgboost model to the training data
+ model_xgboost_mixed_dummy <- xgboost::xgboost(
+ data = x_train_mixed_dummy,
+ label = y_train,
+ nround = 20,
+ verbose = FALSE
+ )
+
+ predict_model.xgboost_dummy <- function(x, newdata) {
+ newdata_dummy <- model.matrix(~ . + 0, newdata)
+
+ predict(x, newdata_dummy)
+ }
+
+ # Check that created predict_model works as intended
+ expect_equal(
+ predict_model.xgboost_dummy(model_xgboost_mixed_dummy, x_explain_mixed),
+ predict(model_xgboost_mixed_dummy, x_explain_mixed_dummy)
+ )
+
+ # Specifying the phi_0, i.e. the expected prediction without any features
+ p0 <- data_train[, mean(get(y_var_numeric))]
+
+
+ expect_snapshot_rds(
+ {
+ custom <- explain(
+ model = model_xgboost_mixed_dummy,
+ x_train = x_train_mixed,
+ x_explain = x_explain_mixed,
+ approach = "ctree",
+ prediction_zero = p0,
+ predict_model = predict_model.xgboost_dummy,
+ get_model_specs = NA,
+ n_batches = 1,
+ timing = FALSE
+ )
+ # custom$internal$objects$predict_model <- "Del on purpose" # Avoids issues with xgboost package updates
+ custom
+ },
+ "output_custom_xgboost_mixed_dummy_ctree"
+ )
+ }
+})
+
+test_that("output_lm_numeric_interaction", {
+ x_train_interaction <- x_train_numeric[, mget(all.vars(formula(model_lm_interaction))[-1])]
+ x_explain_interaction <- x_explain_numeric[, mget(all.vars(formula(model_lm_interaction))[-1])]
+ expect_snapshot_rds(
+ explain(
+ model = model_lm_interaction,
+ x_explain = x_explain_interaction,
+ x_train = x_train_interaction,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ ),
+ "output_lm_numeric_interaction"
+ )
+})
+
+test_that("output_lm_numeric_ctree_parallelized", {
+ future::plan("multisession", workers = 2)
+ expect_snapshot_rds(
+ {
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "ctree",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ "output_lm_numeric_ctree_parallelized"
+ )
+ future::plan("sequential")
+})
+
+test_that("output_lm_numeric_independence_more_batches", {
+ expect_snapshot_rds(
+ {
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 10,
+ timing = FALSE
+ )
+ },
+ "output_lm_numeric_independence_n_batches_10"
+ )
+})
+
+# Nothing special here, as the test does not record the actual progress output.
+# It just checks whether calling on progressr does not produce an error or unexpected output.
+test_that("output_lm_numeric_empirical_progress", {
+ progressr::handlers("txtprogressbar")
+ expect_snapshot_rds(
+ {
+ progressr::with_progress({
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_batches = 10,
+ timing = FALSE
+ )
+ })
+ },
+ "output_lm_numeric_empirical_progress"
+ )
+})
diff --git a/tests/testthat/test-plot.R b/tests/testthat/test-plot.R
index 7c321037f..1304338e0 100644
--- a/tests/testthat/test-plot.R
+++ b/tests/testthat/test-plot.R
@@ -1,49 +1,131 @@
-context("test-plot.R")
-
-test_that("Test plot.shapr", {
- if (requireNamespace("ggplot2", quietly = TRUE)) {
-
- # Example -----------
- x <- matrix(c(
- 4.98, 9.14, 4.03, 2.94, 5.33,
- 6.575, 6.421, 7.185, 6.998, 7.147,
- 4.0900, 4.9671, 4.9671, 6.0622, 6.0622,
- 2.31, 7.07, 7.07, 2.18, 2.18
- ),
- ncol = 4
- )
-
- colnames(x) <- c("lstat", "rm", "dis", "indus")
-
- explanation <- list()
- explanation$p <- c(31.30145, 23.25194, 33.11547, 33.43015, 31.72984)
- explanation$dt <- data.table::data.table(
- "none" = rep(22.00, 5),
- "lstat" = c(5.2632, 0.1672, 5.9888, 8.2142, 0.5060),
- "rm" = c(-1.2527, -0.7088, 5.5451, 0.7508, 5.6875),
- "dis" = c(0.2920, 0.9689, 0.5660, 0.1893, 0.8432),
- "indus" = c(4.5529, 0.3787, -1.4304, 1.8298, 2.2471)
- )
- explanation$x_test <- x
- explanation$is_groupwise <- FALSE
- attr(explanation, "class") <- c("shapr", "list")
-
-
- # Test -----------
- p <- plot(explanation, plot_phi0 = FALSE)
-
- expect_equal(colnames(x), unique(as.character(p$data$variable)))
- expect_equal(explanation$p, unique(p$data$pred))
- expect_equal(sort(as.vector(as.matrix(explanation$dt[, -c("none")]))), sort(p$data$phi))
-
- p <- plot(explanation, plot_phi0 = TRUE)
-
- expect_equal(colnames(explanation$dt), unique(as.character(p$data$variable)))
- expect_equal(explanation$p, unique(p$data$pred))
- expect_equal(sort(as.vector(as.matrix(explanation$dt))), sort(p$data$phi))
-
- p <- plot(explanation, plot_phi0 = TRUE, top_k_features = 2)
-
- expect_equal(2, max(p$data$rank))
- }
+set.seed(123) #
+
+explain_mixed <- explain(
+ model = model_lm_mixed,
+ x_explain = x_explain_mixed,
+ x_train = x_train_mixed,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+)
+
+test_that("checking default outputs", {
+ skip_if_not_installed("vdiffr")
+
+ vdiffr::expect_doppelganger(
+ title = "bar_plot_default",
+ fig = plot(explain_mixed)
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "waterfall_plot_default",
+ fig = plot(explain_mixed, plot_type = "waterfall")
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "scatter_plot_default",
+ fig = plot(explain_mixed, plot_type = "scatter")
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "beeswarm_plot_default",
+ fig = plot(explain_mixed, plot_type = "beeswarm")
+ )
+})
+
+test_that("bar_plot_new_arguments", {
+ skip_if_not_installed("vdiffr")
+
+ vdiffr::expect_doppelganger(
+ title = "bar_plot_digits_5",
+ fig = plot(explain_mixed, digits = 5)
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "bar_plot_no_phi0",
+ fig = plot(explain_mixed, bar_plot_phi0 = FALSE)
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "bar_plot_index_x_explain_1",
+ fig = plot(explain_mixed, index_x_explain = 1)
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "bar_plot_top_3_features",
+ fig = plot(explain_mixed, top_k_features = 3)
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "bar_plot_new_colors",
+ fig = plot(explain_mixed, col = c("red", "black"))
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "bar_plot_order_original",
+ fig = plot(explain_mixed, bar_plot_order = "original")
+ )
+})
+
+test_that("waterfall_plot_new_arguments", {
+ skip_if_not_installed("vdiffr")
+
+ vdiffr::expect_doppelganger(
+ title = "waterfall_plot_digits_5",
+ fig = plot(explain_mixed, plot_type = "waterfall", digits = 5)
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "waterfall_plot_index_x_explain_1",
+ fig = plot(explain_mixed, plot_type = "waterfall", index_x_explain = 1)
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "waterfall_plot_top_3_features",
+ fig = plot(explain_mixed, plot_type = "waterfall", top_k_features = 3)
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "waterfall_plot_new_colors",
+ fig = plot(explain_mixed, plot_type = "waterfall", col = c("red", "black"))
+ )
+})
+
+test_that("scatter_plot_new_arguments", {
+ skip_if_not_installed("vdiffr")
+
+ vdiffr::expect_doppelganger(
+ title = "scatter_plot_index_x_explain_1_2",
+ fig = plot(explain_mixed, plot_type = "scatter", index_x_explain = c(1, 2))
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "scatter_plot_new_color",
+ fig = plot(explain_mixed, plot_type = "scatter", col = "black")
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "scatter_plot_one_feature",
+ fig = plot(explain_mixed, plot_type = "scatter", scatter_features = "Temp")
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "scatter_plot_no_hist",
+ fig = plot(explain_mixed, plot_type = "scatter", scatter_hist = FALSE)
+ )
+})
+
+test_that("beeswarm_plot_new_arguments", {
+ skip_if_not_installed("vdiffr")
+
+ vdiffr::expect_doppelganger(
+ title = "beeswarm_plot_new_colors",
+ fig = plot(explain_mixed, plot_type = "beeswarm", col = c("red", "black"))
+ )
+
+ vdiffr::expect_doppelganger(
+ title = "beeswarm_plot_index_x_explain_1_2",
+ fig = plot(explain_mixed, plot_type = "beeswarm", index_x_explain = c(1, 2))
+ )
})
diff --git a/tests/testthat/test-predictions.R b/tests/testthat/test-predictions.R
deleted file mode 100644
index cace8fe5f..000000000
--- a/tests/testthat/test-predictions.R
+++ /dev/null
@@ -1,49 +0,0 @@
-context("test-predictions.R")
-
-test_that("Test prediction", {
-
- # Example -----------
- if (requireNamespace("MASS", quietly = TRUE)) {
- data("Boston", package = "MASS")
- dt_train <- data.table::as.data.table(Boston)
- features <- c("lstat", "rm", "dis", "indus")
- n_combinations <- 10
- n_features <- 4
- prediction_zero <- .5
- n_xtest <- 8
- explainer <- list()
- explainer$model <- stats::lm(formula = "medv ~ lstat + rm + dis + indus", data = head(dt_train, -n_xtest))
- explainer$x_test <- tail(dt_train[, .SD, .SDcols = features], n_xtest)
- explainer$W <- matrix(1, nrow = n_features + 1, ncol = n_combinations)
- explainer$is_groupwise <- FALSE
- explainer$S <- matrix(1, nrow = n_combinations, ncol = n_features)
- dt <- dt_train[, .SD, .SDcols = features][rep(1:.N, 4)]
- dt[, id := rep_len(1:n_xtest, .N)]
- dt[, id_combination := rep_len(1:n_combinations, .N), id]
- dt[, w := runif(.N)]
- max_id_combination <- dt[, max(id_combination)]
- dt <- dt[!(id_combination == max_id_combination)]
- dt_lastrows <- data.table::data.table(
- explainer$x_test,
- id = 1:n_xtest,
- id_combination = max_id_combination,
- w = 1.0
- )
- dt <- rbind(dt, dt_lastrows, dt_lastrows, dt_lastrows)
-
- x <- prediction(dt, prediction_zero, explainer)
-
- # Test -----------
- lnms <- c("p", "dt_mat")
- expect_equal(class(x), "list")
- expect_equal(names(x), lnms)
- expect_equal(x$p, predict_model(explainer$model, explainer$x_test))
- expect_true(data.table::is.data.table(x$dt_mat))
-
- # t(W %*% x$dt_mat) = shapley values
- expect_equal(ncol(explainer$W), nrow(x$dt_mat))
-
- # Tests errors
- expect_error(prediction(dt[id < n_xtest], prediction_zero, explainer))
- }
-})
diff --git a/tests/testthat/test-sampling.R b/tests/testthat/test-sampling.R
deleted file mode 100644
index 08597c291..000000000
--- a/tests/testthat/test-sampling.R
+++ /dev/null
@@ -1,290 +0,0 @@
-context("test-sample_combinations.R")
-
-test_that("Test sample_combinations", {
-
- # Example -----------
- ntrain <- 10
- ntest <- 10
- nsamples <- 7
- joint_sampling <- FALSE
- cnms <- c("samp_train", "samp_test")
-
- set.seed(123) # Ensuring consistency in every test
- x <- sample_combinations(ntrain, ntest, nsamples, joint_sampling)
-
- # Tests -----------
- expect_true(is.data.frame(x))
- expect_equal(names(x), cnms)
- expect_equal(nrow(x), nsamples)
-
- # Expect all unique values when nsamples < ntrain
- expect_true(length(unique(x$samp_train)) == nsamples)
- expect_true(length(unique(x$samp_test)) == nsamples)
-
- expect_true(max(x$samp_train) <= ntrain)
- expect_true(max(x$samp_test) <= ntest)
-
- # Example -----------
- ntrain <- 5
- ntest <- 5
- nsamples <- 7
- joint_sampling <- FALSE
-
- x <- sample_combinations(ntrain, ntest, nsamples, joint_sampling)
-
- # Tests -----------
- expect_true(max(x$samp_train) <= ntrain)
- expect_true(max(x$samp_test) <= ntest)
- expect_equal(nrow(x), nsamples)
-
- # Example -----------
- ntrain <- 5
- ntest <- 5
- nsamples <- 7
- joint_sampling <- TRUE
-
- x <- sample_combinations(ntrain, ntest, nsamples, joint_sampling)
-
- # Tests -----------
- expect_true(max(x$samp_train) <= ntrain)
- expect_true(max(x$samp_test) <= ntest)
- expect_equal(nrow(x), nsamples)
-})
-
-test_that("test sample_gaussian", {
- if (requireNamespace("MASS", quietly = TRUE)) {
- # Example -----------
- m <- 10
- n_samples <- 50
- mu <- rep(1, m)
- cov_mat <- cov(matrix(rnorm(n_samples * m), n_samples, m))
- x_test <- matrix(MASS::mvrnorm(1, mu, cov_mat), nrow = 1)
- cnms <- paste0("x", seq(m))
- colnames(x_test) <- cnms
- index_given <- c(4, 7)
- r <- sample_gaussian(index_given, n_samples, mu, cov_mat, m, x_test)
-
- # Test output format ------------------
- expect_true(data.table::is.data.table(r))
- expect_equal(ncol(r), m)
- expect_equal(nrow(r), n_samples)
- expect_equal(colnames(r), cnms)
-
- # Check that the given features are not resampled, but kept as is.
- for (i in seq(m)) {
- var_name <- cnms[i]
-
- if (i %in% index_given) {
- expect_equal(
- unique(r[[var_name]]), x_test[, var_name][[1]]
- )
- } else {
- expect_true(
- length(unique(r[[var_name]])) == n_samples
- )
- }
- }
-
- # Example 2 -------------
- # Check that conditioning upon all variables simply returns the test observation.
- r <- sample_gaussian(1:m, n_samples, mu, cov_mat, m, x_test)
- expect_identical(r, data.table::as.data.table(x_test))
-
- # Tests for errors ------------------
- expect_error(
- sample_gaussian(m + 1, n_samples, mu, cov_mat, m, x_test)
- )
- expect_error(
- sample_gaussian(m + 1, n_samples, mu, cov_mat, m, as.vector(x_test))
- )
- }
-})
-
-test_that("test sample_copula", {
- if (requireNamespace("MASS", quietly = TRUE)) {
- # Example 1 --------------
- # Check that the given features are not resampled, but kept as is.
- m <- 10
- n <- 40
- n_samples <- 50
- mu <- rep(1, m)
- set.seed(123) # Ensuring consistency in every test
- cov_mat <- cov(matrix(rnorm(n * m), n, m))
- x_train <- MASS::mvrnorm(n, mu, cov_mat)
- x_test <- MASS::mvrnorm(1, mu, cov_mat)
- x_test_gaussian <- MASS::mvrnorm(1, mu, cov_mat)
- index_given <- 3:6
- set.seed(1)
- ret <- sample_copula(index_given, n_samples, mu, cov_mat, m, x_test_gaussian, x_train, x_test)
- X_given <- x_test[index_given]
- res1.1 <- as.data.table(matrix(rep(X_given, each = n_samples), nrow = n_samples))
- res1.2 <- as.data.table(ret[, ..index_given])
- colnames(res1.1) <- colnames(res1.2)
-
- # Example 2 --------------
- # Check that conditioning upon all variables simply returns the test observation.
- index_given <- 1:m
- x2 <- as.data.table(matrix(x_test, ncol = m, nrow = 1))
- res2 <- sample_copula(index_given, n_samples, mu, cov_mat, m, x_test_gaussian, x_train, x_test)
-
- # Example 3 --------------
- # Check that the colnames are preserved.
- index_given <- c(1, 2, 3, 5, 6)
- x_test <- t(as.data.frame(x_test))
- colnames(x_test) <- 1:m
- res3 <- sample_copula(index_given, n_samples, mu, cov_mat, m, x_test_gaussian, x_train, x_test)
-
- # Tests ------------------
- expect_equal(res1.1, res1.2)
- expect_equal(x2, res2)
- expect_identical(colnames(res3), colnames(x_test))
- expect_error(sample_copula(m + 1, n_samples, mu, cov_mat, m, x_test_gaussian, x_train, x_test))
- expect_true(data.table::is.data.table(res2))
- }
-})
-
-test_that("test create_ctree", {
- if (requireNamespace("MASS", quietly = TRUE) & requireNamespace("party", quietly = TRUE)) {
-
- # Example 1-----------
- m <- 10
- n <- 40
- n_samples <- 50
- mu <- rep(1, m)
- set.seed(123) # Ensuring consistency in every test
- cov_mat <- cov(matrix(rnorm(n * m), n, m))
- x_train <- data.table::data.table(MASS::mvrnorm(n, mu, cov_mat))
-
- given_ind <- c(4, 7)
-
- mincriterion <- 0.95
- minsplit <- 20
- minbucket <- 7
- sample <- TRUE
-
- # build the tree
- r <- create_ctree(
- given_ind = given_ind,
- x_train = x_train,
- mincriterion = mincriterion,
- minsplit = minsplit,
- minbucket = minbucket,
- use_partykit = "on_error"
- )
-
- dependent_ind <- (1:dim(x_train)[2])[-given_ind]
- # Test output format ------------------
- expect_true(is.list(r))
- expect_equal(length(r), 3)
- expect_equal(class(r$tree)[1], "BinaryTree")
- expect_equal(r$given_ind, given_ind)
- expect_equal(r$dependent_ind, dependent_ind)
-
- df <- data.table(cbind(
- party::response(object = r$tree)$Y1,
- party::response(object = r$tree)$Y2,
- party::response(object = r$tree)$Y3,
- party::response(object = r$tree)$Y4,
- party::response(object = r$tree)$Y5,
- party::response(object = r$tree)$Y6,
- party::response(object = r$tree)$Y7,
- party::response(object = r$tree)$Y8
- ))
-
- names(df) <- paste0("V", dependent_ind)
- expect_equal(df, x_train[, dependent_ind, with = FALSE])
-
- # Example 2 -------------
- # Check that conditioning upon all variables returns empty tree.
-
- given_ind <- 1:10
- mincriterion <- 0.95
- minsplit <- 20
- minbucket <- 7
- sample <- TRUE
-
- # build the tree
- r <- create_ctree(
- given_ind = given_ind,
- x_train = x_train,
- mincriterion = mincriterion,
- minsplit = minsplit,
- minbucket = minbucket,
- use_partykit = "on_error"
- )
-
- expect_equal(length(r), 3)
- expect_true(is.list(r))
- expect_true(is.list(r$tree))
- expect_equal(r$given_ind, given_ind)
- expect_equal(r$dependent_ind, (1:dim(x_train)[2])[-given_ind])
- }
-})
-
-test_that("test sample_ctree", {
- if (requireNamespace("MASS", quietly = TRUE) & requireNamespace("party", quietly = TRUE)) {
- # Example -----------
- m <- 10
- n <- 40
- n_samples <- 50
- mu <- rep(1, m)
- set.seed(123) # Ensuring consistency in every test
- cov_mat <- cov(matrix(rnorm(n * m), n, m))
- x_train <- data.table::data.table(MASS::mvrnorm(n, mu, cov_mat))
- x_test <- MASS::mvrnorm(1, mu, cov_mat)
- x_test_dt <- data.table::setDT(as.list(x_test))
-
- given_ind <- c(4, 7)
-
- # build the tree
- dependent_ind <- (1:dim(x_train)[2])[-given_ind]
-
- x <- x_train[, given_ind, with = FALSE]
- y <- x_train[, dependent_ind, with = FALSE]
-
- df <- data.table::data.table(cbind(y, x))
-
- colnames(df) <- c(paste0("Y", 1:ncol(y)), paste0("V", given_ind))
-
- ynam <- paste0("Y", 1:ncol(y))
- fmla <- as.formula(paste(paste(ynam, collapse = "+"), "~ ."))
-
- datact <- party::ctree(fmla,
- data = df, controls =
- party::ctree_control(
- minbucket = 7,
- mincriterion = 0.95
- )
- )
-
-
- tree <- list(tree = datact, given_ind = given_ind, dependent_ind = dependent_ind)
-
- # new
- r <- sample_ctree(
- tree = tree, n_samples = n_samples, x_test = x_test_dt,
- x_train = x_train,
- p = length(x_test), sample = TRUE
- )
-
- # Test output format ------------------
- expect_true(data.table::is.data.table(r))
- expect_equal(ncol(r), m)
- expect_equal(nrow(r), n_samples)
- expect_equal(colnames(r), colnames(x_test_dt))
-
- # Example 2 -------------
- # Check that conditioning upon all variables simply returns the test observation.
-
- given_ind <- 1:10
- dependent_ind <- (1:dim(x_train)[2])[-given_ind]
- datact <- list()
- tree <- list(tree = datact, given_ind = given_ind, dependent_ind = dependent_ind)
- r <- sample_ctree(
- tree = tree, n_samples = n_samples, x_test = x_test_dt,
- x_train = x_train,
- p = length(x_test), sample = TRUE
- )
- expect_identical(r, data.table::as.data.table(x_test_dt))
- }
-})
diff --git a/tests/testthat/test-setup.R b/tests/testthat/test-setup.R
new file mode 100644
index 000000000..022ae8d84
--- /dev/null
+++ b/tests/testthat/test-setup.R
@@ -0,0 +1,1546 @@
+test_that("error with custom model without providing predict_model", {
+ set.seed(123)
+
+
+ expect_snapshot(
+ {
+ # Custom model with no predict_model
+
+ model_custom_lm_mixed <- model_lm_mixed
+ class(model_custom_lm_mixed) <- "whatever"
+
+ explain(
+ model = model_custom_lm_mixed,
+ x_train = x_train_mixed,
+ x_explain = x_explain_mixed,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("messages with missing detail in get_model_specs", {
+ set.seed(123)
+
+ model_custom_lm_mixed <- model_lm_mixed
+ class(model_custom_lm_mixed) <- "whatever"
+
+ custom_predict_model <- function(x, newdata) {
+ beta <- coef(x)
+ X <- model.matrix(~., newdata)
+ return(as.vector(beta %*% t(X)))
+ }
+
+ expect_snapshot({
+ # Custom model with no get_model_specs
+ explain(
+ model = model_custom_lm_mixed,
+ x_train = x_train_mixed,
+ x_explain = x_explain_mixed,
+ approach = "independence",
+ prediction_zero = p0,
+ predict_model = custom_predict_model,
+ get_model_specs = NA,
+ n_batches = 1,
+ timing = FALSE
+ )
+ })
+
+
+ expect_snapshot({
+ # Custom model where get_model_specs gives NA-labels
+ custom_get_model_specs_no_lab <- function(x) {
+ feature_specs <- list(labels = NA, classes = NA, factor_levels = NA)
+ }
+
+ explain(
+ model = model_custom_lm_mixed,
+ x_train = x_train_mixed,
+ x_explain = x_explain_mixed,
+ approach = "independence",
+ prediction_zero = p0,
+ predict_model = custom_predict_model,
+ get_model_specs = custom_get_model_specs_no_lab,
+ n_batches = 1,
+ timing = FALSE
+ )
+ })
+
+
+ expect_snapshot({
+ # Custom model where get_model_specs gives NA-classes
+ custom_gms_no_classes <- function(x) {
+ feature_specs <- list(labels = labels(x$terms), classes = NA, factor_levels = NA)
+ }
+
+ explain(
+ model = model_custom_lm_mixed,
+ x_train = x_train_mixed,
+ x_explain = x_explain_mixed,
+ approach = "independence",
+ prediction_zero = p0,
+ predict_model = custom_predict_model,
+ get_model_specs = custom_gms_no_classes,
+ n_batches = 1,
+ timing = FALSE
+ )
+ })
+
+
+ expect_snapshot({
+ # Custom model where get_model_specs gives NA-factor levels
+ custom_gms_no_factor_levels <- function(x) {
+ feature_specs <- list(
+ labels = labels(x$terms),
+ classes = attr(x$terms, "dataClasses")[-1],
+ factor_levels = NA
+ )
+ }
+
+ explain(
+ model = model_custom_lm_mixed,
+ x_train = x_train_mixed,
+ x_explain = x_explain_mixed,
+ approach = "independence",
+ prediction_zero = p0,
+ predict_model = custom_predict_model,
+ get_model_specs = custom_gms_no_factor_levels,
+ n_batches = 1,
+ timing = FALSE
+ )
+ })
+})
+
+test_that("erroneous input: `x_train/x_explain`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # not matrix or data.table 1
+ x_train_wrong_format <- c(a = 1, b = 2)
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_wrong_format,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # not matrix or data.table 2
+ x_explain_wrong_format <- c(a = 1, b = 2)
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_wrong_format,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # not matrix or data.table 3
+ x_train_wrong_format <- c(a = 1, b = 2)
+ x_explain_wrong_format <- c(a = 3, b = 4)
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_wrong_format,
+ x_train = x_train_wrong_format,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+
+ expect_snapshot(
+ {
+ # missing column names x_train
+ x_train_no_column_names <- as.data.frame(x_train_numeric)
+ names(x_train_no_column_names) <- NULL
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_no_column_names,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # missing column names x_explain
+ x_explain_no_column_names <- as.data.frame(x_explain_numeric)
+ names(x_explain_no_column_names) <- NULL
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_no_column_names,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # missing column names in both x_train and x_explain
+ x_train_no_column_names <- as.data.frame(x_train_numeric)
+ x_explain_no_column_names <- as.data.frame(x_explain_numeric)
+ names(x_explain_no_column_names) <- NULL
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_no_column_names,
+ x_train = x_train_no_column_names,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `model`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # no model passed
+ explain(
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `approach`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # not a character (vector)
+ approach_non_character <- 1
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = approach_non_character,
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # incorrect length
+ approach_incorrect_length <- c("empirical", "gaussian")
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = approach_incorrect_length,
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # incorrect character
+ approach_incorrect_character <- "bla"
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = approach_incorrect_character,
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `prediction_zero`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # non-numeric 1
+ p0_non_numeric_1 <- "bla"
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0_non_numeric_1,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # non-numeric 2
+ p0_non_numeric_2 <- NULL
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0_non_numeric_2,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+
+ expect_snapshot(
+ {
+ # length > 1
+ p0_too_long <- c(1, 2)
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0_too_long,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # NA-numeric
+ p0_is_NA <- as.numeric(NA)
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0_is_NA,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `n_combinations`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # non-numeric 1
+ n_combinations_non_numeric_1 <- "bla"
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_combinations = n_combinations_non_numeric_1,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # non-numeric 2
+ n_combinations_non_numeric_2 <- TRUE
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_combinations = n_combinations_non_numeric_2,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+
+ expect_snapshot(
+ {
+ # non-integer
+ n_combinations_non_integer <- 10.5
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_combinations = n_combinations_non_integer,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+
+
+ expect_snapshot(
+ {
+ # length > 1
+ n_combinations_too_long <- c(1, 2)
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_combinations = n_combinations_too_long,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # NA-numeric
+ n_combinations_is_NA <- as.numeric(NA)
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_combinations = n_combinations_is_NA,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # Non-positive
+ n_combinations_non_positive <- 0
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_combinations = n_combinations_non_positive,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # Too low n_combinations (smaller than # features
+ n_combinations <- ncol(x_explain_numeric) - 1
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ prediction_zero = p0,
+ approach = "gaussian",
+ n_combinations = n_combinations,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+
+ expect_snapshot(
+ {
+ # Too low n_combinations (smaller than # groups
+ groups <- list(
+ A = c("Solar.R", "Wind"),
+ B = c("Temp", "Month"),
+ C = "Day"
+ )
+
+ n_combinations <- length(groups) - 1
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ prediction_zero = p0,
+ approach = "gaussian",
+ group = groups,
+ n_combinations = n_combinations,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `group`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # not a list
+ group_non_list <- "bla"
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ group = group_non_list,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # non-characters in list
+ group_with_non_characters <- list(A = 1, B = 2)
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ group = group_with_non_characters,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # group features not in data
+ group_with_non_data_features <- list(
+ A = c("Solar.R", "Wind", "not_a_data_feature"),
+ B = c("Temp", "Month", "Day")
+ )
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ group = group_with_non_data_features,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # missing feature in group
+ group_missing_data_features <- list(
+ A = c("Solar.R"),
+ B = c("Temp", "Month", "Day")
+ )
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ group = group_missing_data_features,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # missing feature in group
+ group_dup_data_features <- list(
+ A = c("Solar.R", "Solar.R", "Wind"),
+ B = c("Temp", "Month", "Day")
+ )
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ group = group_dup_data_features,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # a single group only
+ single_group <- list(A = c("Solar.R", "Wind", "Temp", "Month", "Day"))
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ group = single_group,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `n_samples`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # non-numeric 1
+ n_samples_non_numeric_1 <- "bla"
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_samples = n_samples_non_numeric_1,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # non-numeric 2
+ n_samples_non_numeric_2 <- TRUE
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_samples = n_samples_non_numeric_2,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # non-integer
+ n_samples_non_integer <- 10.5
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_samples = n_samples_non_integer,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ # length > 1
+ expect_snapshot(
+ {
+ n_samples_too_long <- c(1, 2)
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_samples = n_samples_too_long,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ # NA-numeric
+ expect_snapshot(
+ {
+ n_samples_is_NA <- as.numeric(NA)
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_samples = n_samples_is_NA,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ # Non-positive
+ expect_snapshot(
+ {
+ n_samples_non_positive <- 0
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_samples = n_samples_non_positive,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `n_batches`", {
+ set.seed(123)
+
+ # non-numeric 1
+ expect_snapshot(
+ {
+ n_batches_non_numeric_1 <- "bla"
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = n_batches_non_numeric_1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ # non-numeric 2
+ expect_snapshot(
+ {
+ n_batches_non_numeric_2 <- TRUE
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = n_batches_non_numeric_2,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ # non-integer
+ expect_snapshot(
+ {
+ n_batches_non_integer <- 10.5
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = n_batches_non_integer,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ # length > 1
+ expect_snapshot(
+ {
+ n_batches_too_long <- c(1, 2)
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = n_batches_too_long,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ # NA-numeric
+ expect_snapshot(
+ {
+ n_batches_is_NA <- as.numeric(NA)
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = n_batches_is_NA,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ # Non-positive
+ expect_snapshot(
+ {
+ n_batches_non_positive <- 0
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = n_batches_non_positive,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ # Larger than number of n_combinations
+ expect_snapshot(
+ {
+ n_combinations <- 10
+ n_batches_too_large <- 11
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_combinations = n_combinations,
+ n_batches = n_batches_too_large,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ # Larger than number of n_combinations without specification
+ expect_snapshot(
+ {
+ n_batches_too_large_2 <- 32
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ n_batches = n_batches_too_large_2,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `seed`", {
+ set.seed(123)
+
+ # Not interpretable as integer
+ expect_snapshot(
+ {
+ seed_not_integer_interpretable <- "bla"
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ seed = seed_not_integer_interpretable,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `keep_samp_for_vS`", {
+ set.seed(123)
+
+ # non-logical 1
+ expect_snapshot(
+ {
+ keep_samp_for_vS_non_logical_1 <- "bla"
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ keep_samp_for_vS = keep_samp_for_vS_non_logical_1,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ # non-logical 2
+ expect_snapshot(
+ {
+ keep_samp_for_vS_non_logical_2 <- NULL
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ keep_samp_for_vS = keep_samp_for_vS_non_logical_2,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+
+ # length > 1
+ expect_snapshot(
+ {
+ keep_samp_for_vS_too_long <- c(TRUE, FALSE)
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ keep_samp_for_vS = keep_samp_for_vS_too_long,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `predict_model`", {
+ set.seed(123)
+
+ # not a function
+ expect_snapshot(
+ {
+ predict_model_nonfunction <- "bla"
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ predict_model = predict_model_nonfunction,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # non-numeric output
+ predict_model_non_num_output <- function(model, x) {
+ "bla"
+ }
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ predict_model = predict_model_non_num_output,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # incorrect output length
+ predict_model_wrong_output_len <- function(model, x) {
+ rep(1, nrow(x) + 1)
+ }
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ predict_model = predict_model_wrong_output_len,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # invalid function format
+ predict_model_invalid_argument <- function(model) {
+ rep(1, nrow(x))
+ }
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ predict_model = predict_model_invalid_argument,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # error within function
+ predict_model_error <- function(model, x) {
+ 1 + "bla"
+ }
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ predict_model = predict_model_error,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("erroneous input: `get_model_specs`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # not a function
+ get_model_specs_nonfunction <- "bla"
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ get_model_specs = get_model_specs_nonfunction,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+
+ expect_snapshot(
+ {
+ # wrong output (not list)
+ get_ms_output_not_list <- function(x) {
+ "bla"
+ }
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ get_model_specs = get_ms_output_not_list,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # wrong output (wrong length)
+ get_ms_output_too_long <- function(x) {
+ list(1, 2, 3, 4)
+ }
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ get_model_specs = get_ms_output_too_long,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # wrong output (wrong length)
+ get_ms_output_wrong_names <- function(x) {
+ list(
+ labels = 1,
+ classes = 2,
+ not_a_name = 3
+ )
+ }
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ get_model_specs = get_ms_output_wrong_names,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # wrong output (wrong length)
+ get_model_specs_error <- function(x) {
+ 1 + "bla"
+ }
+
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "independence",
+ prediction_zero = p0,
+ get_model_specs = get_model_specs_error,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("incompatible input: `data/approach`", {
+ set.seed(123)
+
+ expect_snapshot(
+ {
+ # factor model/data with approach gaussian
+ non_factor_approach_1 <- "gaussian"
+ explain(
+ model = model_lm_mixed,
+ x_explain = x_explain_mixed,
+ x_train = x_explain_mixed,
+ approach = non_factor_approach_1,
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # factor model/data with approach empirical
+ non_factor_approach_2 <- "empirical"
+ explain(
+ model = model_lm_mixed,
+ x_explain = x_explain_mixed,
+ x_train = x_explain_mixed,
+ approach = non_factor_approach_2,
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+
+ expect_snapshot(
+ {
+ # factor model/data with approach copula
+ non_factor_approach_3 <- "copula"
+ explain(
+ model = model_lm_mixed,
+ x_explain = x_explain_mixed,
+ x_train = x_explain_mixed,
+ approach = non_factor_approach_3,
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+ },
+ error = TRUE
+ )
+})
+
+test_that("Correct dimension of S when sampling combinations", {
+ n_combinations <- 10
+
+ res <- explain(
+ model = model_lm_mixed,
+ x_explain = x_explain_mixed,
+ x_train = x_explain_mixed,
+ prediction_zero = p0,
+ approach = "ctree",
+ n_combinations = n_combinations,
+ n_batches = 1,
+ timing = FALSE
+ )
+
+ expect_equal(nrow(res$internal$objects$S), n_combinations)
+})
+
+test_that("Error with too low `n_combinations`", {
+ n_combinations <- ncol(x_explain_numeric) - 1
+
+ expect_error(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_explain_numeric,
+ prediction_zero = p0,
+ approach = "gaussian",
+ n_combinations = n_combinations,
+ n_batches = 1,
+ timing = FALSE
+ )
+ )
+
+ # Same for groups
+ groups <- list(
+ A = c("Solar.R", "Wind"),
+ B = c("Temp", "Month"),
+ C = "Day"
+ )
+
+ n_combinations <- length(groups) - 1
+
+ expect_error(
+ explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_explain_numeric,
+ prediction_zero = p0,
+ approach = "gaussian",
+ group = groups,
+ n_combinations = n_combinations,
+ n_batches = 1,
+ timing = FALSE
+ )
+ )
+})
+
+test_that("Correct dimension of S when sampling combinations with groups", {
+ n_combinations <- 5
+
+ groups <- list(
+ A = c("Solar.R", "Wind"),
+ B = c("Temp", "Month_factor"),
+ C = "Day"
+ )
+
+ res <- explain(
+ model = model_lm_mixed,
+ x_explain = x_explain_mixed,
+ x_train = x_explain_mixed,
+ prediction_zero = p0,
+ approach = "ctree",
+ group = groups,
+ n_combinations = n_combinations,
+ n_batches = 1,
+ timing = FALSE
+ )
+
+ expect_equal(nrow(res$internal$objects$S), n_combinations)
+})
+
+test_that("data feature ordering is output_lm_numeric_column_order", {
+ explain.original <- explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+
+ explain.new_data_feature_order <- explain(
+ model = model_lm_numeric,
+ x_explain = rev(x_explain_numeric),
+ x_train = rev(x_train_numeric),
+ approach = "empirical",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+
+ explain.new_model_feat_order <- explain(
+ model = model_lm_numeric_col_order,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_batches = 1,
+ timing = FALSE
+ )
+
+ # Same Shapley values, but different order
+ expect_false(identical(
+ explain.original$shapley_values,
+ explain.new_data_feature_order$shapley_values
+ ))
+ expect_equal(
+ explain.original$shapley_values[, mget(sort(names(explain.original$shapley_values)))],
+ explain.new_data_feature_order$shapley_values[, mget(sort(names(explain.new_data_feature_order$shapley_values)))]
+ )
+
+ # Same Shapley values in same order
+ expect_equal(explain.original, explain.new_model_feat_order)
+})
+
+test_that("parallelization gives same output for any approach", {
+ # Empirical is seed independent
+ explain.empirical_sequential <- explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_batches = 10,
+ timing = FALSE
+ )
+
+ future::plan("multisession", workers = 2) # Parallelized with 2 cores
+ explain.empirical_multisession <- explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_batches = 10,
+ timing = FALSE
+ )
+
+ future::plan("sequential") # Resetting to sequential computation
+
+ # Identical results
+ expect_equal(
+ explain.empirical_sequential,
+ explain.empirical_multisession
+ )
+
+
+ # ctree is seed NOT independent
+ explain.ctree_sequential <- explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "ctree",
+ prediction_zero = p0,
+ n_batches = 10,
+ timing = FALSE
+ )
+
+ future::plan("multisession", workers = 5) # Parallelized with 2 cores
+ explain.ctree_multisession <- explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "ctree",
+ prediction_zero = p0,
+ n_batches = 10,
+ timing = FALSE
+ )
+
+ future::plan("sequential") # Resetting to sequential computation
+
+ # Identical results also for seed dependent methods.
+ expect_equal(
+ explain.ctree_sequential,
+ explain.ctree_multisession
+ )
+})
+
+test_that("different n_batches gives same/different shapley values for different approaches", {
+ # approach "empirical" is seed independent
+ explain.empirical_n_batches_5 <- explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_batches = 5,
+ timing = FALSE
+ )
+
+ explain.empirical_n_batches_10 <- explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_batches = 10,
+ timing = FALSE
+ )
+
+
+ # Difference in the objects (n_batches and related)
+ expect_false(identical(
+ explain.empirical_n_batches_5,
+ explain.empirical_n_batches_10
+ ))
+ # Same Shapley values
+ expect_equal(
+ explain.empirical_n_batches_5$shapley_values,
+ explain.empirical_n_batches_10$shapley_values
+ )
+
+
+ # approach "ctree" is seed dependent
+ explain.ctree_n_batches_5 <- explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "ctree",
+ prediction_zero = p0,
+ n_batches = 5,
+ timing = FALSE
+ )
+
+ explain.ctree_n_batches_10 <- explain(
+ model = model_lm_numeric,
+ x_explain = x_explain_numeric,
+ x_train = x_train_numeric,
+ approach = "ctree",
+ prediction_zero = p0,
+ n_batches = 10,
+ timing = FALSE
+ )
+
+ # Difference in the objects (n_batches and related)
+ expect_false(identical(
+ explain.ctree_n_batches_5,
+ explain.ctree_n_batches_10
+ ))
+ # NEITHER same Shapley values
+ expect_false(identical(
+ explain.ctree_n_batches_5$shapley_values,
+ explain.ctree_n_batches_10$shapley_values
+ ))
+})
diff --git a/tests/testthat/test-src_impute_data.R b/tests/testthat/test-src_impute_data.R
deleted file mode 100644
index a05d2e0ff..000000000
--- a/tests/testthat/test-src_impute_data.R
+++ /dev/null
@@ -1,77 +0,0 @@
-context("test-src_impute_data.R")
-
-test_that("Test observation_impute_cpp", {
-
- # Example data -----------
- if (requireNamespace("datasets", quietly = TRUE)) {
- data("mtcars", package = "datasets")
- rownames(mtcars) <- NULL
- mtcars <- as.matrix(mtcars)
-
- # Example -----------
- m <- 3
- n_combinations <- 2^m
- mtcars <- mtcars[1:15, seq(m)]
- ntrain <- 14
- xtrain <- mtcars[seq(ntrain), ]
- xtest <- mtcars[-seq(ntrain), , drop = FALSE]
- S <- matrix(0L, n_combinations, m)
- features <- list(
- integer(), 1, 2, 3, c(1, 2), c(1, 3), c(2, 3), c(1, 2, 3)
- )
- for (i in seq_along(features)) {
- feature_i <- features[[i]]
- if (length(feature_i) > 0) {
- S[i, features[[i]]] <- 1L
- }
- }
-
- # Tests (invalid input) -----------
- expect_error(
- observation_impute_cpp(
- index_xtrain = c(1, 2),
- index_s = c(1, 2, 3),
- xtrain = xtrain,
- xtest = xtest,
- S = S
- )
- )
- expect_error(
- observation_impute_cpp(
- index_xtrain = c(1, 2),
- index_s = c(2, 3),
- xtrain = xtrain[, 1:2],
- xtest = xtest,
- S = S
- )
- )
-
- # Tests (valid input) -----------
- index_xtrain <- c(1, 2)
- index_s <- c(4, 5)
- x <- observation_impute_cpp(
- index_xtrain = index_xtrain,
- index_s = index_s,
- xtrain = xtrain,
- xtest = xtest,
- S = S
- )
-
- expect_equal(nrow(x), length(index_s))
- expect_equal(ncol(x), ncol(xtrain))
- expect_true(is.matrix(x))
- expect_true(is.double(x))
-
- for (i in 1:nrow(x)) {
- feature_i <- features[[index_s[i]]]
-
- for (j in seq(m)) {
- if (j %in% feature_i) {
- expect_equal(x[i, j], unname(xtest[1, j]))
- } else {
- expect_equal(x[i, j], unname(xtrain[index_xtrain[i], j]))
- }
- }
- }
- }
-})
diff --git a/tests/testthat/test-src_weighted_matrix.R b/tests/testthat/test-src_weighted_matrix.R
deleted file mode 100644
index 7c8973e30..000000000
--- a/tests/testthat/test-src_weighted_matrix.R
+++ /dev/null
@@ -1,79 +0,0 @@
-context("test-src_weighted_matrix.R")
-
-test_that("Test weight_matrix_cpp", {
-
- ## Example -----------
- m <- 3
- n <- 2^m
- subsets <- unlist(
- lapply(
- 0:m,
- utils::combn,
- x = m,
- simplify = FALSE
- ),
- recursive = FALSE
- )
- w_all <- shapley_weights(m, choose(m, 0:m), 0:m)
- w_all[!is.finite(w_all)] <- 10^6
- w <- w_all[sapply(subsets, length) + 1]
- x <- weight_matrix_cpp(
- subsets = subsets,
- m = m,
- n = n,
- w = w
- )
-
- ## Exact results -----------
- Z <- matrix(0, nrow = n, ncol = m + 1)
- Z[, 1] <- 1
- for (i in seq_along(subsets)) {
- f <- subsets[[i]]
- if (length(f) > 0) {
- Z[i, f + 1] <- 1
- }
- }
- W <- matrix(0, nrow = n, ncol = n)
- diag(W) <- w
- res <- solve(t(Z) %*% W %*% Z) %*% (t(Z) %*% W)
-
- ## Test results -----------
- expect_true(is.matrix(x))
- expect_true(is.double(x))
- expect_equal(nrow(x), m + 1)
- expect_equal(ncol(x), n)
- expect_equal(x, res)
-})
-
-test_that("Test feature_matrix_cpp", {
-
- ## Example -----------
- features <- list(
- integer(0),
- 1:2,
- 10,
- 4:8,
- 3:7
- )
- m <- 10
- x <- feature_matrix_cpp(features, m)
-
- ## Test results -----------
- expect_true(is.matrix(x))
- expect_equal(ncol(x), m)
- expect_equal(nrow(x), length(features))
- expect_true(max(x) <= 1)
- expect_true(min(x) >= 0)
- expect_equal(sapply(features, length), rowSums(x))
- for (i in seq_along(features)) {
- feature_i <- features[[i]]
- n_features <- length(feature_i)
- if (n_features == 0) {
- expect_equal(x[i, ], rep(0, m))
- } else {
- expect_equal(x[i, feature_i], rep(1, n_features))
- expect_equal(x[i, -feature_i], rep(0, m - n_features))
- }
- }
- expect_error(feature_matrix_cpp(list(1, 2:3), 3))
-})
diff --git a/tests/testthat/test-transformation.R b/tests/testthat/test-transformation.R
deleted file mode 100644
index bbba509c6..000000000
--- a/tests/testthat/test-transformation.R
+++ /dev/null
@@ -1,52 +0,0 @@
-context("test-transformation.R")
-
-test_that("Test inv_gaussian_transform", {
-
- # Example -----------
- zx <- rnorm(50)
- n_z <- 30
-
- x <- inv_gaussian_transform(zx, n_z)
-
- # Tests -----------
- expect_true(is.atomic(x))
- expect_true(is.double(x))
-
- expect_equal(length(x), n_z)
- expect_true(min(x) >= min(zx[-c(1:n_z)]))
- expect_true(max(x) <= max(zx[-c(1:n_z)]))
-
- # Erros -----------
- expect_error(inv_gaussian_transform(zx, length(zx)))
- expect_error(inv_gaussian_transform(zx, length(zx) + 1))
-})
-
-test_that("Test gaussian_transform_separate", {
-
- # Example -----------
- yx <- rnorm(50)
- n_y <- 30
-
- x <- gaussian_transform_separate(yx, n_y)
-
- # Tests -----------
- expect_true(is.atomic(x))
- expect_true(is.double(x))
- expect_equal(length(x), n_y)
-
- # Erros -----------
- expect_error(gaussian_transform_separate(yx, length(yx)))
- expect_error(gaussian_transform_separate(yx, length(yx) + 1))
-})
-
-test_that("Test gaussian_transform", {
-
- # Example -----------
- y <- rnorm(50)
- x <- gaussian_transform(y)
-
- # Tests -----------
- expect_true(is.atomic(x))
- expect_true(is.double(x))
- expect_equal(length(x), length(y))
-})
diff --git a/tests/testthat/test_objects/explanation_explain_group_obj_list.rds b/tests/testthat/test_objects/explanation_explain_group_obj_list.rds
deleted file mode 100644
index 655eac9ce..000000000
Binary files a/tests/testthat/test_objects/explanation_explain_group_obj_list.rds and /dev/null differ
diff --git a/tests/testthat/test_objects/explanation_explain_obj_list.rds b/tests/testthat/test_objects/explanation_explain_obj_list.rds
deleted file mode 100644
index ec323afaa..000000000
Binary files a/tests/testthat/test_objects/explanation_explain_obj_list.rds and /dev/null differ
diff --git a/tests/testthat/test_objects/explanation_explain_obj_list_fixed.rds b/tests/testthat/test_objects/explanation_explain_obj_list_fixed.rds
deleted file mode 100644
index 9dd1133ff..000000000
Binary files a/tests/testthat/test_objects/explanation_explain_obj_list_fixed.rds and /dev/null differ
diff --git a/tests/testthat/test_objects/explanation_explain_obj_list_no_ctree.rds b/tests/testthat/test_objects/explanation_explain_obj_list_no_ctree.rds
deleted file mode 100644
index 97452ec56..000000000
Binary files a/tests/testthat/test_objects/explanation_explain_obj_list_no_ctree.rds and /dev/null differ
diff --git a/tests/testthat/test_objects/shapley_explainer_group1_2_obj.rds b/tests/testthat/test_objects/shapley_explainer_group1_2_obj.rds
deleted file mode 100644
index ae03351c3..000000000
Binary files a/tests/testthat/test_objects/shapley_explainer_group1_2_obj.rds and /dev/null differ
diff --git a/tests/testthat/test_objects/shapley_explainer_group1_obj.rds b/tests/testthat/test_objects/shapley_explainer_group1_obj.rds
deleted file mode 100644
index 176c9ef09..000000000
Binary files a/tests/testthat/test_objects/shapley_explainer_group1_obj.rds and /dev/null differ
diff --git a/tests/testthat/test_objects/shapley_explainer_group2_2_obj.rds b/tests/testthat/test_objects/shapley_explainer_group2_2_obj.rds
deleted file mode 100644
index 2d65d72a8..000000000
Binary files a/tests/testthat/test_objects/shapley_explainer_group2_2_obj.rds and /dev/null differ
diff --git a/tests/testthat/test_objects/shapley_explainer_group2_obj.rds b/tests/testthat/test_objects/shapley_explainer_group2_obj.rds
deleted file mode 100644
index 40e01b14f..000000000
Binary files a/tests/testthat/test_objects/shapley_explainer_group2_obj.rds and /dev/null differ
diff --git a/tests/testthat/test_objects/shapley_explainer_obj.rds b/tests/testthat/test_objects/shapley_explainer_obj.rds
deleted file mode 100644
index 3572b2ca4..000000000
Binary files a/tests/testthat/test_objects/shapley_explainer_obj.rds and /dev/null differ
diff --git a/vignettes/understanding_shapr.Rmd b/vignettes/understanding_shapr.Rmd
index b52158d0e..4b36ddffd 100644
--- a/vignettes/understanding_shapr.Rmd
+++ b/vignettes/understanding_shapr.Rmd
@@ -4,9 +4,12 @@ author: "Camilla Lingjærde, Martin Jullum & Nikolai Sellereite"
output: rmarkdown::html_vignette
bibliography: ../inst/REFERENCES.bib
vignette: >
+ %\VignetteEncoding{UTF-8}
%\VignetteIndexEntry{`shapr`: Explaining individual machine learning predictions with Shapley values}
%\VignetteEngine{knitr::rmarkdown}
- %\VignetteEncoding{UTF-8}
+editor_options:
+ markdown:
+ wrap: 72
---
```{r, include = FALSE}
@@ -14,15 +17,16 @@ knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 7,
- fig.height = 3
+ fig.height = 3,
+ warning = FALSE,
+ message = FALSE
)
```
```{r setup, include=FALSE, warning=FALSE}
library(shapr)
```
-
-
+
> [Introduction](#intro)
> [Overview of Package](#overview)
@@ -33,24 +37,28 @@ library(shapr)
> [Advanced usage](#advanced)
-> [Comparison to Lundberg & Lee's implementation](#compare)
+> [Scalability and efficency](#scalability)
+> [Comparison to Lundberg & Lee's implementation](#compare)
# Introduction
-
-
-The `shapr` package implements an extended version of the Kernel SHAP method for approximating
-Shapley values (@lundberg2017unified), in which dependence between the features is taken into
-account (@aas2019explaining). Estimation of Shapley values is of interest when attempting to
-explain complex machine learning models. Of existing work on interpreting individual predictions,
-Shapley values is regarded to be the only model-agnostic explanation method with a solid theoretical
-foundation (@lundberg2017unified). Kernel SHAP is a computationally efficient approximation to
-Shapley values in higher dimensions, but it assumes independent features. @aas2019explaining extend
-the Kernel SHAP method to handle dependent features, resulting in more accurate approximations to
-the true Shapley values. See the [paper](https://arxiv.org/abs/1903.10464) (@aas2019explaining) for further details.
+The `shapr` package implements an extended version of the Kernel SHAP
+method for approximating Shapley values (@lundberg2017unified), in which
+dependence between the features is taken into account
+(@aas2019explaining). Estimation of Shapley values is of interest when
+attempting to explain complex machine learning models. Of existing work
+on interpreting individual predictions, Shapley values is regarded to be
+the only model-agnostic explanation method with a solid theoretical
+foundation (@lundberg2017unified). Kernel SHAP is a computationally
+efficient approximation to Shapley values in higher dimensions, but it
+assumes independent features. @aas2019explaining extend the Kernel SHAP
+method to handle dependent features, resulting in more accurate
+approximations to the true Shapley values. See the
+[paper](https://www.sciencedirect.com/sdfe/reader/pii/S0004370221000539/pdf)
+(@aas2019explaining) for further details.
@@ -60,149 +68,179 @@ the true Shapley values. See the [paper](https://arxiv.org/abs/1903.10464) (@aas
## Functions
-Here is an overview of the main functions. You can read their documentation and see examples
-with `?function_name`.
-
------------------------------ ------------------------------------------------------
-Function Name Description
------------------------------ ------------------------------------------------------
-`shapr` Get Shapley weights for test data.
+Here is an overview of the main functions. You can read their
+documentation and see examples with `?function_name`.
-`explain` Computes kernel SHAP values for test data.
-
-`plot.shapr` Plots the individual prediction explanations. Uses facet_wrap of ggplot.
------------------------------ --------------------------------------------------
+| Function Name | Description |
+|:---------------------|:-------------------------------------------------|
+| `explain` | Computes kernel SHAP values for test data. |
+| `explain_forecast` | Analogous to `explain`, but for explaining forecasts from time series models. |
+| `plot.shapr` | Plots the individual prediction explanations. Uses the `ggplot` and `ggbeeswarm` package. |
: Main functions in the `shapr` package.
-
-
# The Kernel SHAP Method
-Assume a predictive model $f(\boldsymbol{x})$ for a response value $y$ with features
-$\boldsymbol{x}\in \mathbb{R}^M$, trained on a training set, and that we want to explain the
-predictions for new sets of data. This may be done using ideas from cooperative game theory,
-letting a single prediction take the place of the game being played and the features the place of
-the players. Letting $N$ denote the set of all $M$ players, and $S \subseteq N$ be a subset
-of $|S|$ players, the "contribution" function $v(S)$ describes the total expected sum of payoffs
-the members of $S$ can obtain by cooperation. The Shapley value (@Shapley53) is one way to
-distribute the total gains to the players, assuming that they all collaborate. The amount that
-player $i$ gets is then
+Assume a predictive model $f(\boldsymbol{x})$ for a response value $y$
+with features $\boldsymbol{x}\in \mathbb{R}^M$, trained on a training
+set, and that we want to explain the predictions for new sets of data.
+This may be done using ideas from cooperative game theory, letting a
+single prediction take the place of the game being played and the
+features the place of the players. Letting $N$ denote the set of all $M$
+players, and $S \subseteq N$ be a subset of $|S|$ players, the
+"contribution" function $v(S)$ describes the total expected sum of
+payoffs the members of $S$ can obtain by cooperation. The Shapley value
+(@Shapley53) is one way to distribute the total gains to the players,
+assuming that they all collaborate. The amount that player $i$ gets is
+then
$$\phi_i(v) = \phi_i = \sum_{S \subseteq N \setminus\{i\}} \frac{|S| ! (M-| S| - 1)!}{M!}(v(S\cup \{i\})-v(S)),$$
+that is, a weighted mean over all subsets $S$ of players not containing
+player $i$. @lundberg2017unified define the contribution function for a
+certain subset $S$ of these features $\boldsymbol{x}_S$ as
+$v(S) = \mbox{E}[f(\boldsymbol{x})|\boldsymbol{x}_S]$, the expected
+output of the predictive model conditional on the feature values of the
+subset. @lundberg2017unified names this type of Shapley values SHAP
+(SHapley Additive exPlanation) values. Since the conditional
+expectations can be written as
-that is, a weighted mean over all subsets $S$ of players not containing player $i$.
-@lundberg2017unified define the contribution function for a certain subset $S$ of these features
-$\boldsymbol{x}_S$ as $v(S) = \mbox{E}[f(\boldsymbol{x})|\boldsymbol{x}_S]$, the expected output
-of the predictive model conditional on the feature values of the subset. @lundberg2017unified names
-this type of Shapley values SHAP (SHapley Additive exPlanation) values. Since the conditional
-expectations can be written as
-
+```{=tex}
\begin{equation}
\label{eq:CondExp}
E[f(\boldsymbol{x})|\boldsymbol{x}_s=\boldsymbol{x}_S^*] = E[f(\boldsymbol{x}_{\bar{S}},\boldsymbol{x}_S)|\boldsymbol{x}_S=\boldsymbol{x}_S^*] =
\int f(\boldsymbol{x}_{\bar{S}},\boldsymbol{x}_S^*)\,p(\boldsymbol{x}_{\bar{S}}|\boldsymbol{x}_S=\boldsymbol{x}_S^*)d\boldsymbol{x}_{\bar{S}},
\end{equation}
-
-the conditional distributions $p(\boldsymbol{x}_{\bar{S}}|\boldsymbol{x}_S=\boldsymbol{x}_S^*)$ are
-needed to compute the contributions. The Kernel SHAP method of @lundberg2017unified assumes feature
-independence, so that $p(\boldsymbol{x}_{\bar{S}}|\boldsymbol{x}_S=\boldsymbol{x}_S^*)=p(\boldsymbol{x}_{\bar{S}})$.
-If samples
-$\boldsymbol{x}_{\bar{S}}^{k}, k=1,\ldots,K$, from $p(\boldsymbol{x}_{\bar{S}}|\boldsymbol{x}_S=\boldsymbol{x}_S^*)$
-are available, the conditional expectation in above can be approximated by
-
+```
+the conditional distributions
+$p(\boldsymbol{x}_{\bar{S}}|\boldsymbol{x}_S=\boldsymbol{x}_S^*)$ are
+needed to compute the contributions. The Kernel SHAP method of
+@lundberg2017unified assumes feature independence, so that
+$p(\boldsymbol{x}_{\bar{S}}|\boldsymbol{x}_S=\boldsymbol{x}_S^*)=p(\boldsymbol{x}_{\bar{S}})$.
+If samples $\boldsymbol{x}_{\bar{S}}^{k}, k=1,\ldots,K$, from
+$p(\boldsymbol{x}_{\bar{S}}|\boldsymbol{x}_S=\boldsymbol{x}_S^*)$ are
+available, the conditional expectation in above can be approximated by
+
+```{=tex}
\begin{equation}
v_{\text{KerSHAP}}(S) = \frac{1}{K}\sum_{k=1}^K f(\boldsymbol{x}_{\bar{S}}^{k},\boldsymbol{x}_S^*).
\end{equation}
-
-In Kernel SHAP, $\boldsymbol{x}_{\bar{S}}^{k}, k=1,\ldots,K$ are sampled from the $\bar{S}$-part of
-the training data, *independently* of $\boldsymbol{x}_{S}$. This is motivated by using the
-training set as the empirical distribution of $\boldsymbol{x}_{\bar{S}}$, and assuming that
-$\boldsymbol{x}_{\bar{S}}$ is independent of $\boldsymbol{x}_S=\boldsymbol{x}_S^*$.
-Due to the independence assumption, if the features in a given model are highly dependent, the
-Kernel SHAP method may give a completely wrong answer. This can be avoided by estimating the
-conditional distribution $p(\boldsymbol{x}_{\bar{S}}|\boldsymbol{x}_S=\boldsymbol{x}_S^*)$ directly
-and generating samples from this distribution. With this small change, the contributions and
-Shapley values may then be approximated as in the ordinary Kernel SHAP framework. @aas2019explaining
-propose three different approaches for estimating the conditional probabilities. The methods may
-also be combined, such that e.g. one method is used when conditioning on a small number of features,
-while another method is used otherwise.
+```
+In Kernel SHAP, $\boldsymbol{x}_{\bar{S}}^{k}, k=1,\ldots,K$ are sampled
+from the $\bar{S}$-part of the training data, *independently* of
+$\boldsymbol{x}_{S}$. This is motivated by using the training set as the
+empirical distribution of $\boldsymbol{x}_{\bar{S}}$, and assuming that
+$\boldsymbol{x}_{\bar{S}}$ is independent of
+$\boldsymbol{x}_S=\boldsymbol{x}_S^*$. Due to the independence
+assumption, if the features in a given model are highly dependent, the
+Kernel SHAP method may give a completely wrong answer. This can be
+avoided by estimating the conditional distribution
+$p(\boldsymbol{x}_{\bar{S}}|\boldsymbol{x}_S=\boldsymbol{x}_S^*)$
+directly and generating samples from this distribution. With this small
+change, the contributions and Shapley values may then be approximated as
+in the ordinary Kernel SHAP framework. @aas2019explaining propose three
+different approaches for estimating the conditional probabilities which
+are implemented: `empirical`, `gaussian` and `copula`. The package also
+implements the method `ctree` method from @redelmeier2020explaining. The
+original `independence` approach of @lundberg2017unified is also
+available. The methods may also be combined, such that e.g. one method
+is used when conditioning on a small number of features, while another
+method is used otherwise.
## Multivariate Gaussian Distribution Approach
-The first approach arises from the assumption that the feature vector $\boldsymbol{x}$ stems from a
-multivariate Gaussian distribution with some mean vector $\boldsymbol{\mu}$ and covariance matrix
-$\boldsymbol{\Sigma}$. Under this assumption, the conditional distribution
-$p(\boldsymbol{x}_{\bar{\mathcal{S}}} |\boldsymbol{x}_{\mathcal{S}}=\boldsymbol{x}_{\mathcal{S}}^*)$
-is also multivariate Gaussian
-$\text{N}_{|\bar{\mathcal{S}}|}(\boldsymbol{\mu}_{\bar{\mathcal{S}}|\mathcal{S}},\boldsymbol{\Sigma}_{\bar{\mathcal{S}}|\mathcal{S}})$,
-with analytical expressions for the conditional mean vector $\boldsymbol{\mu}_{\bar{\mathcal{S}}|\mathcal{S}}$
-and covariance matrix $\boldsymbol{\Sigma}_{\bar{\mathcal{S}}|\mathcal{S}}$, see @aas2019explaining for details.
-Hence, instead of sampling from the marginal empirical distribution of $\boldsymbol{x}_{\bar{\mathcal{S}}}$
-approximated by the training data, we can sample from the Gaussian conditional distribution, which is fitted
-using the training data. Using the resulting samples
-$\boldsymbol{x}_{\bar{\mathcal{S}}}^k, k=1,\ldots,K$, the conditional expectations be approximated
-as in the Kernel SHAP.
+The first approach arises from the assumption that the feature vector
+$\boldsymbol{x}$ stems from a multivariate Gaussian distribution with
+some mean vector $\boldsymbol{\mu}$ and covariance matrix
+$\boldsymbol{\Sigma}$. Under this assumption, the conditional
+distribution
+$p(\boldsymbol{x}_{\bar{\mathcal{S}}} |\boldsymbol{x}_{\mathcal{S}}=\boldsymbol{x}_{\mathcal{S}}^*)$
+is also multivariate Gaussian\
+$\text{N}_{|\bar{\mathcal{S}}|}(\boldsymbol{\mu}_{\bar{\mathcal{S}}|\mathcal{S}},\boldsymbol{\Sigma}_{\bar{\mathcal{S}}|\mathcal{S}})$,
+with analytical expressions for the conditional mean vector
+$\boldsymbol{\mu}_{\bar{\mathcal{S}}|\mathcal{S}}$ and covariance matrix
+$\boldsymbol{\Sigma}_{\bar{\mathcal{S}}|\mathcal{S}}$, see
+@aas2019explaining for details. Hence, instead of sampling from the
+marginal empirical distribution of $\boldsymbol{x}_{\bar{\mathcal{S}}}$
+approximated by the training data, we can sample from the Gaussian
+conditional distribution, which is fitted using the training data. Using
+the resulting samples
+$\boldsymbol{x}_{\bar{\mathcal{S}}}^k, k=1,\ldots,K$, the conditional
+expectations be approximated as in the Kernel SHAP.
## Gaussian Copula Approach
-If the features are far from multivariate Gaussian, an alternative approach is to instead represent
-the marginals by their empirical distributions, and model the dependence structure by a Gaussian
-copula. Assuming a Gaussian copula, we may convert the marginals of the training data to Gaussian
-features using their empirical distributions, and then fit a multivariate Gaussian distribution to these.
-
-To produce samples from the conditional distribution
-$p(\boldsymbol{x}_{\bar{\mathcal{S}}} |\boldsymbol{x}_{\mathcal{S}}=\boldsymbol{x}_{\mathcal{S}}^*)$,
-we convert the marginals of $\boldsymbol{x}_{\mathcal{S}}$ to Gaussians, sample from the conditional
-Gaussian distribution as above, and convert the marginals of the samples back to the original
-distribution. Those samples are then used to approximate the sample from the resulting multivariate
-Gaussian conditional distribution. While other copulas may be used, the Gaussian copula has the
-benefit that we may use the analytical expressions for the conditionals
-$\boldsymbol{\mu}_{\bar{\mathcal{S}}|\mathcal{S}}$ and $\boldsymbol{\Sigma}_{\bar{\mathcal{S}}|\mathcal{S}}$.
-Finally, we may convert the marginals back to their original distribution, and use the resulting
-samples to approximate the conditional expectations as in the Kernel SHAP.
+If the features are far from multivariate Gaussian, an alternative
+approach is to instead represent the marginals by their empirical
+distributions, and model the dependence structure by a Gaussian copula.
+Assuming a Gaussian copula, we may convert the marginals of the training
+data to Gaussian features using their empirical distributions, and then
+fit a multivariate Gaussian distribution to these.
+
+To produce samples from the conditional distribution
+$p(\boldsymbol{x}_{\bar{\mathcal{S}}} |\boldsymbol{x}_{\mathcal{S}}=\boldsymbol{x}_{\mathcal{S}}^*)$,
+we convert the marginals of $\boldsymbol{x}_{\mathcal{S}}$ to Gaussians,
+sample from the conditional Gaussian distribution as above, and convert
+the marginals of the samples back to the original distribution. Those
+samples are then used to approximate the sample from the resulting
+multivariate Gaussian conditional distribution. While other copulas may
+be used, the Gaussian copula has the benefit that we may use the
+analytical expressions for the conditionals
+$\boldsymbol{\mu}_{\bar{\mathcal{S}}|\mathcal{S}}$ and
+$\boldsymbol{\Sigma}_{\bar{\mathcal{S}}|\mathcal{S}}$. Finally, we may
+convert the marginals back to their original distribution, and use the
+resulting samples to approximate the conditional expectations as in the
+Kernel SHAP.
## Empirical Conditional Distribution Approach
-If both the dependence structure and the marginal distributions of $\boldsymbol{x}$ are very far
-from the Gaussian, neither of the two aforementioned methods will work very well. Few methods
-exists for the non-parametric estimation of conditional densities, and the classic kernel
-estimator (@rosenblatt1956) for non-parametric density estimation suffers greatly from the
-curse of dimensionality and does not provide a way to generate samples from the estimated
-distribution. For such situations, @aas2019explaining propose an empirical conditional approach
-to sample approximately from $p(\boldsymbol{x}_{\bar{\mathcal{S}}}|\boldsymbol{x}_{\mathcal{S}}^*)$.
-The idea is to compute weights $w_{\mathcal{S}}(\boldsymbol{x}^*,\boldsymbol{x}^i),\ i=1,...,n_{\text{train}}$
-for all training instances based on their Mahalanobis distances (in the $S$ subset only) to the
-instance $\boldsymbol{x}^*$ to be explained. Instead of sampling from this weighted (conditional)
-empirical distribution, @aas2019explaining suggests a more efficient variant, using only the $K$
-instances with the largest weights:
+If both the dependence structure and the marginal distributions of
+$\boldsymbol{x}$ are very far from the Gaussian, neither of the two
+aforementioned methods will work very well. Few methods exists for the
+non-parametric estimation of conditional densities, and the classic
+kernel estimator (@rosenblatt1956) for non-parametric density estimation
+suffers greatly from the curse of dimensionality and does not provide a
+way to generate samples from the estimated distribution. For such
+situations, @aas2019explaining propose an empirical conditional approach
+to sample approximately from
+$p(\boldsymbol{x}_{\bar{\mathcal{S}}}|\boldsymbol{x}_{\mathcal{S}}^*)$.
+The idea is to compute weights
+$w_{\mathcal{S}}(\boldsymbol{x}^*,\boldsymbol{x}^i),\ i=1,...,n_{\text{train}}$
+for all training instances based on their Mahalanobis distances (in the
+$S$ subset only) to the instance $\boldsymbol{x}^*$ to be explained.
+Instead of sampling from this weighted (conditional) empirical
+distribution, @aas2019explaining suggests a more efficient variant,
+using only the $K$ instances with the largest weights:
$$v_{\text{condKerSHAP}}(\mathcal{S}) = \frac{\sum_{k=1}^K w_{\mathcal{S}}(\boldsymbol{x}^*,
\boldsymbol{x}^{[k]}) f(\boldsymbol{x}_{\bar{\mathcal{S}}}^{[k]},
-\boldsymbol{x}_{\mathcal{S}}^*)}{\sum_{k=1}^K w_{\mathcal{S}}(\boldsymbol{x}^*,\boldsymbol{x}^{[k]})},$$
-
-The number of samples $K$ to be used in the approximate prediction can for instance be chosen such
-that the $K$ largest weights accounts for a fraction $\eta$, for example $0.9$, of the total weight.
-If $K$ exceeds a certain limit, for instance $5,000$, it might be set to that limit. A bandwidth
-parameter $\sigma$ used to scale the weights, must also be specified. This choice may be viewed as
-a bias-variance trade-off. A small $\sigma$ puts most of the weight to a few of the closest
-training observations and thereby gives low bias, but high variance. When $\sigma \rightarrow \infty$,
-this method converges to the original Kernel SHAP assuming feature independence. Typically, when
-the features are highly dependent, a small $\sigma$ is typically needed such that the bias does
-not dominate. @aas2019explaining show that a proper criterion for selecting $\sigma$ is a
-small-sample-size corrected version of the AIC known as AICc. As calculation of it is
-computationally intensive, an approximate version of the selection criterion is also suggested.
+\boldsymbol{x}_{\mathcal{S}}^*)}{\sum_{k=1}^K w_{\mathcal{S}}(\boldsymbol{x}^*,\boldsymbol{x}^{[k]})},$$
+
+The number of samples $K$ to be used in the approximate prediction can
+for instance be chosen such that the $K$ largest weights accounts for a
+fraction $\eta$, for example $0.9$, of the total weight. If $K$ exceeds
+a certain limit, for instance $5,000$, it might be set to that limit. A
+bandwidth parameter $\sigma$ used to scale the weights, must also be
+specified. This choice may be viewed as a bias-variance trade-off. A
+small $\sigma$ puts most of the weight to a few of the closest training
+observations and thereby gives low bias, but high variance. When
+$\sigma \rightarrow \infty$, this method converges to the original
+Kernel SHAP assuming feature independence. Typically, when the features
+are highly dependent, a small $\sigma$ is typically needed such that the
+bias does not dominate. @aas2019explaining show that a proper criterion
+for selecting $\sigma$ is a small-sample-size corrected version of the
+AIC known as AICc. As calculation of it is computationally intensive, an
+approximate version of the selection criterion is also suggested.
Details on this is found in @aas2019explaining.
@@ -211,16 +249,58 @@ Details on this is found in @aas2019explaining.
## Conditional Inference Tree Approach
-The previous three methods can only handle numerical data. This means that if the data contains categorical/discrete/ordinal features, the features first have to be one-hot encoded. When the number of levels/features is large, this is not feasible. An approach that handles mixed (i.e numerical, categorical, discrete, ordinal) features and both univariate and multivariate responses is conditional inference trees (@hothorn2006unbiased).
-
-Conditional inference trees is a special tree fitting procedure that relies on hypothesis tests to choose both the splitting feature and the splitting point. The tree fitting procedure is sequential: first a splitting feature is chosen (the feature that is least independent of the response), and then a splitting point is chosen for this feature. This decreases the chance of being biased towards features with many splits (@hothorn2006unbiased).
-
-We use conditional inference trees (*ctree*) to model the conditional distribution, $p(\boldsymbol{x}_{\bar{\mathcal{S}}}|\boldsymbol{x}_{\mathcal{S}}^*)$, found in the Shapley methodology.
-First, we fit a different conditional inference tree to each conditional distribution.
-Once a tree is fit for given dependent features, the end node of $\boldsymbol{x}_{\mathcal{S}}^*$ is found. Then, we sample from this end node and use the resulting samples,
-$\boldsymbol{x}_{\bar{\mathcal{S}}}^k, k=1,\ldots,K$, when approximating the conditional expectations as in Kernel SHAP. See @Redelmeier2020ctree for more details.
-
-The conditional inference trees are fit using the *party* and *partykit* packages (@partykit_package).
+The previous three methods can only handle numerical data. This means
+that if the data contains categorical/discrete/ordinal features, the
+features first have to be one-hot encoded. When the number of
+levels/features is large, this is not feasible. An approach that handles
+mixed (i.e numerical, categorical, discrete, ordinal) features and both
+univariate and multivariate responses is conditional inference trees
+(@hothorn2006unbiased).
+
+Conditional inference trees is a special tree fitting procedure that
+relies on hypothesis tests to choose both the splitting feature and the
+splitting point. The tree fitting procedure is sequential: first a
+splitting feature is chosen (the feature that is least independent of
+the response), and then a splitting point is chosen for this feature.
+This decreases the chance of being biased towards features with many
+splits (@hothorn2006unbiased).
+
+We use conditional inference trees (*ctree*) to model the conditional
+distribution,
+$p(\boldsymbol{x}_{\bar{\mathcal{S}}}|\boldsymbol{x}_{\mathcal{S}}^*)$,
+found in the Shapley methodology. First, we fit a different conditional
+inference tree to each conditional distribution. Once a tree is fit for
+given dependent features, the end node of
+$\boldsymbol{x}_{\mathcal{S}}^*$ is found. Then, we sample from this end
+node and use the resulting samples,
+$\boldsymbol{x}_{\bar{\mathcal{S}}}^k, k=1,\ldots,K$, when approximating
+the conditional expectations as in Kernel SHAP. See
+@redelmeier2020explaining for more details.
+
+The conditional inference trees are fit using the *party* and *partykit*
+packages (@partykit_package).
+
+## Categorical Approach
+
+When the features are all categorical, we can estimate the conditional
+expectations using basic statistical formulas. For example, if we have
+three features, $x_1, x_2, x_3$ with three levels each (indicated as 1,
+2, 3), and we are provided with a table of counts indicating how many
+times each combination of feature values occurs, we can estimate the
+marginal and conditional probabilities as follows. Marginal
+probabilities are estimated by dividing the number of times a given
+feature (or features) takes on a certain value in the data set with the
+total number of observations in the data set. Condititional
+probabilities (for example, $P(X_1 = 1 | X_2 = 1)$) are estimated by
+first subsetting the data set to reflect the conditioning (i.e.,
+extracting all rows where $X_2 = 1$), and then dividing the number of
+times the feature on the left hand side of $|$ takes the given value in
+this subset by the total number of observations in this subset. Once the
+marginal and conditional probabilities are estimated for all
+combinations of feature values, each conditional expectation can be
+calculated. For example, the expected value of $X_1$ given $X_2 = 1$ and
+$X_3 = 2$ is
+$$E(X_1|X_2, X_3) = \sum_{x}x P(X_1 = x | X_2=1, X_3=2) = \sum_{x} x \frac{P(X_1 = x, X_2 = 1, X_3 = 2)}{P(X_2=1, X_3=2)}.$$.
@@ -228,480 +308,845 @@ The conditional inference trees are fit using the *party* and *partykit* package
# Examples
-`shapr` supports computation of Shapley values with any predictive model which takes a set of
-numeric features and produces a numeric outcome. Note that the ctree method takes both numeric and categorical variables. Check under "Advanced usage" for an example of how this can be done.
+`shapr` supports computation of Shapley values with any predictive model
+which takes a set of numeric features and produces a numeric outcome.
+Note that the ctree method takes both numeric and categorical variables.
+Check under "Advanced usage" for an example of how this can be done.
-The following example shows how a simple `xgboost` model is trained using the Boston Housing Data,
-and how `shapr` can be used to explain the individual predictions. Note that the empirical conditional
-distribution approach is the default (i.e. `approach = "empirical"`), and that the Gaussian,
-Gaussian copula, and ctree approaches can be used instead by setting the argument `approach` to either
-`"gaussian"`, `"copula"`, or `"ctree`".
+The following example shows how a simple `xgboost` model is trained
+using the `airquality` dataset, and how `shapr` can be used to explain
+the individual predictions. Note that the empirical conditional
+distribution approach is the default (i.e. `approach = "empirical"`).
+The Gaussian, Gaussian copula, ctree or independence approaches can be
+used instead by setting the argument `approach` to either `"gaussian"`,
+`"copula"`, `"ctree"`, `"categorical"` or `"independence"` in the code
+below.
```{r, warning=FALSE}
library(xgboost)
-library(shapr)
+library(data.table)
-data("Boston", package = "MASS")
+data("airquality")
+data <- data.table::as.data.table(airquality)
+data <- data[complete.cases(data), ]
-x_var <- c("lstat", "rm", "dis", "indus")
-y_var <- "medv"
+x_var <- c("Solar.R", "Wind", "Temp", "Month")
+y_var <- "Ozone"
-x_train <- as.matrix(Boston[-1:-6, x_var])
-y_train <- Boston[-1:-6, y_var]
-x_test <- as.matrix(Boston[1:6, x_var])
+ind_x_explain <- 1:6
+x_train <- data[-ind_x_explain, ..x_var]
+y_train <- data[-ind_x_explain, get(y_var)]
+x_explain <- data[ind_x_explain, ..x_var]
# Fitting a basic xgboost model to the training data
-model <- xgboost(
- data = x_train,
+model <- xgboost::xgboost(
+ data = as.matrix(x_train),
label = y_train,
nround = 20,
verbose = FALSE
)
-# Prepare the data for explanation
-explainer <- shapr(x_train, model)
-
# Specifying the phi_0, i.e. the expected prediction without any features
-p <- mean(y_train)
+p0 <- mean(y_train)
# Computing the actual Shapley values with kernelSHAP accounting for feature dependence using
# the empirical (conditional) distribution approach with bandwidth parameter sigma = 0.1 (default)
explanation <- explain(
- x_test,
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
approach = "empirical",
- explainer = explainer,
- prediction_zero = p
+ prediction_zero = p0
)
# Printing the Shapley values for the test data.
# For more information about the interpretation of the values in the table, see ?shapr::explain.
-print(explanation$dt)
+print(explanation$shapley_values)
# Plot the resulting explanations for observations 1 and 6
-plot(explanation, plot_phi0 = FALSE, index_x_test = c(1, 6))
-```
+plot(explanation, bar_plot_phi0 = FALSE, index_x_explain = c(1, 6))
+```
-The Gaussian approach is used as follows:
+There are multiple plot options specified by the `plot_type` argument in
+`plot`. The `waterfall` option shows the changes in the prediction score
+due to each features contribution (their Shapley values):
```{r}
-# Use the Gaussian approach
-explanation_gaussian <- explain(
- x_test,
- approach = "gaussian",
- explainer = explainer,
- prediction_zero = p
-)
-
-# Plot the resulting explanations for observations 1 and 6
-plot(explanation_gaussian, plot_phi0 = FALSE, index_x_test = c(1, 6))
+plot(explanation, plot_type = "waterfall", index_x_explain = c(1, 6))
```
-The Gaussian copula approach is used as follows:
+The other two plot options, `"beeswarm"` and `"scatter"`, can be useful
+when you have many observations that you want to explain. For the
+purpose of illustration, we explain the whole `airquality` dataset
+(including the training data) for these plot types. The
+`plot_type = "beeswarm"` summarises the distribution of the Shapley
+values along the x-axis across all features. Each point gives the
+Shapley value of a given instance, where the points are colored by the
+feature value of that instance:
```{r}
-# Use the Gaussian copula approach
-explanation_copula <- explain(
- x_test,
- approach = "copula",
- explainer = explainer,
- prediction_zero = p
+x_explain_many <- data[, ..x_var]
+explanation_plot <- explain(
+ model = model,
+ x_explain = x_explain_many,
+ x_train = x_train,
+ approach = "empirical",
+ prediction_zero = p0
)
-
-# Plot the resulting explanations for observations 1 and 6, excluding
-# the no-covariate effect
-plot(explanation_copula, plot_phi0 = FALSE, index_x_test = c(1, 6))
+plot(explanation_plot, plot_type = "beeswarm")
```
-The conditional inference tree approach is used as follows:
+The `plot_type = "scatter"` plots the feature values on the x-axis and
+Shapley values on the y-axis, as well as (optionally) a background
+scatter_hist showing the distribution of the feature data:
```{r}
-# Use the conditional inference tree approach
-explanation_ctree <- explain(
- x_test,
- approach = "ctree",
- explainer = explainer,
- prediction_zero = p
-)
-
-# Plot the resulting explanations for observations 1 and 6, excluding
-# the no-covariate effect
-plot(explanation_ctree, plot_phi0 = FALSE, index_x_test = c(1, 6))
+plot(explanation_plot, plot_type = "scatter", scatter_hist = TRUE)
```
-
-We can use mixed (i.e continuous, categorical, ordinal) data with ctree. Use ctree with categorical data in the following manner:
+We can use mixed (i.e continuous, categorical, ordinal) data with ctree.
+Use ctree with mixed data in the following manner:
```{r}
-x_var_cat <- c("lstat", "chas", "rad", "indus")
-y_var <- "medv"
-
-# convert to factors
-Boston$rad = as.factor(Boston$rad)
-Boston$chas = as.factor(Boston$chas)
+# convert the month variable to a factor
+data[, Month_factor := as.factor(Month)]
-x_train_cat <- Boston[-1:-6, x_var_cat]
-y_train <- Boston[-1:-6, y_var]
-x_test_cat <- Boston[1:6, x_var_cat]
+data_train_cat <- data[-ind_x_explain, ]
+data_explain_cat <- data[ind_x_explain, ]
-# -- special function when using categorical data + xgboost
-dummylist <- make_dummies(traindata = x_train_cat, testdata = x_test_cat)
+x_var_cat <- c("Solar.R", "Wind", "Temp", "Month_factor")
-x_train_dummy <- dummylist$train_dummies
-x_test_dummy <- dummylist$test_dummies
-
-# Fitting a basic xgboost model to the training data
-model_cat <- xgboost::xgboost(
- data = x_train_dummy,
- label = y_train,
- nround = 20,
- verbose = FALSE
-)
-model_cat$feature_list <- dummylist$feature_list
+x_train_cat <- data_train_cat[, ..x_var_cat]
+x_explain_cat <- data_explain_cat[, ..x_var_cat]
-explainer_cat <- shapr(dummylist$traindata_new, model_cat)
+# Fitting an lm model here as xgboost does not handle categorical features directly
+# (work around in example below)
+lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var_cat, collapse = " + ")))
-p <- mean(y_train)
+model_lm_cat <- lm(lm_formula, data_train_cat)
-explanation_cat <- explain(
- dummylist$testdata_new,
+p0 <- mean(y_train)
+explanation_lm_cat <- explain(
+ model = model_lm_cat,
+ x_explain = x_explain_cat,
+ x_train = x_train_cat,
approach = "ctree",
- explainer = explainer_cat,
- prediction_zero = p
+ prediction_zero = p0
)
# Plot the resulting explanations for observations 1 and 6, excluding
# the no-covariate effect
-plot(explanation_cat, plot_phi0 = FALSE, index_x_test = c(1, 6))
-
+plot(explanation_lm_cat, bar_plot_phi0 = FALSE, index_x_explain = c(1, 6))
```
-We can specify parameters used to build the conditional inference trees using the following manner. Default values are based on @hothorn2006unbiased.
+We can specify parameters used to build the conditional inference trees
+in the following manner. Default values are based on
+@hothorn2006unbiased.
```{r}
# Use the conditional inference tree approach
-# We can specify parameters used to building trees by specifying mincriterion,
+# We can specify parameters used to building trees by specifying mincriterion,
# minsplit, minbucket
-
explanation_ctree <- explain(
- x_test,
+ model = model_lm_cat,
+ x_explain = x_explain_cat,
+ x_train = x_train_cat,
approach = "ctree",
- explainer = explainer,
- prediction_zero = p,
- mincriterion = 0.80,
- minsplit = 20,
- minbucket = 20
+ prediction_zero = p0,
+ ctree.mincriterion = 0.80,
+ ctree.minsplit = 20,
+ ctree.minbucket = 20
)
-
# Default parameters (based on (Hothorn, 2006)) are:
# mincriterion = 0.95
# minsplit = 20
# minbucket = 7
```
-We can also specify multiple different mincriterion (1 minus the boundary for when to stop splitting nodes) parameters to use when conditioning on different numbers of features. In this case, a vector of length = number of features must be provided.
+If **all** features are categorical, one may use the categorical
+approach as follows:
```{r}
-# Use the conditional inference tree approach
-# Specify a vector of mincriterions instead of just one
-# In this case, when conditioning on 1 or 2 features, use mincriterion = 0.25
-# When conditioning on 3 or 4 features, use mincriterion = 0.95
+# For the sake of illustration, convert ALL features to factors
+data[, Solar.R_factor := as.factor(cut(Solar.R, 10))]
+data[, Wind_factor := as.factor(cut(Wind, 3))]
+data[, Temp_factor := as.factor(cut(Temp, 2))]
+data[, Month_factor := as.factor(Month)]
-explanation_ctree <- explain(
- x_test,
- approach = "ctree",
- explainer = explainer,
- prediction_zero = p,
- mincriterion = c(0.25, 0.25, 0.95, 0.95)
+data_train_all_cat <- data[-ind_x_explain, ]
+data_explain_all_cat <- data[ind_x_explain, ]
+
+
+x_var_all_cat <- c("Solar.R_factor", "Wind_factor", "Temp_factor", "Month_factor")
+
+x_train_all_cat <- data_train_all_cat[, ..x_var_all_cat]
+x_explain_all_cat <- data_explain_all_cat[, ..x_var_all_cat]
+
+# Fit an lm model here
+lm_formula_all_cat <- as.formula(paste0(y_var, " ~ ", paste0(x_var_all_cat, collapse = " + ")))
+
+model_lm_all_cat <- lm(lm_formula_all_cat, data_train_all_cat)
+
+explanation_cat_method <- explain(
+ model = model_lm_all_cat,
+ x_explain = x_explain_all_cat,
+ x_train = x_train_all_cat,
+ approach = "categorical",
+ prediction_zero = p0
)
```
+Shapley values can be used to explain any predictive model. For
+predictive models taking time series as input, `approach='timeseries'`
+can be used. In such models, joint behavior of consecutive time points
+is often more important for the outcome than the single time points.
+Therefore, it makes sense to derive Shapley value segments of the time
+series instead of for each single time point. In `shapr` this can be
+achieved through the `group` attribute. Other optional parameters of
+`approach='timeseries'` are `timeseries.fixed_sigma_vec` and
+`timeseries.bounds` (a vector indicating upper and lower bounds of the
+time series if necessary).
-## Main arguments in `shapr`
+```{r}
+# Simulate time series data with AR(1)-structure
+set.seed(1)
+data_ts <- data.frame(matrix(NA, ncol = 41, nrow = 4))
+for (n in 1:100) {
+ set.seed(n)
+ e <- rnorm(42, mean = 0, sd = 1)
+
+ m_1 <- 0
+ for (i in 2:length(e)) {
+ m_1[i] <- 1 + 0.8 * m_1[i - 1] + e[i]
+ }
+ data_ts[n, ] <- m_1[-1]
+}
+data_ts <- data.table::as.data.table(data_ts)
-When using `shapr`, the default behavior is to use all feature combinations in the Shapley
-formula. Kernel SHAP's sampling based approach may be used by specifying `n_combinations`, which
-is the number of feature combinations to sample. If not specified, the exact method is used.
-The computation time grows approximately exponentially with the number of samples. The training data
-and the model whose predictions we wish to explain must be provided through
-the arguments `x` and `model`. Note that `x` must be a `data.frame` or a `matrix`, and all
-elements must be finite numerical values. Currently we do not support categorical features or
-missing values.
-
+x_var_ts <- paste0("X", 1:40)
+y_var_ts <- "X41"
-## Main arguments in `explain`
+ind_x_explain <- 1:6
+data_ts_train <- data_ts[-ind_x_explain]
-The test data given by `x`, whose predicted values we wish to explain, must be provided. Note that
-`x` must be a `data.frame` or a `matrix,` where all elements are finite numerical values.
-One must also provide the object returned by `shapr` through the argument `explainer`.
-The default approach when computing the Shapley values is the empirical approach (i.e. `approach = "empirical"`).
-If you'd like to use a different approach you'll need to set `approach` equal to either `copula` or `gaussian`, or a
-vector of them, with length equal to the number of features. If a vector, a combined approach is used, and element `i`
-indicates the approach to use when conditioning on `i` variables. For more details see [Combined approach](#combined) below.
-
-When computing the kernel SHAP values by `explain`, the maximum number of samples to use in the
-Monte Carlo integration for every conditional expectation is controlled by the argument `n_samples`
-(default equals `1000`). The computation time grows approximately linear with this number. You will also
-need to pass a numeric value for the argument `prediction_zero`, which represents the prediction value when not
-conditioning on any features. We recommend setting this equal to the mean of the response, but other values, like the
-mean prediction of a large test data set is also a possibility. If the empirical method is used, specific settings for
-that approach, like a vector of fixed $\sigma$ values can be specified through the argument `sigma_vec`. See `?explain`
-for more information. If `approach = "gaussian"`, you may specify the mean vector and covariance matrix of the data
-generating distribution by the arguments `mu` and `cov_mat`. If not specified, they are estimated from the training data.
+# Creating a predictive model (for illustration just predicting the next point in the time series with a linear model)
+lm_ts_formula <- as.formula(X41 ~ .)
+model_lm_ts <- lm(lm_ts_formula, data_ts_train)
-
+x_explain_ts <- data_ts[ind_x_explain, ..x_var_ts]
+x_train_ts <- data_ts[-ind_x_explain, ..x_var_ts]
-
+# Spitting the time series into 4 segments
+group_ts <- list(
+ S1 = paste0("X", 1:10),
+ S2 = paste0("X", 11:20),
+ S3 = paste0("X", 21:30),
+ S4 = paste0("X", 31:40)
+)
-# Advanced usage
+p0_ts <- mean(unlist(data_ts_train[, ..y_var_ts]))
-
+explanation_timeseries <- explain(
+ model = model_lm_ts,
+ x_explain = x_explain_ts,
+ x_train = x_train_ts,
+ approach = "timeseries",
+ prediction_zero = p0_ts,
+ group = group_ts
+)
+```
-## Combined approach
+## Main arguments in `explain`
-In addition to letting the user select one of the three aforementioned approaches for estimating the conditional
-distribution of the data (i.e. `approach` equals either [`"gaussian"`](#gaussian), [`"copula"`](#copula),
-[`"empirical"`](#empirical) or
-[`"ctree"`](#ctree)) the package allows the user to combine the four approaches. To simplify the usage,
-the flexibility is restricted such that the same approach is used when conditioning on the same number of features.
-This is also in line @aas2019explaining[, Section 3.4].
-
-This can be done by setting `approach` equal to a character vector, where the length of the vector is equal to the
-number of features in the model. Consider a situation where you have trained a model that consists of 10 features, and
-you would like to use the `"empirical"` approach when you condition on 1-3 features, the `"copula"` approach when you
-condition on 4-5 features, and the `"gaussian"` approach when conditioning on 6 or more features. This can be applied
-by simply passing `approach = c(rep("empirical", 3), rep("copula", 2), rep("gaussian", 5))`, i.e. `approach[i]` determines
-which method to use when conditioning on `i` features.
-
-The code below exemplifies this approach for a case where there are four features,
-using `"empirical", "copula"` and `"gaussian"` when conditioning on respectively 1, 2 and 3-4 features. Note that it
-does not matter what method that is specified when conditioning on all features, as that equals the actual prediction
-regardless of the specified approach.
+When using `explain`, the default behavior is to use all feature
+combinations in the Shapley formula. Kernel SHAP's sampling based
+approach may be used by specifying `n_combinations`, which is the number
+of unique feature combinations to sample. If not specified, the exact
+method is used. The computation time grows approximately exponentially
+with the number of features. The training data and the model whose
+predictions we wish to explain must be provided through the arguments
+`x_train` and `model`. The data whose predicted values we wish to
+explain must be given by the argument `x_explain`. Note that both
+`x_train` and `x_explain` must be a `data.frame` or a `matrix`, and all
+elements must be finite numerical values. Currently we do not support
+missing values. The default approach when computing the Shapley values
+is the empirical approach (i.e. `approach = "empirical"`). If you'd like
+to use a different approach you'll need to set `approach` equal to
+either `copula` or `gaussian`, or a vector of them, with length equal to
+the number of features. If a vector, a combined approach is used, and
+element `i` indicates the approach to use when conditioning on `i`
+variables. For more details see [Combined approach](#combined) below.
+
+When computing the kernel SHAP values by `explain`, the maximum number
+of samples to use in the Monte Carlo integration for every conditional
+expectation is controlled by the argument `n_samples` (default equals
+`1000`). The computation time grows approximately linear with this
+number. You will also need to pass a numeric value for the argument
+`prediction_zero`, which represents the prediction value when not
+conditioning on any features. We recommend setting this equal to the
+mean of the response, but other values, like the mean prediction of a
+large test data set is also a possibility. If the empirical method is
+used, specific settings for that approach, like a vector of fixed
+$\sigma$ values can be specified through the argument
+`empirical.fixed_sigma`. See `?explain` for more information. If
+`approach = "gaussian"`, you may specify the mean vector and covariance
+matrix of the data generating distribution by the arguments
+`gaussian.mu` and `gaussian.cov_mat`. If not specified, they are
+estimated from the training data.
+
+## Explaining a forecasting model using `explain_forecast`
+
+`shapr` provides a specific function, `explain_forecast`, to explain
+forecasts from time series models, at one or more steps into the future.
+The main difference compared to `explain` is that the data is supplied
+as (set of) time series, in addition to index arguments (`train_idx` and
+`explain_idx`) specifying which time points that represents the train
+and explain parts of the data. See `?explain_forecast` for more
+information.
+
+To demonstrate how to use the function, 500 observations are generated
+which follow an AR(1) structure, i.e.
+$y_t = 0.5 y_{t-1} + \varepsilon_t$. To this data an arima model of
+order (2, 0, 0) is fitted, and we therefore would like to explain the
+forecasts in terms of the two previous lags of the time series. This is
+is specified through the argument `explain_y_lags = 2`. Note that some
+models may also put restrictions on the amount of data required to make
+a forecast. The AR(2) model we used there, for instance, requires two
+previous time point to make a forecast.
+
+In the example, two separate forecasts, each three steps ahead, are
+explained. To set the starting points of the two forecasts,
+`explain_idx` is set to `499:500`. This means that one forecast of
+$t = (500, 501, 502)$ and another of $t = (501, 502, 503)$, will be
+explained. In other words, `explain_idx` tells `shapr` at which points
+in time data was available up until, when making the forecast to
+explain.
+
+In the same way, `train_idx` denotes the points in time used to estimate
+the conditional expectations used to explain the different forecasts.
+Note that since we want to explain the forecasts in terms of the two
+previous lags (`explain_y_lags = 2`), the smallest value of `train_idx`
+must also be 2, because at time $t = 1$ there was only a single
+observation available.
+
+Since the data is stationary, the mean of the data is used as value of
+`prediction_zero` (i.e. $\phi_0$). This can however be chosen
+differently depending on the data and application.
+
+For a multivariate model such as a VAR (Vector AutoRegressive model), it
+may be of more interesting to explain the impact of each variable,
+rather than each lag of each variable. This can be done by setting
+`group_lags = TRUE`.
```{r}
-# Use the combined approach
-explanation_combined <- explain(
- x_test,
- approach = c("empirical", "copula", "gaussian", "gaussian"),
- explainer = explainer,
- prediction_zero = p
+# Simulate time series data with AR(1)-structure.
+set.seed(1)
+data_ts <- data.frame(Y = arima.sim(list(order = c(1, 0, 0), ar = .5), n = 500))
+data_ts <- data.table::as.data.table(data_ts)
+
+# Fit an ARIMA(2, 0, 0) model.
+arima_model <- arima(data_ts, order = c(2, 0, 0))
+
+# Set prediction zero as the mean of the data for each forecast point.
+p0_ar <- rep(mean(data_ts$Y), 3)
+
+# Explain forecasts from points t = 499 and t = 500.
+explain_idx <- 499:500
+
+explanation_forecast <- explain_forecast(
+ model = arima_model,
+ y = data_ts,
+ train_idx = 2:498,
+ explain_idx = 499:500,
+ explain_y_lags = 2,
+ horizon = 3,
+ approach = "empirical",
+ prediction_zero = p0_ar,
+ group_lags = FALSE
)
+explanation_forecast
+```
-# Plot the resulting explanations for observations 1 and 6, excluding
-# the no-covariate effect
-plot(explanation_combined, plot_phi0 = FALSE, index_x_test = c(1, 6))
+Note that for a multivariate model such as a VAR (Vector AutoRegressive
+model), or for models also including several exogenous variables, it may
+be of more informative to explain the impact of each variable, rather
+than each lag of each variable. This can be done by setting
+`group_lags = TRUE`. This does not make sense for this model, however,
+as that would result in decomposing the forecast into a single group.
+
+We now give a more hands on example of how to use the `explain_forecast`
+function. Say that we have an AR(2) model which describes the change
+over time of the variable `Temp` in the dataset `airquality`. It seems
+reasonable to assume that the temperature today should affect the
+temperature tomorrow. To a lesser extent, we may also suggest that the
+temperature today should also have an impact on that of the day after
+tomorrow.
+
+We start by building our AR(2) model, naming it `model_ar_temp`. This
+model is then used to make a forecast of the temperature of the day that
+comes after the last day in the data, this forecast starts from index
+153.
+
+```{r}
+data <- data.table::as.data.table(airquality)
+
+model_ar_temp <- ar(data$Temp, order = 2)
+
+predict(model_ar_temp, n.ahead = 2)$pred
```
-As a second example using `"ctree"` for the first 3 features and `"empirical"` for the last:
+First, we pass the model and the data as `model` and `y`. Since we have
+an AR(2) model, we want to explain the forecasts in terms of the two
+previous lags, whihc we specify with `explain_y_lags = 2`. Then, we let
+`shapr` know which time indices to use as training data through the
+argument `train_idx`. We use `2:152`, meaning that we skip the first
+index, as we want to explain the two previous lags. Letting the training
+indices go up until 152 means that every point in time except the first
+and last will be used as training data.
+
+The last index, 153 is passed as the argument `explain_idx`, which means
+that we want to explain a forecast made from time point 153 in the data.
+The argument `horizon` is set to 2 in order to explain a forecast of
+length 2.
+
+The argument `prediction_zero` is set to the mean of the time series,
+and is repeated two times. Each value of `prediction_zero` is the
+baseline for each forecast horizon. In our example, we assume that given
+no effect from the two lags, the temperature would just be the average
+during the observed period. Finally, we opt to not group the lags by
+setting `group_lags` to `FALSE`. This means that lag 1 and 2 will be
+explained separately. Grouping lags may be more interesting to do in a
+model with multiple variables, as it is then possible to explain each
+variable separately.
```{r}
-# Use the combined approach
-explanation_combined <- explain(
- x_test,
- approach = c("ctree", "ctree", "ctree", "empirical"),
- explainer = explainer,
- prediction_zero = p
+explanation <- explain_forecast(
+ model = model_ar_temp,
+ y = data[, "Temp"],
+ train_idx = 2:152,
+ explain_idx = 153,
+ explain_y_lags = 2,
+ horizon = 2,
+ approach = "empirical",
+ prediction_zero = rep(mean(data$Temp), 2),
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE
)
+
+print(explanation)
```
-## Using ctree when features are mixed numerical and categorical
+The results are presented per value of `explain_idx` and forecast
+horizon. We can see that the mean temperature was around 77.9 degrees.
+At horizon 1, the first lag in the model caused it to be 6.6 degrees
+lower, and the second lag had just a minor effect. At horizon 2, the
+first lag has a slightly smaller negative impact, and the second lag has
+a slightly larger impact.
-```{r}
-x_var <- c("lstat", "rm", "dis", "indus")
-y_var <- "medv"
+It is also possible to explain a forecasting model which uses exogenous
+regressors. The previous example is expanded to use an ARIMA(2,0,0)
+model with `Wind` as an exogenous regressor. Since the exogenous
+regressor must be available for the predicted time points, the model is
+just fit on the 151 first observations, leaving two observations of
+`Wind` to be used as exogenous values during the prediction phase.
-# Convert two features as factors
-dt <- Boston[, c(x_var, y_var)]
-dt$rm <- as.factor(round(dt$rm/3))
-dt$dis <- as.factor(round(dt$dis/4))
+```{r}
+data <- data.table::as.data.table(airquality)
-xy_train_cat <- dt[-1:-6, ]
-y_train_cat <- dt[-1:-6, y_var]
-x_train_cat <- dt[-1:-6, x_var]
-x_test_cat <- dt[1:6, x_var]
+data_fit <- data[seq_len(151), ]
+model_arimax_temp <- arima(data_fit$Temp, order = c(2, 0, 0), xreg = data_fit$Wind)
-# Fit a basic linear regression model to the training data
-model_mixed <- lm(medv ~ lstat + rm + dis + indus, data = xy_train_cat)
+newxreg <- data[-seq_len(151), "Wind", drop = FALSE]
-# Prepare the data for explanation
-explainer <- shapr(x_train_cat, model_mixed)
+predict(model_arimax_temp, n.ahead = 2, newxreg = newxreg)$pred
+```
-# Specifying the phi_0, i.e. the expected prediction without any features
-p <- mean(y_train_cat)
+The `shapr` package can then explain not only the two autoregressive
+lags, but also the single lag of the exogenous regressor. In order to do
+so, the `Wind` variable is passed as the argument `xreg`, and
+`explain_xreg_lags` is set to 1. Notice how only the first 151
+observations are used for `y` and all 153 are used for `xreg`. This
+makes it possible for `shapr` to not only explain the effect of the
+first lag of the exogenous variable, but also the contemporary effect
+during the forecasting period.
-# Computing the actual Shapley values with kernelSHAP accounting for feature dependence using
-explanation_categorical <- explain(
- x_test_cat,
- approach = "ctree",
- explainer = explainer,
- prediction_zero = p
+```{r}
+explanation <- explain_forecast(
+ model = model_ar_temp,
+ y = data_fit[, "Temp"],
+ xreg = data[, "Wind"],
+ train_idx = 2:150,
+ explain_idx = 151,
+ explain_y_lags = 2,
+ explain_xreg_lags = 1,
+ horizon = 2,
+ approach = "empirical",
+ prediction_zero = rep(mean(data_fit$Temp), 2),
+ group_lags = FALSE,
+ n_batches = 1,
+ timing = FALSE
)
-# Note that nothing has to be specified to tell "ctree" that two of the features are
-# cateogrical and two are numerical
-
-# Plot the resulting explanations for observations 1 and 6, excluding
-# the no-covariate effect
-plot(explanation_categorical, plot_phi0 = FALSE, index_x_test = c(1, 6))
+print(explanation$shapley_values)
```
-## Explain groups of features
+
-In some cases, especially when the number of features is very large, it may be more appropriate to explain predictions
-in terms of groups of features instead of single features, see (@jullum2021efficient) for intuition and real world
-examples. Explaining prediction in terms of groups of features is very easy using `shapr`:
+
-```{r}
+# Advanced usage
-# Define the feature groups
+
-group_list <- list(A = c("lstat","rm"),
- B = c("dis","indus"))
+## Combined approach
-# Set up the explainer using the groups
-explainer_group <- shapr(x_train,model,group = group_list)
+In addition to letting the user select one of the five aforementioned
+approaches for estimating the conditional distribution of the data (i.e.
+`approach` equals either [`"gaussian"`](#gaussian),
+[`"copula"`](#copula), [`"empirical"`](#empirical) or
+[`"ctree"`](#ctree) or [`"categorical"`](#categorical)), the package
+allows the user to combine the given approaches. To simplify the usage,
+the flexibility is restricted such that the same approach is used when
+conditioning on the same number of features. This is also in line
+@aas2019explaining [, Section 3.4].
+
+This can be done by setting `approach` equal to a character vector,
+where the length of the vector is equal to the number of features in the
+model. Consider a situation where you have trained a model that consists
+of 10 features, and you would like to use the `"empirical"` approach
+when you condition on 1-3 features, the `"copula"` approach when you
+condition on 4-5 features, and the `"gaussian"` approach when
+conditioning on 6 or more features. This can be applied by simply
+passing
+`approach = c(rep("empirical", 3), rep("copula", 2), rep("gaussian", 5))`,
+i.e. `approach[i]` determines which method to use when conditioning on
+`i` features.
+
+The code below exemplifies this approach for a case where there are four
+features, using `"empirical", "copula"` and `"gaussian"` when
+conditioning on respectively 1, 2 and 3-4 features. Note that it does
+not matter what method that is specified when conditioning on all
+features, as that equals the actual prediction regardless of the
+specified approach.
+```{r}
+# Use the combined approach
+explanation_combined <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = c("empirical", "copula", "gaussian", "gaussian"),
+ prediction_zero = p0
+)
+# Plot the resulting explanations for observations 1 and 6, excluding
+# the no-covariate effect
+plot(explanation_combined, bar_plot_phi0 = FALSE, index_x_explain = c(1, 6))
+```
+
+As a second example using `"ctree"` for the first 3 features and
+`"empirical"` for the last:
+```{r}
# Use the combined approach
+explanation_combined <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = c("ctree", "ctree", "ctree", "empirical"),
+ prediction_zero = p0
+)
+```
+
+## Explain groups of features
+
+In some cases, especially when the number of features is very large, it
+may be more appropriate to explain predictions in terms of groups of
+features instead of single features, see (@jullum2021efficient) for
+intuition and real world examples. Explaining prediction in terms of
+groups of features is very easy using `shapr`:
+
+```{r}
+# Define the feature groups
+group_list <- list(
+ A = c("Temp", "Month"),
+ B = c("Wind", "Solar.R")
+)
+
+# Use the empirical approach
explanation_group <- explain(
- x_test,
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
approach = "empirical",
- explainer = explainer_group,
- prediction_zero = p
+ prediction_zero = p0,
+ group = group_list
)
-
# Prints the group-wise explanations
explanation_group
-
# Plots the group-wise explanations
-plot(explanation_group, plot_phi0 = T, index_x_test = c(1, 6))
-
+plot(explanation_group, bar_plot_phi0 = TRUE, index_x_explain = c(1, 6))
```
-
## Explain custom models
-`shapr` currently natively supports explanation of predictions from models fitted with the following functions:
-
-* `stats::lm`
-* `stats::glm`
-* `ranger::ranger`
-* `mgcv::gam`
-* `xgboost::xgboost`/`xgboost::xgb.train`
-
-Any continuous response regression model or binary classification model of these model classes, can be explained with
-the package directly as exemplified above.
-Moreover, essentially any feature dependent prediction model can be explained by the package by specifying two (or one)
-simple additional functions to the class your model belongs to.
-
-*Note: The below procedure for specifying custom models was changed in shapr v0.2.0*
-The first class function is `predict_model`, taking the model and data (as a `matrix` or `data.frame/data.table`) as
-input and outputting the corresponding prediction as a numeric vector.
-The second (optional, but highly recommended) class function is `get_model_specs`, taking the model as input and
-outputting a list with the following elements:
-*labels* (vector with the feature names to compute Shapley values for),
-*classes* (a named vector with the labels as names and the class type as elements),
-*factor_levels* (a named list with the labels as names and vectors with the factor levels as elements (NULL if the
-feature is not a factor)).
-The `get_model_specs` function is used to check that the format of the data passed to `shapr` and `explain` have the
-correct format in terms of the necessary feature columns being available and having the correct class/attributes.
-It is highly recommended to do such checks in order to ensure correct usage of `shapr` and `explain`.
-If, for some reason, such checking is not desirable, one does not have to provide the `get_model_specs` function class.
-This will, however, throw a warning that all feature consistency checking against the model is disabled.
-
-Once the above class functions are created, one can explain predictions from this model class as before.
-These functions **can** be made general enough to handle all supported model types of that class, or they can be made
-minimal, possibly only allowing explanation of the specific version of the model class at hand.
-Below we give examples of both full support versions of these functions and a minimal version which skips the
-`get_model_specs` function.
-We do this for the `gbm` model class from the `gbm` package, fitted to the same Boston data set as used above.
-
-
-```{r}
+`shapr` currently natively supports explanation of predictions from
+models fitted with the following functions:
+
+- `stats::lm`
+- `stats::glm`
+- `ranger::ranger`
+- `mgcv::gam`
+- `xgboost::xgboost`/`xgboost::xgb.train`
+
+Any continuous response regression model or binary classification model
+of these model classes, can be explained with the package directly as
+exemplified above. Moreover, essentially any feature dependent
+prediction model can be explained by the package by specifying two (or
+one) simple additional functions for your model.
+
+*Note: The below procedure for specifying custom models was changed in
+shapr v0.3.0* The first function is `predict_model`, taking the model
+and data (as a `matrix` or `data.frame/data.table`) as input and
+outputting the corresponding prediction as a numeric vector. The second
+(optional, but highly recommended) function is `get_model_specs`, taking
+the model as input and outputting a list with the following elements:
+*labels* (vector with the feature names to compute Shapley values for),
+*classes* (a named vector with the labels as names and the class type as
+elements), *factor_levels* (a named list with the labels as names and
+vectors with the factor levels as elements (NULL if the feature is not a
+factor)). The `get_model_specs` function is used to check that the
+format of the data passed to `explain` have the correct format in terms
+of the necessary feature columns being available and having the correct
+class/attributes. It is highly recommended to do such checks in order to
+ensure correct usage of `explain`. If, for some reason, such checking is
+not desirable, one does not have to provide the `get_model_specs`
+function. This will, however, throw a warning that all feature
+consistency checking against the model is disabled.
+
+Once the above functions are created, you can explain predictions from
+this model as before by passing the functions through the input
+arguments `predict_model` and `get_model_specs` of `explain()`.
+
+These functions **can** be made general enough to handle all supported
+model types of that class, or they can be made minimal, possibly only
+allowing explanation of the specific version of the model class at hand.
+Below we give examples of both full support versions of these functions
+and a minimal version which skips the `get_model_specs` function. We do
+this for the `gbm` model class from the `gbm` package, fitted to the
+same airquality data set as used above.
+
+```{r,warning=TRUE, message=TRUE}
library(gbm)
-xy_train <- data.frame(x_train,medv = y_train)
-
-form <- as.formula(paste0(y_var,"~",paste0(x_var,collapse="+")))
-
+formula_gbm <- as.formula(paste0(y_var, "~", paste0(x_var, collapse = "+")))
# Fitting a gbm model
set.seed(825)
-model <- gbm::gbm(
- form,
- data = xy_train,
+model_gbm <- gbm::gbm(
+ formula_gbm,
+ data = cbind(x_train, Ozone = y_train),
distribution = "gaussian"
)
#### Full feature versions of the three required model functions ####
-
-predict_model.gbm <- function(x, newdata) {
-
- if (!requireNamespace('gbm', quietly = TRUE)) {
- stop('The gbm package is required for predicting train models')
+MY_predict_model <- function(x, newdata) {
+ if (!requireNamespace("gbm", quietly = TRUE)) {
+ stop("The gbm package is required for predicting train models")
}
-
model_type <- ifelse(
- x$distribution$name %in% c("bernoulli","adaboost"),
+ x$distribution$name %in% c("bernoulli", "adaboost"),
"classification",
"regression"
)
if (model_type == "classification") {
-
- predict(x, as.data.frame(newdata), type = "response",n.trees = x$n.trees)
+ predict(x, as.data.frame(newdata), type = "response", n.trees = x$n.trees)
} else {
-
- predict(x, as.data.frame(newdata),n.trees = x$n.trees)
+ predict(x, as.data.frame(newdata), n.trees = x$n.trees)
}
}
-
-get_model_specs.gbm <- function(x){
- feature_list = list()
- feature_list$labels <- labels(x$Terms)
- m <- length(feature_list$labels)
-
- feature_list$classes <- attr(x$Terms,"dataClasses")[-1]
- feature_list$factor_levels <- setNames(vector("list", m), feature_list$labels)
- feature_list$factor_levels[feature_list$classes=="factor"] <- NA # the model object doesn't contain factor levels info
-
- return(feature_list)
+MY_get_model_specs <- function(x) {
+ feature_specs <- list()
+ feature_specs$labels <- labels(x$Terms)
+ m <- length(feature_specs$labels)
+ feature_specs$classes <- attr(x$Terms, "dataClasses")[-1]
+ feature_specs$factor_levels <- setNames(vector("list", m), feature_specs$labels)
+ feature_specs$factor_levels[feature_specs$classes == "factor"] <- NA # model object doesn't contain factor levels info
+ return(feature_specs)
}
-# Prepare the data for explanation
+# Compute the Shapley values
set.seed(123)
-explainer <- shapr(xy_train, model)
-p0 <- mean(xy_train[,y_var])
-explanation <- explain(x_test, explainer, approach = "empirical", prediction_zero = p0)
-# Plot results
-plot(explanation)
+p0 <- mean(y_train)
+explanation_custom <- explain(
+ model = model_gbm,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "empirical",
+ prediction_zero = p0,
+ predict_model = MY_predict_model,
+ get_model_specs = MY_get_model_specs
+)
-#### Minimal version of the three required model functions ####
-# Note: Working only for this exact version of the model class
-# Avoiding to define get_model_specs skips all feature
-# consistency checking between your data and model
+# Plot results
+plot(explanation_custom, index_x_explain = c(1, 6))
-# Removing the previously defined functions to simulate a fresh start
-rm(predict_model.gbm)
-rm(get_model_specs.gbm)
-predict_model.gbm <- function(x, newdata) {
- predict(x, as.data.frame(newdata),n.trees = x$n.trees)
+#### Minimal version of the three required model functions ####
+# Note: Working only for this exact version of the model class
+# Avoiding to define get_model_specs skips all feature
+# consistency checking between your data and model
+MY_MINIMAL_predict_model <- function(x, newdata) {
+ predict(x, as.data.frame(newdata), n.trees = x$n.trees)
}
-# Prepare the data for explanation
+# Compute the Shapley values
set.seed(123)
-explainer <- shapr(x_train, model)
-p0 <- mean(xy_train[,y_var])
-explanation <- explain(x_test, explainer, approach = "empirical", prediction_zero = p0)
+explanation_custom_minimal <- explain(
+ model = model_gbm,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "empirical",
+ prediction_zero = p0,
+ predict_model = MY_MINIMAL_predict_model
+)
+
# Plot results
-plot(explanation)
+plot(explanation_custom_minimal, index_x_explain = c(1, 6))
+```
+
+
+
+
+# Scalability and efficency
+
+## Batch computation
+
+The computational complexity of Shapley value based explanations grows
+fast in the number of features, as the number of conditional
+expectations one needs to estimate in the Shapley formula grows
+exponentially. As outlined [above](#KSHAP), the estimating of each of
+these conditional expectations is also computationally expensive,
+typically requiring estimation of a conditional probability
+distribution, followed by Monte Carlo integration. These computations
+are not only heavy for the CPU, they also require a lot of memory (RAM),
+which typically is a limited resource. By doing the most resource hungry
+computations (the computation of v(S)) in sequential batches with
+different feature subsets $S$, the memory usage can be significantly
+reduces. Such batching comes at the cost of an increase in computation
+time, which depends on the number of feature subsets (`n_combinations`),
+the number of features, the estimation `approach` and so on. When
+calling `shapr::explain()`, we allow the user to set the number of
+batches with the argument `n_batches`. The default of this argument is
+`NULL`, which uses a (hopefully) reasonable trade-off between
+computation speed and memory consumption which depends on
+`n_combinations` and `approach`. The memory/computation time trade-off
+is most apparent for models with more than say 6-7 features. Below we a
+basic example where `n_batches=10`:
+```{r}
+explanation_batch <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_batches = 10
+)
```
+## Parallelized computation
+
+In addition to reducing the memory consumption, the introduction of the
+`n_batch` argument allows computation within each batch to be performed in parallel.
+The parallelization in `shapr::explain()` is handled by the
+`future_apply` which builds on the `future` environment. The `future`
+package works on all OS, allows the user to decide the parallelization
+backend (mutliple R procesess or forking), works directly with hpc
+clusters, and also supports progress updates for the parallelized task
+(see below).
+
+Note that, since it takes some time to duplicate data into different
+processes/machines when running in parallel, it is not always
+preferrable to run `shapr::explain()` in parallel, at least not with
+many parallel sessions (hereby called **workers**). Parallelizatiob also
+increases the memory consumption proportionally, so you want to limit
+the number of workers for that reason too. In a future version of
+`shapr` we will provide experienced based automatic selection of the
+number of workers. In the meanwhile, this is all lef to the user, and we
+advice that `n_batches` equals some positive integer multiplied by the
+number of workers. Below is a basic example of a parallelization with
+two workers.
+```{r}
+library(future)
+future::plan(multisession, workers = 2)
+
+explanation_par <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_batches = 10
+)
+
+future::plan(sequential) # To return to non-parallel computation
+```
+## Progress updates
+
+`shapr` provides progress updates of the computation of the Shapley
+values through the R-package `progressr`. This gives the user full
+control over the visual apperance of the progress updates, and also
+intergrates seemlessly with the parallelization framework `future` used
+by `shapr` (see above). Note that the progress is updated as the batches
+are completed, meaning that if you have choosen `n_batches=1`, you will
+not get intermediate updates, while if you set `n_batches=10` you will
+get updates on every 10% of the computation.
+
+Progress updates are enabled for the current R-session by running the
+command `progressr::handlers(local=TRUE)`, before calling
+`shapr::explain()`. To use progress updates for only a single call to
+`shapr::explain()`, one can wrap the call using
+`progressr::with_progress` as follows:
+`progressr::with_progress({ shapr::explain() })` The default appearence
+of the progress updates is a basic ASCII-based horizontal progress bar.
+Other variants can be chosen by passing different strings to
+`progressr::handlers()`, some of which require additional packages. If
+you are using Rstudio, the progress can be displayed directly in the gui
+with `progressr::handlers('rstudio')` (requires the `rstudioapi`
+package). If you are running Windows, you may use the pop-up gui
+progress bar `progressr::handlers('handler_winprogressbar')`. A wrapper
+for progressbar of the flexible `cli` package is also available
+`progressr::handlers('cli')` (requires the `cli` package).
+
+For a full list of all progression handlers and the customization
+options available with `progressr`, see the `progressr`
+[vignette](https://cran.r-project.org/web/packages/progressr/vignettes/progressr-intro.html).
+A full code example of using `progressr` with `shapr` is shown below:
+
+```{r,eval = FALSE}
+library(progressr)
+progressr::handlers(global = TRUE)
+# If no progression handler is specified, the txtprogressbar is used
+# Other progression handlers:
+# progressr::handlers('rstudio') # requires the 'rstudioapi' package
+# progressr::handlers('handler_winprogressbar') # Window only
+# progressr::handlers('cli') # requires the 'cli' package
+explanation <- explain(
+ model = model,
+ x_explain = x_explain,
+ x_train = x_train,
+ approach = "empirical",
+ prediction_zero = p0,
+ n_batches = 10
+)
+#| [=================================>----------------------] 60% Estimating v(S)
+```
@@ -709,27 +1154,33 @@ plot(explanation)
# Comparison to Lundberg & Lee's implementation
-As mentioned above, the original (independence assuming) Kernel SHAP implementation can be
-approximated by setting a large $\sigma$ value using our empirical approach. If we specify that the
-distances to *all* training observations should be used (i.e. setting `approach = "empirical"` and
-`w_threshold = 1` when using `explain`, we can approximate the original method arbitrarily
-well by increasing $\sigma$. For completeness of the `shapr`, we have also implemented
-a version of the original method, which samples training observations independently with respect to
-their distances to test observations (i.e. without the large-$\sigma$ approximation). This method is
-available by using `approach = "independence"` in `explain`.
-
-We have compared the results using these two variants with the original implementation of
-@lundberg2017unified, available through the Python library [`shap`](https://github.com/slundberg/shap).
-As above, we used the Boston housing
-data, trained via `xgboost`. We specify that *all* training observations should be used when
-explaining all of the 6 test observations. To run the individual explanation method in the `shap`
-Python library we use the `reticulate` `R`-package, allowing Python code to run within `R`.
-As this requires installation of Python package, the comparison code and results is not included
-in this vignette, but can be found
+As mentioned above, the original (independence assuming) Kernel SHAP
+implementation can be approximated by setting a large $\sigma$ value
+using our empirical approach. If we specify that the distances to *all*
+training observations should be used (i.e. setting
+`approach = "empirical"` and `empirical.eta = 1` when using `explain`,
+we can approximate the original method arbitrarily well by increasing
+$\sigma$. For completeness of the `shapr` package, we have also
+implemented a version of the original method, which samples training
+observations independently with respect to their distances to test
+observations (i.e. without the large-$\sigma$ approximation). This
+method is available by using `approach = "independence"` in `explain`.
+
+We have compared the results using these two variants with the original
+implementation of @lundberg2017unified, available through the Python
+library [`shap`](https://github.com/slundberg/shap). As above, we used
+the Boston housing data, trained via `xgboost`. We specify that *all*
+training observations should be used when explaining all of the 6 test
+observations. To run the individual explanation method in the `shap`
+Python library we use the `reticulate` `R`-package, allowing Python code
+to run within `R`. As this requires installation of Python package, the
+comparison code and results is not included in this vignette, but can be
+found
[here](https://github.com/NorskRegnesentral/shapr/blob/master/inst/scripts/compare_shap_python.R).
-As indicated by the (commented out) results in the file above both methods in our
-`R`-package give (up to numerical approximation error) identical results to the original
-implementation in the Python `shap` library.
+As indicated by the (commented out) results in the file above both
+methods in our `R`-package give (up to numerical approximation error)
+identical results to the original implementation in the Python `shap`
+library.