-
Notifications
You must be signed in to change notification settings - Fork 780
/
Copy pathmkdocs.yml
148 lines (131 loc) · 5.63 KB
/
mkdocs.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
site_name: Complete Machine Learning Package
site_author: Jean de Dieu Nyandwi
repo_url: https://github.com/Nyandwi/machine_learning_complete/
repo_name: Nyandwi/machine_learning_complete
site_description: >-
Learn Machine Learning through understanding and doing!
copyright: Created by Jean de Dieu Nyandwi
edit_uri: ""
theme:
name: material
favicon: assets/logo.png
logo: assets/logo.png
icon:
logo: logo
repo: fontawesome/brands/github-square
# Necessary for search to work properly
include_search_page: false
search_index_only: true
palette:
- scheme: default
primary: black
accent: indigo
toggle:
icon: material/toggle-switch
name: Switch to dark mode
- scheme: slate
primary: indigo
accent: indigo
toggle:
icon: material/toggle-switch-off-outline
name: Switch to light mode
# Default values, taken from mkdocs_theme.yml
language: en
font:
text: Roboto
code: Roboto Mono
features:
- content.code.annotate
- navigation.indexes
- navigation.tabs
- navigation.top
- navigation.tracking
- search.highlight
- search.share
- search.suggest
- toc.follow
markdown_extensions:
- meta
- pymdownx.highlight
- pymdownx.superfences
- pymdownx.tasklist:
custom_checkbox: true
plugins:
- mkdocs-jupyter
- search
- social
nav:
- Home: 'index.md'
- Programming:
- '00 Python for Machine Learning': '00_intro_to_python.ipynb'
- Working with Data:
- Data Computations with NumPy:
- '01 Introduction to NumPy': '01_intro_to_Numpy_for_data_computation.ipynb'
- Data Manipulation with Pandas:
- '02 Pandas': '02_data_manipulation_with_pandas.ipynb'
- Data Visualization:
- '03 Data Visualization with Matplotlib': '03_data_visualizations_with_matplotlib.ipynb'
- '04 Data Visualization with Seaborn': '04_data_visualization_with_seaborn.ipynb'
- '05 Data Visualization with Pandas': '05_data_visualization with_pandas.ipynb'
- Data Analysis and Preparation:
- '06 Exploratory Data Analysis': '06_exploratory_data_analysis.ipynb'
- '07 Intro to Data Preparation': '07_intro_to_data_preparation.ipynb'
- '08 Feature Encoding': '08_encoding_categorical_features.ipynb'
- '09 Feature Scaling': '09_feature_scaling.ipynb'
- '10 Handling Missing Values': '10_handling_missing_values.ipynb'
- Machine Learning:
- Machine Learning Fundamentals:
- '11 ML Fundamentals': '11_ml_fundamentals.md'
- Classical Machine Learning with Scikit-Learn:
- '12 Intro to Scikit-Learn': '12_intro_to_sklearn.ipynb'
- '13 Linear Models for Regression': '13_linear_models_for_regression.ipynb'
- '14 Linear Models for Classification': '14_linear_models_for_classification.ipynb'
- '15 SVM for Regression': '15_support_vector_machines_for_regression.ipynb'
- '16 SVM for Classification': '16_support_vector_machines_for_classification.ipynb'
- '17 Decision Trees for Regression': '17_decision_trees_for_regression.ipynb'
- '18 Decision Trees for Classification': '18_decision_trees_for_classification.ipynb'
- '19 Random Forests for Regression': '19_random_forests_for_regression.ipynb'
- '20 Random Forests for Classification': '20_random_forests_for_classification.ipynb'
- '21 Ensemble Models': '21_ensemble_models.ipynb'
- '22 Unsupervised learning': '22_intro_to_unsupervised_learning_with_kmeans_clustering.ipynb'
- '23 PCA': '23_a_practical_intro_to_principal_components_analysis.ipynb'
- Deep Learning:
- Introduction to Deep Learning:
- '24 Intro to Neural Networks': '24_intro_to_neural_networks.ipynb'
- '25 Intro to DL with TensorFlow': '25_intro_to_tensorflow_for_deeplearning.ipynb'
- '26 Neural Nets for Regression': '26_neural_networks_for_regresion_with_tensorflow.ipynb'
- '27 Neural Nets for Classification': '27_neural_networks_for_classification_with_tensorflow.ipynb'
- Deep Computer Vision:
- '28 Intro to ConvNets for Computer Vision': '28_intro_to_computer_vision_and_cnn.ipynb'
- '29 ConvNets and Data Augmentations': '29_cnn_for_real_world_data_and_image_augmentation.ipynb'
- '30 Transfer Learning with Pre-trained ConvNets': '30_cnn_architectures_and_transfer_learning.ipynb'
- Natural Language Processing:
- '31 Intro to Text Processing with TensorFlow': '31_intro_to_nlp_and_text_preprocessing.ipynb'
- '32 Word Embeddings': '32_using_word_embeddings_to_represent_texts.ipynb'
- '33 RNNs': '33_recurrent_neural_networks.ipynb'
- '34 ConvNets for Text Classification': '34_using_cnns_and_rnns_for_texts_classification.ipynb'
- '35 Using Pre-trained BERT': '35_using_pretrained_bert_for_text_classification.ipynb'
- MLOps:
- MLOps Guide: '36_mlops_guide.md'
- Others:
- Complete Outline: 'outline.md'
- Further Resources: 'extras/resources.md'
- Tools Overview: 'extras/tools-overview.md'
- Acknowledgment: 'extras/ack.md'
extra:
social:
- icon: fontawesome/brands/twitter
link: https://twitter.com/Jeande_d
- icon: fontawesome/brands/github
link: https://github.com/Nyandwi
- icon: fontawesome/brands/youtube
link: https://www.youtube.com/channel/UCSPFIgLyc2t-pNim-CdyBNQ
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/in/nyandwi
- icon: fontawesome/brands/medium
link: https://jeande.medium.com/
- icon: fontawesome/brands/instagram
link: https://www.instagram.com/nyandwi.de
analytics:
provider: google
property: G-662D4ZFE3K