-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_mm.py
351 lines (320 loc) · 16 KB
/
main_mm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#!/usr/bin/python3
# Copyright 2024 SJTU X-Lance Lab
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import argparse
import datetime
import os
import sys
import time
import traceback
from typing import Dict, List
from typing import Union
from numbers import Number
#import collections
from llm_accessor import MM_COMPLETION, ZeroShotMMCompletion
import llm_accessor
#import string
from utils import prompt_template as ptlib
import agent_mm
from transformers import AutoTokenizer
from PIL import Image
#import tempfile
import easyocr
from utils.vision_ui import ImageInfer
from utils.vision_ui.config import IMAGE_INFER_MODEL_PATH
from android_env.wrappers import ImageRescaleWrapper
from android_env.wrappers import TapActionWrapper
from utils import InstructionRewritingWrapper
from android_env.components.tools.easyocr_wrapper import EasyOCRWrapper
from android_env.components.coordinator import EventCheckControl
from android_env.interfaces.timestep import TimeStep
import android_env
import yaml
#import openai
#import functools
#import math
import numpy as np
def main():
# Command Line Options {{{ #
parser = argparse.ArgumentParser()
parser.add_argument("--log-dir", default="logs", type=str)
parser.add_argument("--config", default="openaiconfig.yaml", type=str)
parser.add_argument("--task-path", type=str)
parser.add_argument("--avd-name", type=str)
parser.add_argument("--tokenizer-path", type=str)
parser.add_argument("--rewrite-pattern-path", type=str)
parser.add_argument("--rewrite-doccano-file", type=str)
parser.add_argument("--disable-syscert", action="store_true")
parser.add_argument("--prompt-template", type=str)
parser.add_argument("--max-tokens", default=30, type=int)
parser.add_argument("--temperature", default=0.1, type=float)
parser.add_argument("--request-timeout", default=3., type=float)
parser.add_argument( "--model", default="gpt-4-vision", type=str
, choices=[ "gpt-4-vision"
, "fuyu-8b"
, "cogagent"
, "claude-opus"
]
)
parser.add_argument( "--nothink", action="store_false"
, dest="thinks"
)
parser.add_argument("--shot", default=2, type=int)
parser.add_argument("--no-som", action="store_false", dest="som")
parser.add_argument("--starts-from", default=0, type=int)
parser.add_argument("--ends-at", default=70, type=int)
args: argparse.Namespace = parser.parse_args()
# }}} Command Line Options #
# Config Logger {{{ #
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
datetime_str: str = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
file_handler = logging.FileHandler(os.path.join(args.log_dir, "normal-{:}.log".format(datetime_str)))
debug_handler = logging.FileHandler(os.path.join(args.log_dir, "debug-{:}.log".format(datetime_str)))
stdout_handler = logging.StreamHandler(sys.stdout)
sdebug_handler = logging.FileHandler(os.path.join(args.log_dir, "sdebug-{:}.log".format(datetime_str)))
openai_error_handler = logging.FileHandler(os.path.join(args.log_dir, "openai-{:}.log".format(datetime_str)))
file_handler.setLevel(logging.INFO)
debug_handler.setLevel(logging.DEBUG)
stdout_handler.setLevel(logging.INFO)
sdebug_handler.setLevel(logging.DEBUG)
openai_error_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(fmt="\x1b[1;33m[%(asctime)s \x1b[31m%(levelname)s \x1b[32m%(module)s/%(lineno)d-%(processName)s\x1b[1;33m] \x1b[0m%(message)s")
file_handler.setFormatter(formatter)
debug_handler.setFormatter(formatter)
stdout_handler.setFormatter(formatter)
sdebug_handler.setFormatter(formatter)
openai_error_handler.setFormatter(formatter)
stdout_handler.addFilter(logging.Filter("agent"))
sdebug_handler.addFilter(logging.Filter("agent"))
openai_error_handler.addFilter(logging.Filter("openaiE"))
logger.addHandler(file_handler)
logger.addHandler(debug_handler)
logger.addHandler(stdout_handler)
logger.addHandler(sdebug_handler)
logger.addHandler(openai_error_handler)
logger = logging.getLogger("agent")
# }}} Config Logger #
# Build Agent and Environment {{{ #
with open(args.config) as f:
openaiconfig: Dict[str, str] = yaml.load(f, Loader=yaml.Loader)
#openai.api_key = openaiconfig["api_key"]
api_key: str = openaiconfig["api_key"]
#temp_dir = tempfile.TemporaryDirectory()
#print(temp_dir.name)
completors: Dict[str, Union[ZeroShotMMCompletion, MM_COMPLETION]] =\
{ "gpt-4-vision": llm_accessor.GPTClient( api_key, base_url="https://api.xi-ai.cn/v1"
, model="gpt-4-1106-vision-preview"
)
, "claude-opus": llm_accessor.GPTClient( api_key, base_url="https://api.xi-ai.cn/v1"
, model="claude-3-opus-20240229"
)
}
model_types = { "gpt-4-vision": "chat"
, "claude-opus": "chat"
}
model_type: str = model_types[args.model]
# Old Prompt System {{{ #
#model_lengths = { "gpt-4-vision": "128k"
#, "fuyu-8b": "16k"
#}
#model_length: str = model_lengths[args.model]
#if model_type=="0shot":
#with open(args.prompt_template) as f:
#prompt_template = string.Template(f.read())
#message_history = None
#else:
#message_history: List[Dict[str, Union[str, ptlib.VisionMessage]]] = []
#length_modifier = "_2k" if model_length=="2k" else ""
#think_modifier = "" if args.thinks else "_nothink"
#zero_shot_modifier = "_0shot" if args.shot==0 else ""
#som_modifier = "" if args.som else "_nosom"
#
#system_file: str = "prompt_system{:}{:}.txt".format(
#zero_shot_modifier
#, som_modifier
#)
#with open(os.path.join(args.prompt_template, system_file)) as f:
#system_text: str = f.read()
#message_history.append( { "role": "system"
#, "content": system_text
#}
#)
#
#for i in range(1, args.shot+1):
#prompt_eg_input_file: str = "prompt_eg{:d}_input{:}{:}{:}.txt"\
#.format( i
#, length_modifier
#, think_modifier
#, som_modifier
#)
#prompt_eg_action_file: str = "prompt_eg{:d}_action{:}{:}.txt".format(
#i, think_modifier, som_modifier
#)
#
#with open(os.path.join(args.prompt_template, prompt_eg_input_file)) as f:
#prompt_eg_input: str = f.read()
#message_history.append( { "role": "user"
#, "content": ptlib.VisionTemplate(
#prompt_eg_input
#).safe_substitute()
#}
#)
#with open(os.path.join(args.prompt_template, prompt_eg_action_file)) as f:
#prompt_eg_action: str = f.read()
#message_history.append( { "role": "assistant"
#, "content": prompt_eg_action
#}
#)
#
#with open(os.path.join(args.prompt_template, "prompt_new_input.txt")) as f:
#prompt_template = ptlib.VisionTemplate(f.read())
# }}} Old Prompt System #
prompt_template: ptlib.TemplateGroup = ptlib.TemplateGroup.parse(args.prompt_template)
ocr_reader = easyocr.Reader(["en", "ch_sim"])
#ocr_reader = easyocr.Reader(["en"])
if args.som:
icon_detector = ImageInfer(IMAGE_INFER_MODEL_PATH)
model: agent_mm.Agent = agent_mm.SoMAgent( prompt_template=prompt_template
, completor=completors[args.model]
, ocr_reader=ocr_reader
, icon_detector=icon_detector
, max_tokens=args.max_tokens
, temperature=args.temperature
, request_timeout=args.request_timeout
, model=model_type
#, message_history=message_history
, thinks=args.thinks
)
else:
model: agent_mm.Agent = agent_mm.PlainAgent( prompt_template=prompt_template
, completor=completors[args.model]
, max_tokens=args.max_tokens
, temperature=args.temperature
, request_timeout=args.request_timeout
, model=model_type
#, message_history=message_history
, thinks=args.thinks
)
env = android_env.load( args.task_path
, args.avd_name
, os.path.expanduser("~/.android/avd")
, os.path.expanduser("~/Android/Sdk")
, os.path.expanduser("~/Android/Sdk/emulator/emulator")
, os.path.expanduser("~/Android/Sdk/platform-tools/adb")
, run_headless=True
, mitm_config=None if args.disable_syscert else {"method": "syscert"}
, unify_vocabulary=os.path.join( args.tokenizer_path
, "vocab.txt"
)
, text_model=EasyOCRWrapper(reader=ocr_reader)
, with_view_hierarchy=False
, coordinator_args={ "step_timeout_sec": 0.
, "vh_check_control_method": EventCheckControl.LIFT
, "screen_check_control_method": EventCheckControl.LIFT
}
)
env = ImageRescaleWrapper(env, zoom_factors=(500/1920., 280/1080.))
env = TapActionWrapper( env
, AutoTokenizer.from_pretrained(args.tokenizer_path)
, num_tap_frames=3
, num_long_tap_frames=10
, wait_sec=1.5
)
env = InstructionRewritingWrapper( env
, search_pattern_file=os.path.join(args.rewrite_pattern_path, "pattern-search.txt")
, article_pattern_file=os.path.join(args.rewrite_pattern_path, "pattern-article.txt")
, article_command_pattern_file=os.path.join(args.rewrite_pattern_path, "pattern-article2.txt")
, categ_pattern_file=os.path.join(args.rewrite_pattern_path, "pattern-categ.txt")
, author_pattern_file=os.path.join(args.rewrite_pattern_path, "pattern-author.txt")
, question_pattern_file=os.path.join(args.rewrite_pattern_path, "pattern-question.txt")
, doccano_file=args.rewrite_doccano_file
)
logger.info("The environment is ready.")
# }}} Build Agent and Environment #
# Work Flow {{{ #
max_nb_steps = 15
max_nb_consecutive_nothing_steps = 15
stat: Dict[str, List[Number]] = { "step": []
, "ng_step": []
, "reward": []
, "success": []
}
for i in range(args.starts_from, args.ends_at):
model.reset()
while True:
try:
step: TimeStep = env.switch_task(i)
break
except AttributeError:
logger.warning("AttributeError during step")
traceback.print_exc()
time.sleep(1.)
command: str = "\n".join(env.command())
instruction: str = env.task_instructions(latest_only=True)
logger.debug("\x1b[1;33mInstruction: %s", instruction)
nb_steps = 0
nb_nothing_steps = 0
nb_consecutive_nothing = 0
reward: float = step.reward
succeeds: bool = True
while not step.last():
screen: np.ndarray = step.observation["pixels"]
screen: Image.Image = Image.fromarray(screen)
action: Dict[str, np.ndarray] = model( command
, screen
, instruction
)
while True:
try:
step = env.step(action)
break
except AttributeError:
logger.warning("AttributeError during step")
traceback.print_exc()
time.sleep(1.)
if len(env.task_instructions())>0:
instruction = env.task_instructions(latest_only=True)
logger.debug("\x1b[1;33mInstruction: %s", instruction)
reward += step.reward
if action["action_type"]==TapActionWrapper.ActionType.NOTHING\
and "records" in action\
and not action["records"]:
nb_nothing_steps += 1
nb_consecutive_nothing += 1
else:
nb_steps += 1
nb_consecutive_nothing = 0
if nb_consecutive_nothing>=max_nb_consecutive_nothing_steps:
succeeds = False
break
if nb_steps>=max_nb_steps:
succeeds = False
break
succeeds = step.is_success()
logger.info( "\x1b[42mEND!\x1b[0m TaskId: %d, TaskName: %s, #Steps: %d(%d), Reward: %.2f, Succeds: %s"
, i, env.task_id, nb_steps, nb_nothing_steps, reward, str(succeeds)
)
stat["step"].append(nb_steps)
stat["ng_step"].append(nb_nothing_steps)
stat["reward"].append(reward)
stat["success"].append(int(succeeds))
logger.info( "\x1b[42mCOMPLETEION!\x1b[0m Avg #Steps: %.2f(%.2f), Avg Reward: %.3f, SR: %.4f"
, np.mean(np.asarray(stat["step"])), np.mean(np.asarray(stat["ng_step"]))
, np.mean(np.asarray(stat["reward"])), np.mean(np.asarray(stat["success"]))
)
# }}} Work Flow #
if __name__ == "__main__":
main()