-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_utils.py
351 lines (314 loc) · 15.5 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import numpy as np
import random
from PIL import Image
import torch
from torch.utils.data.sampler import Sampler
from torchvision import transforms, datasets
from dataset.tinyimagenet import TinyImagenet
def sparse2coarse(targets):
"""Convert Pytorch CIFAR100 sparse targets to coarse targets.'
Code copied from https://github.com/ryanchankh/cifar100coarse/blob/master/sparse2coarse.py
Usage:
trainset = torchvision.datasets.CIFAR100(path)
trainset.targets = sparse2coarse(trainset.targets)
"""
coarse_labels = np.array([ 4, 1, 14, 8, 0, 6, 7, 7, 18, 3,
3, 14, 9, 18, 7, 11, 3, 9, 7, 11,
6, 11, 5, 10, 7, 6, 13, 15, 3, 15,
0, 11, 1, 10, 12, 14, 16, 9, 11, 5,
5, 19, 8, 8, 15, 13, 14, 17, 18, 10,
16, 4, 17, 4, 2, 0, 17, 4, 18, 17,
10, 3, 2, 12, 12, 16, 12, 1, 9, 19,
2, 10, 0, 1, 16, 12, 9, 13, 15, 13,
16, 19, 2, 4, 6, 19, 5, 5, 8, 19,
18, 1, 2, 15, 6, 0, 17, 8, 14, 13])
return coarse_labels[targets]
class ThreeCropTransform:
"""Create two crops of the same image"""
def __init__(self, transform, size):
self.transform = transform
self.notaug_transform = transforms.Compose([
transforms.Resize(size=(size, size)),
transforms.ToTensor()
])
def __call__(self, x):
return [self.transform(x), self.transform(x), self.notaug_transform(x)]
class SeqSampler(Sampler):
def __init__(self, dataset, blend_ratio, n_concurrent_classes,
train_samples_per_cls):
"""data_source is a Subset"""
self.num_samples = len(dataset)
self.blend_ratio = blend_ratio
self.n_concurrent_classes = n_concurrent_classes
self.train_samples_per_cls = train_samples_per_cls
# Configure the correct train_subset and val_subset
if torch.is_tensor(dataset.targets):
self.labels = dataset.targets.detach().cpu().numpy()
else: # targets in cifar10 and cifar100 is a list
self.labels = np.array(dataset.targets)
self.classes = list(set(self.labels))
self.n_classes = len(self.classes)
def __iter__(self):
"""Sequential sampler"""
# Configure concurrent classes
cmin = []
cmax = []
for i in range(int(self.n_classes / self.n_concurrent_classes)):
for _ in range(self.n_concurrent_classes):
cmin.append(i * self.n_concurrent_classes)
cmax.append((i + 1) * self.n_concurrent_classes)
print('cmin', cmin)
print('cmax', cmax)
filter_fn = lambda y: np.logical_and(
np.greater_equal(y, cmin[c]), np.less(y, cmax[c]))
# Configure sequential class-incremental input
sample_idx = []
for c in self.classes:
filtered_train_ind = filter_fn(self.labels)
filtered_ind = np.arange(self.labels.shape[0])[filtered_train_ind]
np.random.shuffle(filtered_ind)
cls_idx = self.classes.index(c)
if len(self.train_samples_per_cls) == 1: # The same length for all classes
sample_num = self.train_samples_per_cls[0]
else: # Imbalanced class
assert len(self.train_samples_per_cls) == len(self.classes), \
'Length of classes {} does not match length of train ' \
'samples per class {}'.format(len(self.classes),
len(self.train_samples_per_cls))
sample_num = self.train_samples_per_cls[cls_idx]
sample_idx.append(filtered_ind.tolist()[:sample_num])
print('Class [{}, {}): {} samples'.format(cmin[cls_idx], cmax[cls_idx],
sample_num))
# Configure blending class
if self.blend_ratio > 0.0:
for c in range(len(self.classes)):
# Blend examples from the previous class if not the first
if c > 0:
blendable_sample_num = \
int(min(len(sample_idx[c]), len(sample_idx[c-1])) * self.blend_ratio / 2)
# Generate a gradual blend probability
blend_prob = np.arange(0.5, 0.05, -0.45 / blendable_sample_num)
assert blend_prob.size == blendable_sample_num, \
'unmatched sample and probability count'
# Exchange with the samples from the end of the previous
# class if satisfying the probability, which decays
# gradually
for ind in range(blendable_sample_num):
if random.random() < blend_prob[ind]:
tmp = sample_idx[c-1][-ind-1]
sample_idx[c-1][-ind-1] = sample_idx[c][ind]
sample_idx[c][ind] = tmp
final_idx = []
for sample in sample_idx:
final_idx += sample
return iter(final_idx)
def __len__(self):
if len(self.train_samples_per_cls) == 1:
return self.n_classes * self.train_samples_per_cls[0]
else:
return sum(self.train_samples_per_cls)
def set_loader(opt):
# set seed for reproducing
random.seed(opt.trial)
np.random.seed(opt.trial)
torch.manual_seed(opt.trial)
# construct data loader
if opt.dataset == 'cifar10':
mean = (0.4914, 0.4822, 0.4465)
std = (0.2023, 0.1994, 0.2010)
elif opt.dataset == 'cifar100':
mean = (0.5071, 0.4867, 0.4408)
std = (0.2675, 0.2565, 0.2761)
elif opt.dataset == 'tinyimagenet':
mean = (0.4802, 0.4480, 0.3975)
std = (0.2770, 0.2691, 0.2821)
elif opt.dataset == 'mnist':
mean = (0.1307,)
std = (0.3081,)
elif opt.dataset == 'path':
mean = opt.mean
std = opt.std
else:
raise ValueError('dataset not supported: {}'.format(opt.dataset))
normalize = transforms.Normalize(mean=mean, std=std)
val_transform = transforms.Compose([
transforms.Resize(size=(opt.size, opt.size)),
transforms.ToTensor(),
normalize,
])
if opt.dataset == 'cifar10':
train_transform = transforms.Compose([
transforms.RandomResizedCrop(size=opt.size, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
normalize,
])
train_transform_runtime = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomResizedCrop(size=opt.size, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
normalize,
])
train_dataset = datasets.CIFAR10(root=opt.data_folder,
transform=ThreeCropTransform(train_transform, opt.size),
download=True,
train=True)
knn_train_dataset = datasets.CIFAR10(root=opt.data_folder,
train=True,
transform=val_transform)
val_dataset = datasets.CIFAR10(root=opt.data_folder,
train=False,
transform=val_transform)
elif opt.dataset == 'cifar100':
train_transform = transforms.Compose([
transforms.RandomResizedCrop(size=opt.size, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
normalize,
])
train_transform_runtime = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomResizedCrop(size=opt.size, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
normalize,
])
train_dataset = datasets.CIFAR100(root=opt.data_folder,
transform=ThreeCropTransform(train_transform, opt.size),
download=True,
train=True)
knn_train_dataset = datasets.CIFAR100(root=opt.data_folder,
train=True,
transform=val_transform)
val_dataset = datasets.CIFAR100(root=opt.data_folder,
train=False,
transform=val_transform)
# Convert sparse labels to coarse labels
train_dataset.targets = sparse2coarse(train_dataset.targets)
knn_train_dataset.targets = sparse2coarse(knn_train_dataset.targets)
val_dataset.targets = sparse2coarse(val_dataset.targets)
elif opt.dataset == 'tinyimagenet':
train_transform = transforms.Compose([
transforms.RandomResizedCrop(size=opt.size,
scale=(0.08, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0),
interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
train_transform_runtime = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomResizedCrop(size=opt.size,
scale=(0.08, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0),
interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
train_dataset = TinyImagenet(root=opt.data_folder + 'TINYIMG',
transform=ThreeCropTransform(train_transform, opt.size),
train=True,
download=True)
knn_train_dataset = TinyImagenet(root=opt.data_folder + 'TINYIMG',
train=True,
transform=val_transform)
val_dataset = TinyImagenet(root=opt.data_folder + 'TINYIMG',
train=False,
transform=val_transform)
elif opt.dataset == 'mnist':
train_transform = transforms.Compose([
transforms.Resize(size=opt.size),
transforms.RandomAffine(degrees=20, translate=(0.1, 0.1), scale=(0.9, 1.1)),
transforms.ColorJitter(brightness=0.2, contrast=0.2),
transforms.ToTensor(),
normalize,
])
train_transform_runtime = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize(size=opt.size),
transforms.RandomAffine(degrees=20, translate=(0.1, 0.1), scale=(0.9, 1.1)),
transforms.ColorJitter(brightness=0.2, contrast=0.2),
transforms.ToTensor(),
normalize,
])
train_dataset = datasets.MNIST(root=opt.data_folder,
transform=ThreeCropTransform(train_transform, opt.size),
download=True,
train=True)
knn_train_dataset = datasets.MNIST(root=opt.data_folder,
train=True,
transform=val_transform)
val_dataset = datasets.MNIST(root=opt.data_folder,
train=False,
transform=val_transform)
elif opt.dataset == 'path':
train_dataset = datasets.ImageFolder(root=opt.data_folder,
transform=val_transform)
knn_train_dataset = datasets.ImageFolder(root=opt.data_folder,
transform=val_transform)
val_dataset = datasets.ImageFolder(root=opt.data_folder,
transform=val_transform)
else:
raise ValueError(opt.dataset)
# Configure the a smaller subset as validation dataset
if torch.is_tensor(train_dataset.targets):
labels = train_dataset.targets.detach().cpu().numpy()
else: # targets in cifar10 and cifar100 is a list
labels = np.array(train_dataset.targets)
num_labels = len(list(set(labels)))
# Create training loader
if opt.training_data_type == 'iid':
train_subset_len = num_labels * opt.train_samples_per_cls[0]
train_subset, _ = torch.utils.data.random_split(dataset=train_dataset,
lengths=[train_subset_len,
len(train_dataset) - train_subset_len])
train_loader = torch.utils.data.DataLoader(
train_subset, batch_size=opt.batch_size, shuffle=True,
num_workers=opt.num_workers, pin_memory=True, sampler=None)
else: # sequential
train_sampler = SeqSampler(train_dataset, opt.blend_ratio,
opt.n_concurrent_classes,
opt.train_samples_per_cls)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=opt.batch_size, shuffle=False,
num_workers=opt.num_workers, pin_memory=True, sampler=train_sampler)
# Create validation loader
val_subset_len = num_labels * opt.test_samples_per_cls
val_subset, _ = torch.utils.data.random_split(dataset=val_dataset,
lengths=[val_subset_len, len(val_dataset) - val_subset_len])
val_loader = torch.utils.data.DataLoader(
val_subset, batch_size=opt.val_batch_size, shuffle=True,
num_workers=0, pin_memory=True)
# Create kNN loader
if opt.knn_samples > 0:
knn_subset, _ = torch.utils.data.random_split(dataset=knn_train_dataset,
lengths=[opt.knn_samples, len(knn_train_dataset) - opt.knn_samples])
knn_train_loader = torch.utils.data.DataLoader(knn_subset,
batch_size=opt.val_batch_size,
shuffle=False,
num_workers=0, pin_memory=True)
else:
knn_train_loader = None
print('Training samples: ', len(train_loader) * opt.batch_size)
print('Testing samples: ', len(val_loader) * opt.val_batch_size)
print('kNN training samples: ', len(knn_train_loader) * opt.val_batch_size)
return train_loader, val_loader, knn_train_loader, train_transform_runtime