-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfigure_docker_image.py
159 lines (125 loc) · 7.07 KB
/
configure_docker_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import logging
import argparse
import tensorflow as tf
from utils import utils, formatting_utils
from cort.config import Config
from cort.modeling import CortForSequenceClassification
from tensorflow_serving.apis.predict_pb2 import PredictRequest
from tensorflow_serving.apis.prediction_log_pb2 import PredictionLog, PredictLog
formatting_utils.setup_formatter(logging.INFO)
def parse_tfrecords(tfrecord_path, model_name, maxlen, num_samples):
feature_desc = {
'input_ids': tf.io.FixedLenFeature([maxlen], tf.int64),
'sections': tf.io.FixedLenFeature([1], tf.int64),
'labels': tf.io.FixedLenFeature([1], tf.int64)
}
def _parse_feature_desc(example_proto):
example = tf.io.parse_single_example(example_proto, feature_desc)
# tf.int64 is acceptable, but tf.int32 has more performance advantages.
for name in list(example.keys()):
tensor = example[name]
if tensor.dtype == tf.int64:
tensor = tf.cast(tensor, tf.int32)
example[name] = tensor
return example
def _reconfigure_inputs(example):
return example['input_ids']
fname = tfrecord_path.format(model_name=model_name.replace('/', '_'))
logging.info('Parsing TFRecords from {}'.format(fname))
dataset = tf.data.TFRecordDataset(fname)
dataset = dataset.map(_parse_feature_desc).map(_reconfigure_inputs)
dataset = dataset.shuffle(buffer_size=1024).repeat().batch(num_samples)
input_ids = None
for input_ids in dataset:
break
return input_ids
def store_warmup_requests(args, input_ids, saved_model_path):
warmup_request_dir = os.path.join(saved_model_path, 'assets.extra')
os.makedirs(warmup_request_dir, exist_ok=True)
warmup_request_path = os.path.join(warmup_request_dir, 'tf_serving_warmup_requests')
with tf.io.TFRecordWriter(warmup_request_path) as writer:
input_ids = tf.make_tensor_proto(input_ids)
request = PredictRequest()
request.model_spec.name = args.model_spec_name
request.model_spec.signature_name = args.signature_name
request.inputs['input_ids'].CopyFrom(input_ids)
log = PredictionLog(predict_log=PredictLog(request=request))
writer.write(log.SerializeToString())
logging.info('{} warmup requests have been stored at: {}'.format(args.num_warmup_requests, warmup_request_path))
def restore_cort_classifier(args, config: Config):
cort_model = CortForSequenceClassification(config, num_labels=config.num_labels)
cort_model.trainable = False
# Restore from checkpoint
checkpoint = tf.train.Checkpoint(model=cort_model)
checkpoint.restore(args.checkpoint_path).expect_partial()
serving = CortForSequenceClassification.Serving(config, cort_model)
serving(serving.dummy_inputs)
logging.info('Restored model checkpoint from: {}'.format(args.checkpoint_path))
return serving
def store_as_saved_model(cort_model, signature_name, filepath):
maxlen = cort_model.config.pretrained_config.max_position_embeddings
@tf.function(input_signature=[tf.TensorSpec(shape=(None, maxlen), dtype=tf.int32, name='input_ids')])
def _eval_wrapper(input_ids):
return cort_model(input_ids)
signatures = _eval_wrapper.get_concrete_function()
tf.saved_model.save(cort_model, filepath, signatures={
signature_name: signatures
})
logging.info('Servable CoRT classifier has been written as SavedModel format at: {}'.format(filepath))
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--checkpoint_path', required=True,
help='Location of trained model checkpoint.')
parser.add_argument('--saved_model_dir', default='./models',
help='Location of SavedModel to be stored.')
parser.add_argument('--model_spec_name', default='cort',
help='Name of model spec.')
parser.add_argument('--model_spec_version', default='1',
help='Version of model spec.')
parser.add_argument('--signature_name', default='serving_default',
help='Name of signature of SavedModel')
parser.add_argument('--model_name', default='klue/roberta-base',
help='Name of pre-trained models. (One of korscibert, korscielectra, huggingface models)')
parser.add_argument('--tfrecord_path', default='./data/tfrecords/{model_name}/eval.tfrecord',
help='Location of TFRecord file for warmup requests. {model_name} is a placeholder.')
parser.add_argument('--num_warmup_requests', default=10, type=int,
help='Number of warmup requests. Pass 0 to skip')
parser.add_argument('--repr_classifier', default='seq_cls',
help='Name of classification head for classifier. (One of seq_cls and bi_lstm is allowed)')
parser.add_argument('--repr_act', default='tanh',
help='Name of activation function for representation. (One of tanh and gelu is allowed)')
parser.add_argument('--concat_hidden_states', default=1, type=int,
help='Number of hidden states to concatenate.')
parser.add_argument('--repr_size', default=1024, type=int,
help='Number of representation dense units')
parser.add_argument('--num_labels', default=9, type=int,
help='Number of labels')
# Configurable pre-defined variables
parser.add_argument('--korscibert_vocab', default='./cort/pretrained/korscibert/vocab_kisti.txt')
parser.add_argument('--korscibert_ckpt', default='./cort/pretrained/korscibert/model.ckpt-262500')
parser.add_argument('--korscielectra_vocab', default='./cort/pretrained/korscielectra/data/vocab.txt')
parser.add_argument('--korscielectra_ckpt', default='./cort/pretrained/korscielectra/data/models/korsci_base')
parser.add_argument('--classifier_dropout_prob', default=0.1, type=float)
# Parser arguments
args = parser.parse_args()
config = Config(**vars(args))
config.pretrained_config = utils.parse_pretrained_config(config)
saved_model_path = os.path.join(args.saved_model_dir, args.model_spec_name, args.model_spec_version)
cort_serving = restore_cort_classifier(args, config)
store_as_saved_model(cort_serving, args.signature_name, saved_model_path)
if args.num_warmup_requests > 0:
maxlen = config.pretrained_config.max_position_embeddings
input_ids = parse_tfrecords(args.tfrecord_path, args.model_name, maxlen, num_samples=args.num_warmup_requests)
store_warmup_requests(args, input_ids, saved_model_path)
logging.info('Finishing all necessary jobs')
logging.info('Run following command to build and run Docker container:')
logging.info(
' MODEL_DIR={} MODEL_NAME={} MODEL_VERSION={} docker build -t cort/serving:latest .'
.format(args.saved_model_dir,
args.model_spec_name,
args.model_spec_version)
)
logging.info(' docker run -d -p 8500:8500 --name cort-serving cort/serving')
if __name__ == '__main__':
main()